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Abstract. Investing to optimally maximize the growth rate of wealth based on sequences of event
outcomes has many information-theoretic interpretations. Namely, the mutual information charac-
terizes the benefit of additional side information being available when making investment decisions
[1] in settings where the probabilistic relationships between side information and event outcomes
are known. Additionally, the relative variant of the principle of maximum entropy [2] provides the
optimal investment allocation in the more general setting where the relationships between side in-
formation and event outcomes are only partially known [3]. In this paper, we build upon recent
work characterizing the growth rates of investment in settings with inter-dependent side informa-
tion and event outcome sequences [4]. We consider the extension to settings with inter-dependent
event outcomes and side information where the probabilistic relationships between side informa-
tion and event outcomes are only partially known. We introduce the principle of minimum relative
causal entropy to obtain the optimal worst-case investment allocations for this setting. We present
efficient algorithms for obtaining these investment allocations using convex optimization techniques
and dynamic programming that illustrates a close connection to optimal control theory.
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INTRODUCTION

Though most famous for its applicability to problems in communications, information
theory [5] plays a key role in a number of different fields. For investment purposes,
Kelly showed that when gambling on independent repeated events, x € 2", the mutual
information I(X;Y) = H(X|Y) — H(X) characterizes the increase in the expected growth
rate of wealth when side information y € % related to event outcomes is available [1].
The Kelly criterion, as the resulting investment allocation is known, and related Kelly-
inspired criteria are commonly employed for investment and gambling. Permuter et al.’s
recent work [4] makes the ideas of Kelly investment applicable to more complex settings
with sequentially inter-dependent event outcomes P(X||Y) = [T, P(X;|X1,_1,Y;) for
event outcome sequences X and side information sequences Y using the Marko-Massey
theory of directed information [6, 7].

For statistical estimation tasks, the principle of maximum entropy [2] prescribes the
“least committed” distribution consistent with partial constraints, using Shannon’s infor-
mation entropy [S], H(X) = Ep(x)[—log P(x)], to measure the “committedness” of a dis-
tribution. The maximum entropy distributions for joint, conditional, and marginal distri-
butions with moment-matching constraints correspond to many state-of-the-art machine
learning techniques, including Markov random fields and conditional random fields [8].
The principle of maximum causal entropy [9] extends the maximum entropy approach



to settings with information revelation and feedback using directed information theory
[6, 7] with applications to single [9] and multi-agent decision prediction [10].

A powerful justification for the maximum entropy approach is that it provides an
estimate that minimizes the worst-case log-loss. Since the growth rate of an investment
is directly related to the log-loss of event outcome beliefs, this makes the relative
variant of maximum entropy applicable for maximizing the worst-case growth rate in
the Kelly investment setting with uncertain relationships between side information and
event outcomes [3]. This supports the many Kelly criterion practitioners who address
model uncertainty in an ad-hoc manner by moderating the allocations suggested by e.g.,
reducing the difference of the allocation from a neutral allocation by a factor of two—
the half-Kelly criterion. However, it also offers a more principled treatment for model
uncertainty in these investment settings.

In this work, we extend the maximum causal entropy approach [9] to model uncer-
tainty in sequential, inter-dependent investment settings. This contributions can alter-
nately be viewed as extending the maximum entropy approach for uncertain Kelly in-
vestment [3] to causal information settings or generalizing the causal gambling work
of Permuter et. al. [4] to incorporate model uncertainty. Our main result is a relative
causal entropy formulation of the sequential maximum growth rate investment task that
assures belief in the available odds except when in conflict with partial beliefs relating
outcomes and side information. We describe efficient algorithms to calculate the growth-
rate optimal investment allocation in this setting using convex optimization and dynamic
programming techniques.

BACKGROUND

We first review background information on sequential investment and directed informa-
tion theory for quantifying expected growth rates of investment in settings where the
probability distributions governing event outcomes are known.

Sequential Events, Odds, and Growth Rates

We are interested in temporal sequences of events, X = (X, X5,...,Xr), which are
random variables that take on values, x = (x1,x3,...,x7), from a set of event sequences,
X = (21,22,...,Zr). A probability distribution, P(X) € Ay, specifies the prob-
ability that each event sequence, x € 2", will occur. The odds available for a par-
ticular sequence of outcomes x is denoted as o(x) and indicates the multiplier by
which a wagered amount will grow if outcome sequence x occurs. This formulation
is quite general; it allows both event probabilities and odds to be dependent on the past:
P(X) =1, P(X;|X1,...,X;—1) and o(X) = [T, o(X;|X1,...,X,—1). We assume that at
each point in time during the sequence, all assets must be allocated to event outcomes
as bet distributions, b(X) € A 4~ over the simplex (denoted as A), specifying the portion
of capital invested on each of the event outcome sequences x € 2 . Further, we assume
that odds belong to a book with fair odds, meaning that the odds-maker does not receive



a “take” from all the bets' i.e., Yxca ﬁ = 1. The inverse of these odds, P,q4s = ﬁ

can be viewed as the odds-marker’s belief in event outcomes.
The expected return when betting according to distribution b(X) is

= Z P(x)o(x)b(x). (1)

xeZ

A betting allocation that maximizes this expected return, by;pg (X) = argmax, x) R(b(X)),
wagers everything on a single sequence of events, Xysg. Unfortunately, due to the gam-
bler’s paradox, the probability of losing all money, 1 — P(Xygg ), converges to one over
infinite time horizons with uncertain events.

A less risky objective is to maximize the expected growth rate of investment,

= Y P(x)log(o(x)b(x)) 2)
xe
= Dx1(P,o™ ") — Dx(P,b), (3)

which greatly penalizes the loss of all capital. As shown by Equation 3 (from Cover
& Thomas [11]), the growth rate can be equivalently expressed as the differences
in relative entropy (also known as Kullback-Leibler divergence [12]) Dkr(P,Q) =

Y c2 P(x)log Q(()) between event probabilities and the (inverse) available odds and

event probabilities and the bet allocations (Equation 3). Thus, the bettor must have a
better estimate of P to realize any expected growth.

As a historical note, the growth rate optimizing objective (Equation 2) is equivalent
to the log-scaled utility for increased wealth employed by Bernoulli to address the St.
Petersburg paradox [13], which describes a game that, despite having infinite expected
payoff, does not appear to be worth an arbitrary amount to play.

Theorem 1 (from Kelly [1]) The optimal allocation of bets for maximizing the expected
growth rate (Equation 2) when P(x) is known exactly is

Vx € 2, bygg(x) = P(x), (4)
with an expected rate of growth of:
W by (X ( Y. P(x)logo(x ) H(X), (5)
xe&
where H(X) = — Y .c 9- P(x)log P(x) is Shannon’s information entropy [5].

The bet allocations of Theorem 1 are chosen independently from the outcome odds,
o(X). That is, growth rate-optimal investors with perfect information should bet in
proportion to their beliefs and take no consideration of the payoff odds.

! Unfair books are of practical interest and were also investigated by Kelly [1], but they lack the
information-theoretic interpretations of fair odds that we investigate in this work.



Side Information and Directed Information Theory

In many settings, bets can be based on available side information 'y = (y,y2,...,y7),
which take on values from set of symbols % = (%1, %5, ... %7).

Theorem 2 (from Kelly [1]) When event outcomes are independent, Vi, j, X; 1. X;, and
known to follow distribution P(X|Y) = [1; P(X;|Y;), the growth-rate optimal bet alloca-
tion is in proportion to the conditional probability distribution:

Vx € 27, bygg(xly) = P(x]y).

The expected growth rate of the growth-rate optimal betting allocation is:

xeZ

W (byec(X1Y) ( Y. P(x)logo(x ) —H(X]Y). (6)

The benefit of having side information is directly related to the mutual information
between event outcomes and side information:

W (brec(X|Y)) =W (byeg(X)) = H(X|Y) — H(X) (7)
=I1(X;Y).

The independence assumptions of Theorem 2 correspond to the structural relationship
model of Figure la. More generally, event outcomes can be inter-dependent and the
values of revealed side information variables may depend on the outcomes of earlier
events, violating that independence assumption. Directed information theory measures
are needed to appropriately represent the sequential availability of side information in
these settings. The causally conditioned probability of X given Y from the Marko-
Massey theory of directed information [6, 7] is:

T
PXT|IY") =TPX: Y1t X1:—1).- (8)
=1

It crucially differs from the conditional probability, P(X|Y) =1, P(X;|Y 1.7, X141),
in how the Y variables are conditioned upon. In the causally conditioned probability,
each X; is only conditioned on previously occurring side information variables, Y1.;. In
the conditional probability distribution, each X; is conditioned on all side information,
YI:T~

The causal entropy measures the uncertainty corresponding to the causally condi-
tioned probability distribution. It is:

H(X"|Y") = Epx y)[— log P(XT|[YT)]. 9)

In the sequential side information setting, future side information is not available since
side information is revealed only after bet allocations on earlier events have been made.
Thus, directed information rather than conditional information measures must be em-
ployed.



FIGURE 1. Structural relationships between sequential side information and event outcomes. (a.) The
independent relationship structure investigated by Kelly [1]. (b.) A structure with dependence between
event outcomes over time. (c.) A more general side information process and event outcome structure
investigated by Permuter ez. al. [4].

Theorem 3 (from Permuter ef al. [4]) The maximum expected growth rate investment
allocation is a causally conditioned quantity:

Vx, b}kl/[EG(xHy) :P<x||y)7

with expected growth rate:

W XIIY)={ ) P(Y)P(xlly)logO(xHy)> — H(X][Y). (10)
eV xe&

When the odds are independent of side information, o(x||y) = o(x), this reduces to:

W (b (X||Y)) = (Z P(x)logo(x ) — H(X||Y). (11)

e

with the increase in growth rate by having causally available side information being the
directed information [6, 7] (Y — X) = H(X||Y) — H(X).

This formulation generalizes the setting considered by Kelly (Figure 1a), allowing
dependencies between event outcomes (Figure 1b) and more general side information
processes that have side information that is dependent on previous side information and
event outcomes, as shown in Figure Ic.

SEQUENTIAL INVESTING WITH INCOMPLETE SIDE
INFORMATION

Apart from well-defined games of chance (e.g., dice, cards), investments must typically
be made without precise knowledge of the distributions of event outcomes and relations
to side information. How should investment allocations be made in these incomplete
information settings? Following Griinwald & David [3], who suggest maximizing the
worst-case growth rates of investment, we extend maximum worst-case growth rate
investment to the sequential side information setting with Theorem 4.



Theorem 4 Maximizing the worst-case sequential investment growth subject to con-
straints (Equation 13) is equivalent to minimizing the relative causal entropy—also
known as the Kullback-Leibler divergence (KL divergence) [12]— between P(X||Y) and
Poaas(X||Y) =~

o(x[ly)’
P(X]|Y) ]
Dk (P(X||Y), Pyuas(X]|Y)) = E log——%—|, 12
e (PXIY). PoaaK11¥) = By o8 5t (12)
subject to constraints:
vi, fi(P(X][Y)) =0 (13)

vj, gj(P(X||Y)) <0,
with sets of linear functions f; and g ;.

Proof. We transform the maximum worst-case sequential investment growth rate opti-
mization’s objective to prove equivalence. The original objective function can be viewed
as a maximin problem where “nature” adversarially chooses P(X||Y) to minimize ex-
pected growth rate after the belief, b(X]||Y), is selected.

) pn P(y,x)log (b(x||y)o(x]|y def. max. worst-case growth)
b(X|[Y) P(X][Y) ye@g'egg (¥, x)log (b(x||y)o(x]ly)) (

= min max P(y,x)log (b(x||y)o(x||y Minimax duality
s, s L Pz (blxlnofl) ( )
= min Y P(y,x)log (P(x||y)o(x||y)) (b(X]|Y) = P(X]|Y) at optimum)
PXIY) ye xea
: P(x]]y)
= min P(y,x)log ————— (def. Poqqas(x]||y
PX|Y) yegygegg 3. %) Poads(x|[y) oaas (¥][9)
= min Dgp(P(X||Y), Poaas(X||Y)) (def. KL-divergence)

PX||Y)

O

The information-theoretic interpretation is that bet allocations should be as close as
possible to the beliefs implied by the odds, except where constraints (Equation 13)
guarantee that the bet allocation is a better estimate of outcomes P(X||Y) than the odds.

The Principle of Minimum Relative Causal Entropy: Duality

Directly optimizing the primal (Equation 12) in terms of causally conditioned prob-
ability terms to find the minimum worst-case investment allocation is possible, but it
becomes computationally intractable for large time horizons. When knowledge relating
event outcomes and side information linearly decomposes over time, more efficient op-
timization is possible. Building upon our past work [9], we can investigate and interpret
the form of the dual optimization.

Definition 1 (Markovian minimum relative causal entropy) Given Markovian side
information dynamics, P(Y;|Y;—1,X;_1), and knowledge constraining the expectations



of a vector of statistics f: 2" x % — RK to be (component-wise) equivalent® to some
C € RX, the maximum worst-case sequential investment growth allocation is defined by
the following optimization:

in D (P(X||Y),P,gqs(X||Y 14
PI(I?}IHI;/) ke (P(X|Y), Pouas(X||Y)) (14)
T

Zf(xn)’z)

t=1

such that: Epx y) =Cand

~

Vx € %‘,y € @P(xvy) :P(xHy)HPO}t’yt—l?xl—l)-

=1

By limiting the constraints to additively decompose in terms of statistics over time, a
Markovian form for the distribution is obtained in the dual (Theorem 5).

Theorem S5 The solution distribution for the Markovian minimum relative causal en-
tropy optimization (Definition 1) is:

V) = relativeés%oftmax (Q(xt,1)5 Podds(Xe[ye:x:-1))
Xt

O(x,31) = Epy,, vy y) [V 0r+1) X2, 2] + Rewardg (xi,y: ),

where: relative-softmax,c 2- (f(x), P(x)) = log¥.c 2 P(x)e/¥) and Rewardg(x,y) =
07f(x,y) with the Lagrange multipliers 0 being fit from data to match the con-
straints of Definition 1. The optimal conditional bet allocation is then: b(x|y;) =
Podas(Xe|ye, Xe—1) Q) =V ),

This recursive definition for the bet allocation matches Poqqs(x/||y;) when no reward
signal is present. It can be interpreted as a softened, relative relaxation of the value
iteration algorithm for obtaining the expected future value of each state, s € .% and
action a € o7 for the optimal policy (and the optimal policy itself, 7 : . — &7) in a
decision process with given dynamics P(S;41|ay,s;):

V(s:) = max (Q(as,s1))
a €
O(ar,st) = Ep(s,  jars) [V (St41) |ar, s¢] + Reward(ar, s¢).

Under uniform payoff odds, optimizing the relative causal entropy objective of Theo-
rem 5 is equivalent to maximizing the causal entropy (Equation 9). In that special case,
this distribution has been employed to forecast sequential decisions in stochastic deci-
sion processes based on previously observed decision sequences [9]. Indeed, the proof
of Theorem 5 can be obtained by extending the proof for the maximum causal entropy
setting using the relative entropy.

2 Inequality constraints of linear functions (and, more generally, of convex functions) are also possible.
They lead to a similar dual form with half-space constraints on Lagrange parameters.



Algorithm 1 Find the worst-case optimal growth rate betting allocation.
Require: Time horizon 7, side information dynamics P(y;|x;—1,y;—1), odds o(X||Y).
Ensure: b(x;|y;,x;—1) is worst-case growth rate optimal.
t<+0
while Ep(x y)[L/_ f(x,y,)] —C # 0 do
Compute Py (X;|Y;,X;—1) from the equations of Theorem 5
Compute IEP(X,Y) [ZrT:I £(xr,yr)] from Py (X:|X;—1,Y;) and P(ye[x;—1,y1-1)
Update parameters: 6 < 6 — 4,(Ep(x ) X, £(x,y,)] - C)
end while
Return b(X;|Y;, X;—1) = Po(X;|Y;, Xi 1)

The dual parameters 6 and corresponding investment allocation are obtained accord-
ing to gradient descent (Algorithm 1) using a slowly time-decaying learning rate A;. In
practice, only approximate convergence may be efficiently realized.

CONCLUSIONS

In this work, we investigated the investment setting with side information processes
and incomplete knowledge of how outcome events relate to side information. Due to
this uncertainty, we pursued maximum worst-case growth rate investing. We showed
that this formulation is equivalent to maximizing the relative entropy of a causally
conditioned distribution subject to available partial information constraints, and that the
corresponding algorithm for determining bet allocations uses a relaxation of standard
optimal control procedures and convex optimization.
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