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Abstract

In most previous research on distribu-
tional semantics, Vector Space Models
(VSMs) of words are built either from
topical information (e.g., documents in
which a word is present), or from syntac-
tic/semantic types of words (e.g., depen-
dency parse links of a word in sentences),
but not both. In this paper, we explore the
utility of combining these two representa-
tions to build VSM for the task of seman-
tic composition of adjective-noun phrases.
Through extensive experiments on bench-
mark datasets, we find that even though
a type-based VSM is effective for seman-
tic composition, it is often outperformed
by a VSM built using a combination of
topic- and type-based statistics. We also
introduce a new evaluation task wherein
we predict the composed vector represen-
tation of a phrase from the brain activity of
a human subject reading that phrase. We
exploit a large syntactically parsed corpus
of 16 billion tokens to build our VSMs,
with vectors for both phrases and words,
and make them publicly available.

1 Introduction
Vector space models (VSMs) of word semantics
use large collections of text to represent word
meanings. Each word vector is composed of fea-
tures, where features can be derived from global
corpus co-occurrence patterns (e.g. how often a
word appears in each document), or local corpus
co-occurrence patterns patterns (e.g. how often
two words appear together in the same sentence,
or are linked together in dependency parsed sen-
tences). These two feature types represent dif-

ferent aspects of word meaning (Murphy et al.,
2012c), and can be compared with the paradig-
matic/syntagmatic distinction (Sahlgren, 2006).
Global patterns give a more topic-based mean-
ing (e.g. judge might appear in documents also
containing court and verdict). Certain local pat-
terns give a more type-based meaning (e.g. the
noun judge might be modified by the adjective
harsh, or be the subject of decide, as would related
and substitutable words such as referee or con-
ductor). Global patterns have been used in Latent
Semantic Analysis (Landauer and Dumais, 1997)
and LDA Topic models (Blei et al., 2003). Local
patterns based on word co-occurrence in a fixed
width window were used in Hyperspace Analogue
to Language (Lund and Burgess, 1996). Subse-
quent models added increasing linguistic sophisti-
cation, up to full syntactic and dependency parses
(Lin, 1998; Padó and Lapata, 2007; Baroni and
Lenci, 2010).

In this paper we systematically explore the util-
ity of a global, topic-based VSM built from what
we call Document features, and a local, type-based
VSM built from Dependency features. Our Doc-
ument VSM represents each word w by a vector
where each feature is a specific document, and the
feature value is the number of mentions of word
w in that document. Our Dependency VSM rep-
resents word w with a vector where each feature
is a dependency parse link (e.g., the word w is the
subject of the verb “eat”), and the feature value is
the number of instances of this dependency fea-
ture for word w across a large text corpus. We
also consider a third Combined VSM in which
the word vector is the concatenation of its Doc-
ument and Dependency features. All three mod-
els subsequently normalize frequencies using pos-
itive pointwise mutual-information (PPMI), and



are dimensionality reduced using singular value
decomposition (SVD). This is the first systematic
study of the utility of Document and Dependency
features for semantic composition. We construct
all three VSMs (Dependencies, Documents, Com-
bined) using the same text corpus and preprocess-
ing pipeline, and make the resulting VSMs avail-
able for download (http://www.cs.cmu.
edu/˜afyshe/papers/conll2013/). To
our knowledge, this is the first freely available
VSM that includes entries for both words and
adjective-noun phrases, and it is built from a much
larger corpus than previously shared resources (16
billion words, 50 million documents). Our main
contributions include:
• We systematically study complementarity of

topical (Document) and type (Dependency)
features in Vector Space Model (VSM)
for semantic composition of adjective-noun
phrases. To the best of our knowledge, this is
one of the first studies of this kind.
• Through extensive experiments on standard

benchmark datasets, we find that a VSM built
from a combination of topical and type fea-
tures is more effective for semantic compo-
sition, compared to a VSM built from Docu-
ment and Dependency features alone.
• We introduce a novel task: to predict the vec-

tor representation of a composed phrase from
the brain activity of human subjects reading
that phrase.
• We explore two composition methods, addi-

tion and dilation, and find that while addition
performs well on corpus-only tasks, dilation
performs best on the brain activity task.
• We build our VSMs, for both phrases and

words, from a large syntactically parsed text
corpus of 16 billion tokens. We also make
the resulting VSM publicly available.

2 Related Work
Mitchell and Lapata (2010) explored several
methods of combining adjective and noun vec-
tors to estimate phrase vectors, and compared
the similarity judgements of humans to the sim-
ilarity of their predicted phrase vectors. They
found that for adjective-noun phrases, type-based
models outperformed Latent Dirichlet Allocation
(LDA) topic models. For the type-based mod-
els, multiplication performed the best, followed

by weighted addition and a dilation model (for de-
tails on composition functions see Section 4.2).
However, Mitchell and Lapata did not combine
the topic- and type-based models, an idea we ex-
plore in detail in this paper.

Baroni and Zamparelli (2010) extended the typ-
ical vector representation of words. Their model
used matrices to represent adjectives, while nouns
were represented with column vectors. The vec-
tors for nouns and adjective-noun phrases were
derived from local word co-occurrence statistics.
The matrix to represent the adjective was esti-
mated with partial least squares regression where
the product of the learned adjective matrix and
the observed noun vector should equal the ob-
served adjective-noun vector. Socher et al. (2012)
also extended word representations beyond sim-
ple vectors. Their model assigns each word a vec-
tor and a matrix, which are composed via an non-
linear function (e.g. tanh) to create phrase rep-
resentations consisting of another vector/matrix
pair. This process can proceed recursively, follow-
ing a parse tree to produce a composite sentence
meaning. Other general semantic composition
frameworks have been suggested, e.g. (Sadrzadeh
and Grefenstette, 2011) who focus on the opera-
tional nature of composition, rather than the rep-
resentations that are supplied to the framework.
Here we focus on creating word representations
that are useful for semantic composition.

Turney (2012) published an exploration of the
impact of domain- and function-specific vector
space models, analogous to the topic and type
meanings encoded by our Document and Depen-
dency models respectively. In Turney’s work,
domain-specific information was represented by
noun token co-occurrence statistics within a lo-
cal window, and functional roles were repre-
sented by generalized token/part-of-speech co-
occurrence patterns with verbs - both of which
are relatively local and shallow when compared
with this work. Similar local context-based fea-
tures were used to cluster phrases in (Lin and Wu,
2009). Though the models discussed here are
not entirely comparable to it, a recent comparison
suggested that broader, deeper features such as
ours may result in representations that are superior
for tasks involving neural activation data (Murphy
et al., 2012b).



In contrast to the composite model in (Griffiths
et al., 2005), in this paper we explore the com-
plementarity of semantics captured by topical in-
formation and syntactic/semantic types. We fo-
cus on learning VSMs (involving both words and
phrases) for semantic composition, and use more
expressive dependency-based features in our type-
based VSM. A comparison of vector-space repre-
sentations was recently published (Blacoe and La-
pata, 2012), in which the authors compared sev-
eral methods of combining single words vectors
to create phrase vectors. They found that the best
performance for adjective-noun composition used
point-wise multiplication and a model based on
type-based word co-occurrence patterns.

3 Creating a Vector-Space
To create the Dependency vectors, a 16 billion
word subset of ClueWeb09 (Callan and Hoy,
2009) was dependency parsed using the Malt
parser (Hall et al., 2007). Dependency statistics
were then collected for a predetermined list of
target words and adjective-noun phrases, and for
arbitrary adjective-noun phrases observed in the
corpus. The list was composed of the 40 thou-
sand most frequent single tokens in the Ameri-
can National Corpus (Ide and Suderman, 2006),
and a small number of words and phrases used
as stimuli in our brain imaging experiments. Ad-
ditionally, we included any phrase found in the
corpus whose maximal token span matched the
PoS pattern J+N+, where J and N denote adjec-
tive and noun PoS tags respectively. For each
unit (i.e., word or phrase) in this augmented list,
counts of all unit-external dependencies incident
on the head word were aggregated across the cor-
pus, while unit-internal dependencies were ig-
nored. Each token was appended with its PoS tag,
and the dependency edge label was also included.
This resulted in the extraction of 498 million de-
pendency tuples. For example, the dependency tu-
ple (a/DT, NMOD, 27-inch/JJ television/NN,14),
indicates that a/DT was found as a child of 27-
inch/JJ television/NN with a frequency of 14 in
the corpus.

To create Document vectors, word-document
co-occurrence counts were taken from the same
subset of Clueweb, which covered 50 million doc-
uments. We applied feature-selection for compu-
tational efficiency reasons, ranking documents by

the number of target word/phrase types they con-
tained and choosing the top 10 million.

A series of three additional filtering steps
selected target words/phrases, and Docu-
ment/Dependency features for which there was
adequate data.1 First, a co-occurrence frequency
cut-off was used to reduce the dimensionality
of the matrices, and to discard noisy estimates.
A cutoff of 20 was applied to the dependency
counts, and of 2 to document counts. Positive
pointwise-mutual-information (PPMI) was used
as an association measure to normalize the
observed co-occurrence frequency for the varying
frequency of the target word and its features,
and to discard negative associations. Second, the
target list was filtered to the 57 thousand words
and phrases which had at least 20 non-“stop
word” Dependency co-occurrence types, where
a “stop word” was one of the 100 most frequent
Dependency features observed (so named be-
cause the dependencies were largely incident on
function words). Third, features observed for
no more than one target were removed, as were
empty target entries. The result was a Document
co-occurrence matrix of 55 thousand targets by
5.2 million features (total 172 million non-zero
entries), and a Dependency matrix of 57 thousand
targets by 1.25 million features (total 35 million
non-zero entries).

A singular value decomposition (SVD) matrix
factorization was computed separately on the De-
pendency and Document statistics matrices, with
1000 latent dimensions retained. For this step
we used Python/Scipy implementation of the Im-
plicitly Restarted Arnoldi method (Lehoucq et al.,
1998; Jones et al., 2001). This method is com-
patible with PPMI normalization, since a zero
value represents both negative target-feature asso-
ciations, and those that were not observed or fell
below the frequency cut-off. To combine Docu-
ment and Dependency information, we concate-
nate vectors.

4 Experiments
To evaluate how Document and Dependency di-
mensions can interact and compliment each other,

1In earlier experiments with more than 500 thousand
phrasal entries, we found that the majority of targets were
dominated by non-distinctive stop word co-occurrences, re-
sulting in semantically vacuous representations.



Table 1: The nearest neighbors of three queries under three VSMs: all 2000 dimensions (Deps & Docs);
1000 Document dimensions (Docs); 1000 Dependency dimensions (Deps).

Query Deps & Docs Docs Deps
beautiful/JJ wonderful/JJ wonderful/JJ lovely/JJ

lovely/JJ fantastic/JJ gorgeous/JJ
excellent/JJ unspoiled/JJ wonderful/JJ

dog/NN cat/NN dogs/NNS cat/NN
dogs/NNS vet/NN the/DT dog/NN
pet/NN leash/NN dogs/NNS

bad/JJ publicity/NN negative/JJ publicity/NN fast/JJ cash/NN loan/NN negative/JJ publicity/NN
bad/JJ press/NN small/JJ business/NN loan/NN bad/JJ press/NN
unpleasantness/NN important/JJ cities/NNS unpleasantness/NN
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Figure 1: Performance of VSMs for single word
behavioral tasks as we vary Document and Depen-
dency inclusion.

we can perform a qualitative comparison between
the nearest neighbors (NNs) of words and phrases
in the three VSMs – Dependency, Document, and
Combined (Dependency & Document). Results
appear in Table 1. Note that single words and
phrases can be neighbors of each other, demon-
strating that our VSMs can generalize across syn-
tactic types. In the Document VSM, we get more
topically related words as NNs (e.g., vet and leash
for dog); and in the Dependency VSM, we see
words that might substitute for one another in a
sentence (e.g., gorgeous for beautiful). The two
feature sets can work together to up-weight the
most suitable NNs (as in beautiful), or help to
drown out noise (as in the NNs for bad publicity
in the Document VSM).

4.1 Judgements of Word Similarity
As an initial test of the informativeness of Doc-
ument and Dependency features, we evaluate
the representation of single words. Behavioral
judgement benchmarks have been widely used to

evaluate vector space representations (Lund and
Burgess, 1996; Rapp, 2003; Sahlgren, 2006).
Here we used five such tests. Two tests are catego-
rization tests, where we evaluate how well an au-
tomatic clustering of our word vectors correspond
to pre-defined word categories. The first “Con-
crete Categories” test-set consists of 82 nouns,
each assigned to one of 10 concrete classes (Battig
and Montague, 1969). The second “Mixed Cat-
egories” test-set contains 402 nouns in a range
of 21 concrete and abstract classes from Word-
Net (Almuhareb and Poesio, 2004; Miller et al.,
1990). Both categorization tests were performed
with the Cluto clustering package (Karypis, 2003)
using cosine distances. Success was measured as
percentage purity over clusters based on their plu-
rality class, with chance performance at 10% and
5% respectively for the “Concrete Categories” and
“Mixed Categories” tests.

The remaining three tests use group judgements
of similarity: the “Concrete Similarity” set of
65 concrete word pairs (Rubenstein and Goode-
nough, 1965); and two variations on the Word-
Sim353 test-set (Finkelstein et al., 2002), par-
titioned into subsets corresponding to strict at-
tributional similarity (“Mixed Similarity”, 203
noun pairs), and broader topical “relatedness”
(“Mixed Relatedness”, 252 noun pairs) (Agirre et
al., 2009). Performance on these benchmarks is
Spearman correlation between the aggregate hu-
man judgements and pairwise cosine distances of
word vectors in a VSM.

The results in Figure 1 show that the Depen-
dency VSM substantially outperforms the Docu-
ment VSM when predicting human judgements of
strict attributional (categorial) similarity (“Simi-
larity” as opposed to “Relatedness”) for concrete
nouns. Conversely the Document VSM is compet-



Figure 2: The performance of three phrase representations for predicting the behavioral phrasal similar-
ity scores from Mitchell and Lapata (2010). The highest correlation is 0.5033 and uses 25 Document
dimensions, 600 Dependency dimensions and the addition composition function.

itive for less concrete word types, and for judge-
ments of broader topical relatedness.

4.2 Judgements of Phrase Similarity
We also evaluated our system on behavioral data
of phrase similarity judgements gathered from 18
human informants. The adjective-noun phrase
pairs are divided into 3 groups: high, medium
and low similarity (Mitchell and Lapata, 2010).
For each pair of phrases, informants rated phrase
similarity on a Likert scale of 1-7. There are 36
phrase pairs in each of the three groups for a to-
tal of 108 phrase pairs. Not all of the phrases oc-
curred frequently enough in our corpus to pass our
thresholds, and so were omitted from our analy-
sis. In several cases we also used pluralizations
of the test phrases (e.g.“dark eyes”) where the
singular form was not found in our VSM. After
these changes we were left with 28, 24 and 28
in the high, medium and low groups respectively.
In total we have 80 observed vectors for the 108
phrase pairs. These adjective-noun phrases were
included in the list of targets, so their statistics
were gathered in the same way as for single words.
This does not impact results for composed vectors,
as all of the single words in the phrases do appear
in our VSMs. A full list of the phrase pairs can be
found in Mitchell and Lapata (2010).

To evaluate, we used three different representa-
tions of phrases. For phrase pairs that passed our
thresholds, we can test the similarity of observed
representations by comparing the VSM represen-

tation of the phrase (no composition function).
For all 108 phrase pairs we can test the composed
phrase representations, derived by applying addi-
tion and dilation operations to word vectors. Mul-
tiplication is not used as SVD representations in-
clude negative values, and so the product of two
negative values would be positive.

Addition is the element-wise sum of two se-
mantic feature vectors saddi = sadji +snouni , where
snouni , sadji , and saddi are the ith element of the
noun, adjective, and predicted phrase vectors, re-
spectively. Dilation of two semantic feature vec-
tors sadj and snoun is calculated by first decom-
posing the noun into a component parallel to the
adjective (x) and a component perpendicular to
the adjective (y) so that snoun = x + y. Dilation
then enhances the adjective component by multi-
plying it by a scalar (γ): sdilate = γx+y. This can
be viewed as taking the representation of the noun,
and up-weighting the elements it shares with the
adjective, which is coherent with the notion of co-
composition (Pustejovsky, 1995). Previous work
(Mitchell and Lapata, 2010) tuned the γ parame-
ter (γ = 16.7). We use that value here, though
further optimization might increase performance.

For our evaluation we calculated the cosine dis-
tance between pairs of phrases in the three dif-
ferent representation spaces: observed, addition
and dilation. Results for a range of dimension-
ality settings appear in Figure 2. In the observed
space, we maximized performance when we in-



cluded all 1000 of the Document and 350 Depen-
dency dimensions. For consistency the y axis in
Figure 2 extends only to 100 Document dimen-
sions: changes beyond 100 dimensions for ob-
served vectors were minimal. By design, SVD
will tend to use lower dimensions to represent the
strongest signals in the input statistics, which typ-
ically originate in the types of targets that are most
frequent – in this case single words. We have ob-
served that less frequent and noisier counts, as
might be found for many phrases, are displaced
to the higher dimensions. Consistent with this ob-
servation, maximum performance occurs using a
high number of dimensions (correlation of 0.37 to
human judgements of phrase similarity).

Interestingly, using the single word vectors to
predict the phrase vectors via the addition function
gives the best correlation of any of the represen-
tations, outperforming even the observed phrase
representations. When using 25 Document di-
mensions and 600 Dependency dimensions the
correlation is 0.52, compared to the best per-
formance of 0.51 using Dependency dimensions
only. We speculate that the advantage of com-
posed vectors over observed vectors is due to
sparseness and resulting noise/variance in the ob-
served phrase vectors, as phrases are necessarily
less frequent than their constituent words.

The dilation composition function performs
slightly worse than addition, but shows best per-
formance at the same point as addition. Here, the
highest correlation (0.46) is substantially lower
than that attained by addition, and uses 25 dimen-
sions of the Document, and 600 dimensions of the
Dependency VSM.

To summarize, without documents, {observed,
addition and dilation} phrase vectors have maxi-
mal correlations {0.37, 0.51 and 0.46}. With doc-
uments, {observed, addition and dilation} phrase
vectors have maximal correlations {0.37, 0.52 and
0.50}. Our results using the addition function
(0.52) outperform the results in two previous stud-
ies (Mitchell and Lapata, 2010; Blacoe and Lap-
ata, 2012): (0.46 and 0.48 respectively). This is
evidence that a VSM built from a larger corpus,
and with both Document and Dependency infor-
mation can yield superior results.

4.3 Composed vs Observed Phrase Vectors
Next we tested how well our representations and
semantic composition functions could predict the
observed vector statistics for phrases from the
vectors of their component words. Again, we
explored addition and dilation composition func-
tions. For testing we have 13, 575 vectors for
which both the adjective and noun passed our
thresholds. We predicted a composed phrase vec-
tor using the statistics of the single words and
one of the two composition functions (addition
or dilation). We then sorted the list of observed
phrase vectors by their distance to the composed
phrase vector and recorded the position of the
corresponding observed vector in the list. From
this we calculated percentile rank, the percent of
phrases that are further from the predicted vec-
tor than the observed vector. Percentile rank is:
100 × (1 − µrank/N) where µrank is the aver-
age position of the correct observed vector in the
sorted list and N = 13, 575 is the size of the list.

Figure 3 shows the changes in percentile rank
in response to varying dimensions of Documents
and Dependencies for the addition function. Di-
lation results are not shown, but the pattern of
performance is very similar. In general, when
one includes more Document dimensions, the per-
centile rank increases. For both the dilation and
addition composition functions the peak perfor-
mance is with 750 Dependency dimensions and
1000 Document dimensions. Dilation’s peak per-
formance is 97.87; addition peaks at 98.03 per-
centile rank. As in Section 4.2, we see that the
accurate representation of phrases requires higher
SVD dimensions.

To evaluate when composition fails, we ex-
amined the cases where the percentile rank was
< 25%. Amongst these words we found an over-
representation of operational adjectives like “bet-
ter” and “more”. As observed previously, it is
possible that such adjectives could be better rep-
resented with a matrix or function (Socher et al.,
2012; Baroni and Zamparelli, 2010). Composi-
tion may also be failing when the adjective-noun
phrase is non-compositional (e.g. lazy susan); fil-
tering such phrases could improve performance.

4.4 Brain Activity Data
Here we explore the relationship between the neu-
ral activity observed when a person reads a phrase,
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Figure 3: The percentile rank of observed phrase
vectors compared to vectors created using the ad-
dition composition function.

and our predicted composed VSM for that phrase.
We collected brain activity data using Magnetoen-
cephalography (MEG). MEG is a brain imaging
method with much higher temporal resolution (1
ms) than fMRI (∼2 sec). Since words are natu-
rally read at a rate of about 2 per second, MEG is a
better candidate for capturing the fast dynamics of
semantic composition in the brain. Some previous
work has explored adjective-noun composition in
the brain (Chang et al., 2009), but used fMRI and
corpus statistics based only on co-occurrence with
5 hand-selected verbs.

Our MEG data was collected while 9 partici-
pants viewed 38 phrases, each repeated 20 times
(randomly interleaved). The stimulus nouns were
chosen because previous research had shown them
to be decodable from MEG recordings, and the ad-
jectives were selected to modulate their most de-
codable semantic properties (e.g. edibility, ma-
nipulability) (Sudre et al., 2012). The 8 adjec-
tives selected are (“big”, “small”, “ferocious”,
“gentle”, “light”, “heavy”, “rotten”, “tasty”), and
the 6 nouns are (“dog”, “bear”, “tomato”, “car-
rot”, “hammer”, “shovel”). The words “big” and
“small” are paired with every noun, “ferocious”
and “gentle” with animals, “light” and “heavy”
with tools and “rotten” and “tasty” with foods.
We also included the words “the” and the word
“thing” as semantically neutral fillers, to present
each of the words in a condition without seman-
tic modulation. In total there are 38 phrases (e.g.
“rotten carrot”, “big hammer”).

In the MEG experiment, the adjective and
paired noun were each shown for 500ms, with a
300ms interval between them, and there were 3

Figure 4: Results for predicting composed phrase
vectors (addition [4a] and dilation [4b]) from
MEG recordings. Results shown are the aver-
age over 9 subjects viewing 38 adjective-noun
phrases. This is the one task on which dilation
outperforms addition.

(a) Addition composition function results.

(b) Dilation composition function results.

seconds in total time between the onset of subse-
quent phrases. Data was preprocessed to maxi-
mize the signal/noise ratio as is common practice
– see Gross et al., (2012). The 20 repeated trials
for each phrase were averaged together to create
one average brain image per phrase.

To determine if the recorded MEG data can be
used to predict our composed vector space rep-
resentations, we devised the following classifica-
tion framework.2 The training data is comprised
of the averaged MEG signal for each of the 38
phrases for one subject, and the labels are the 38
phrases. We use our VSMs and composition func-
tions to form a mapping of the 38 phrases to com-

2Predicting brain activity from VSM representations is
also possible, but provides additional challenges, as parts of
the observed brain activity are not driven by semantics.



posed semantic feature vectors w → {s1 . . . sm}.
The mapping allows us to use Zero Shot Learn-
ing (Palatucci et al., 2009) to predict novel phrases
(not seen during training) from a MEG record-
ing. This is a particularly attractive characteris-
tic for the task of predicting words, as there are
many words and many more phrases in the En-
glish language, and one cannot hope to collect
MEG recordings for all of them.

Formally, let us define the semantic represen-
tation of a phrase w as semantic feature vector
~sw = {s1...sm}, where the semantic space has
dimensionm that varies depending on the number
of Document and/or Dependency dimensions we
include. We utilize the mapping w → {s1 . . . sm}
to train m independent functions f1(X) →
s′1, . . . , fm(X) → s′m where s′ represents the
value of a predicted composed semantic feature.
We combine the output of f1 . . . fm to create the
final predicted semantic vector ~s′ = {s′1 . . . s′m}.
We use cosine distance to quantify the distance be-
tween true and predicted semantic vectors.

To measure performance we use the 2 vs. 2 test.
For each test we withhold two phrases and train
regressors on the remaining 36. We use the re-
gressors f and MEG data from the two held out
phrases to create two predicted semantic vectors.
We then choose the assignment of predicted se-
mantic vectors (~s′i and ~s′j) to true semantic vec-
tors (~si and ~sj) that minimizes the sum of cosine
distances. If we choose the correct assignment
(~s′i 7→ ~si and ~s′j 7→ ~sj) we mark the test as cor-
rect. 2 vs. 2 accuracy is the number of 2 vs. 2
tests with correct assignments divided by the total
number of tests. There are (38 choose 2) = 703
distinct 2 vs. 2 tests, and we evaluate on the subset
for which neither the adjective nor noun are shared
(540 pairs). Chance performance is 0.50.

For each f we trained a regressor with L2

penalty. We tune the regularization parame-
ter with leave-one-out-cross-validation on training
data. We train regressors using the first 800 ms of
MEG signal after the noun stimulus appears, when
we assume semantic composition is taking place.

Results appear in Figure 4. The best perfor-
mance (2 vs. 2 accuracy of 0.9440) is achieved
with dilation, 800 dimensions of Dependencies
and zero Document dimensions. When we use
the addition composition function, optimal per-

formance is 0.9212, at 600 Dependency and zero
Document dimensions. Note, however, that the
parameter search here was much coarser that in
Sections 4.2 and 4.3, due to the computation re-
quired. We used a finer grid around the peaks in
performance for addition and dilation and found
minimal improvement (±0.5%) with the addition
of a small number of Document dimensions.

It is intriguing that this neurosemantic task is
the only task for which dilation outperforms addi-
tion. All other composition tasks explored in this
study were concerned with matching composed
word vectors to observed or composed word vec-
tors, whereas here we are interested in matching
composed word vectors to observed brain activity.
Perhaps the brain works in a manner more akin to
the emphasis of elements as modeled by dilation,
rather than a summing of features. Further work
is required to fully understand this phenomenon,
but this is surely a thought-provoking result.3

5 Conclusion
We have performed a systematic study of comple-
mentarity of topical (Document) and type (Depen-
dency) features in Vector Space Model (VSM) for
semantic composition of adjective-noun phrases.
To the best of our knowledge, this is one of the
first such studies of this kind. Through experi-
ments on multiple real world benchmark datasets,
we demonstrated the benefit of combining topic-
and type-based features in a VSM. Additionally,
we introduced a novel task of predicting vec-
tor representations of composed phrases from the
brain activity of human subjects reading those
phrases. We exploited a large syntactically parsed
corpus to build our VSM models, and make them
publicly available. We hope that the findings and
resources from this paper will serve to inform fu-
ture work on VSMs and semantic composition.
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