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ABSTRACT

Random walks on graphs are a staple of many ranking and
recommendation algorithms. Simulating random walks on
a graph which fits in memory is trivial, but massive graphs
pose a problem: the latency of following walks across net-
work in a cluster or loading nodes from disk on-demand ren-
ders basic random walk simulation unbearably inefficient. In
this work we propose DrunkardMob!, a new algorithm for
simulating hundreds of millions, or even billions, of random
walks on massive graphs, on just a single PC or laptop. In-
stead of simulating one walk a time it processes millions of
them in parallel, in a batch. Based on DrunkardMob and
GraphChi [19], we further propose a framework for easily
expressing scalable algorithms based on graph walks.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval-Information Filtering

General Terms

Graph computation, Recommendations, Random walks

Keywords

recommender systems, random walks, graph computation

1. INTRODUCTION

Many popular algorithms for ranking and recommending
nodes in graphs are based on random walk models. Most
notably, the PageRank algorithm [26] and its personalized
adaption the Personalized PageRank (PPR) compute rank-
ing for webpages based on the probability that a “random
web surfer” (we will use the term random walker) ends up
on the page by following random links from web pages. The

'Random walks are often called “drunkards’ walks”, thus our
algorithm, which simulates many of such walks simultane-
ously is appropriately called DrunkardMob.
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same model can be used for ranking users in social networks
or graphs of other entities.

To compute the global PageRank, we can compute the
stationary distribution of the random process by iterated
multiplications of an initial ranking vector by the transi-
tion matrix (the power method). However, for computing
all PPR vectors [26], the direct methods are too expensive,
with complexity of O(V?) [16]. Fortunately, Fogaras et. al.
[10] proved that by simulating a modest number of short
random walk segments from each node, we can efficiently
obtain a good approximation of the PPR vector for each
user.

In this work, we show how to simulate hundreds of mil-
lions, or even billions, of number of short (random) walks
on extremely large graphs, on just a single computer. We
propose a new algorithm, DrunkardMob, which processes
the graph from disk but maintains the current state of each
random walk in memory. A typical modern PC or laptop
has several gigabytes of memory and can scale up to several
hundred million parallel walks. On high-end servers with
large RAMSs, we simulate billions of walks in parallel. Be-
cause the graph is processed efficiently from disk, we can
process even the biggest social graphs on just a laptop. Our
solution is generic, not limited to the basic PageRank al-
gorithm, and is as easy to program as the basic in-memory
random walk procedure. We implement DrunkardMob on
GraphChi [19], a general graph computation system that al-
lows us to naturally combine the walk simulator with other
recommendation algorithms such as matrix factorization.

Outline: after reviewing related work and preliminaries in
Section 2 and 3, Section 4 presents the DrunkardMob algo-
rithm and discusses its implementation.We present a case
study on implementing Twitter’s Who-to-Follow algorithm
using our system in Section 5. Evaluation of the system fol-
lows in Section 6, after which we conclude and discuss future
research.

Summary of our contributions:

e DrunkardMob, an algorithm for simulating billions of
walks on just a single computer.

e Generic architecture for representing graph walk -based
computation in the vertez-centric computational model.

e Implementation of DrunkardMob on top of GraphChi
and an evaluation of its performance and scalability.

DrunkardMob is available in the open-source at https:
//github.com/GraphChi/.



2. RELATED WORK

Random walks and recommender systems: Mod-
els based on random walks on a graph are popular in the
recommender system research due to their scalability. This
work was initially motivated by the problem of recommend-
ing friends or connections in a social network, called the
link prediction problem [23]. Perhaps the most common ap-
proach is to return the top k ranked nodes of the Personal-
ized Pagerank [26] vector for the user in question. Recently
[12] describe an extensions to this technique used at the
microblogging service Twitter (http://www.twitter.com).
We implement their method in our case study (Section 5).

Random walk -based models are also used in other con-
texts: FolkRank [13] is an adapted version of PageRank
for ranking in folksonomies (graphs of users, tags, and re-
sources). TrustWalker [15] improves item-based recommen-
dation by modeling trust between users in a social network,
approximated by simulating random walks on the graph. Fi-
nally, [20] proposes a ranking of entities in an entity graph
using random walks. In a closely related field, random walks
have been successfully used for inference and learning in a
large knowledge base [?]. Previous work has been evaluated
on relatively small datasets, and we believe our toolkit will
help researchers to tackle problems of much larger scale.

Scaling Personalized PageRank: As most work on
link prediction and personalized web search has focused on
Personalized PageRank (PPR), its scalability has also been
object of intensive research, which we briefly review here.
The seminal work by Jeh and Widom [16] proposed how
PPR can be approximated by computing the rank vectors to
a smaller set of hub nodes and using linear algebraic relations
of the PPR vectors. However, to allow good accuracy for full
personalization, the hub set would need to be very large.

Another important work by Fogaras et. al. [10] proposed
using short random walk segments, fingerprints, to approx-
imate the PPR vectors. They propose an external memory
(disk-based) algorithm to efficiently simulate a very large
number of walks from all vertices at once. Our work is
closely related to their work but is more general and uti-
lizes the memory of the computer to keep track of very large
number of walks. To our knowledge, there is no available
implementation of the algorithm of [10].

Related algorithm to compute PageRank on graphs streamed
from disk was proposed by Das Sarma et. al. [7], but their
approach is to sample the vertices and edges of the graph
and simulate a small number of hops on the sampled graph
to produce a large number of short walks. Their method
requires a rather complicated scheme to stitch small walk
segments and handle special cases, while our method and
that of Fogaras can simulate the walks on the full graph
and thus are not limited to PageRank. Bahmani et. al. [4]
study how to efficiently update a database of random walk
segments when new edges are inserted into the graph. Their
method could be combined with DrunkardMob.

Finally, [3] proposes a method to compute PPR efficiently
on the popular MapReduce [8] parallel data processing frame-
work. Their method is a generalization of the method by Das
Sarma et. al. [7]. While MapReduce provides impressive
scalability with very large clusters, our method can process
extremely large graphs on just a single computer.
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3. PRELIMINARIES

Our objective is to simulate walks (not necessarily ran-
dom) on a graph G = (V, E), where V denotes the set of
vertices (nodes) v € Z, and E = {(u,v)|u,v € V} the
set of directed edges connecting the vertices. We call edge
e = (a,b) out-edge of vertex a and in-edge of vertex b. We
generally assume the graph to be sparse, i.e that most ver-
tices do not have an edge between them. In addition, each
edge can be associated a value, typically a real valued weight.
Let out-degree D,(v) be the number of out-edges of vertex
v.

A walk wl = [s,v',v?,...,0], 5,07 € V on a graph is an
ordered sequence of ¢ visits to vertices (called hops), with
source vertex (the origin of the walk) s. We denote w*(7)
the i’th visit of the walk. Random variable W represents a
walk where each visit W£(j+41) is chosen randomly according
to some transition probability P(v|W*(j) = v’) based on
the previous hop.

Example (global PageRank): For the global PageR-
ank [26] model, the probability of moving from vertex v to
v is:

d/|V]| if (v,v) ¢ E

t . _ ! R
P(UIWS(J)—U)-—{ dJ|V|+ g% if (V,v) €E

Above, d is the damping factor, which represents the prob-
ability of the random walk to reset and “teleport” to a ran-
dom node in the graph.

Example (Personalized PageRank): The Personal-
ized PageRank [26] model is used for estimating the ranking
of nodes “personalized” to a source vertex s. The only differ-
ence to global PageRank is that when a walk resets, it will
always return to the source:

0 if (v',v) ¢ E and v # s
Plw|Wij)=v):=¢ d ifv=s
Dl(,?;i/) if (vV,v)eFE

The probabilities above are for unweighted PageRank, but
are easily modified to use edge weights for bias.

In the context of this work, we do not require a walk to
be random, or even follow a well-defined transition model.
Computationally, walks are simulated by defining a walk-
update function:

update := (G, vertex, walk-info) — (vertex, walk-info)

Above, vertex denotes the current visit of the walk, and
type walk-info is an application dependent structure that
stores information about the walk. For example to simu-
late Personalized PageRank, it is used to store the source
vertex of the walk. In addition, it can also contain informa-
tion about the current hop-number of the walk or an unique
walk identifier. In general, we use as few bits as possible
to represent walk-info in order to store as many walks in
memory as possible. Walk-update function returns the next
visit of the walk and the walk-info value, which it can mod-
ify. Walk-update functions are general and may utilize any
information about the graph and it is straight-forward to de-
fine specialized walks that follow only, for example, certain
types of edges.

3.1 Large Graphs

If the graph fits into main memory (RAM), simulating
walks on a graph is trivial, using the Algorithm 1. On line 6
we have added a call to recordHop() function, which is used



to keep track of the visits made by the walk (not described).
The algorithm can be easily made parallel by executing sev-
eral walks simultaneously. This simple algorithm is able to
execute millions of hops in second on a typical PC.

Algorithm 1: In-memory walk on a graph

1 SimulateWalk(G, src, upFun) begin

2 walkInfo « initializeWalk(src)

3 curvertex < src

4 for i =1...t do

5 (curvertex, walkinfo) « upFun(G, src, walkInfo)
6 recordHop(src, walkInfo, curvertex)

7 end

8 end

If the graph does not fit into RAM, it needs to be ac-
cessed from disk (parts of the graph may reside in RAM) or
the graph must be partitioned and distributed across a clus-
ter of computers. Unfortunately, in both cases the simple
algorithm 1 is extremely inefficient.

If the graph resides on disk, each hop requires loading
the next vertex from disk. Even if the graph is partially in
memory, on typical real-world graphs [22, 19] a large por-
tion of the hops would require accessing vertices stored on
disk. On a typical rotational hard drive, random seek costs
a few milliseconds, limiting us to some hundreds of hops per
second. Flash-based Solid-State Drives (SSD) have much
better performance, but even they provide several orders of
magnitude slower random access performance than DRAM.

In the distributed setting, the graph is partitioned across
a cluster. Now each hop with the simple algorithm moves
the walk to a partition owned either by the node owning the
current vertex, or to another partition. If the hop requires
changing partition, this will incur a cost equivalent to the
network latency. With 1Gb Ethernet the typical latency is
in the order of 0.1 milliseconds, allowing maximum of tens
of thousands of walks per second.

In both cases, the inefficiency arises from increased latency
between hops. In this work, we propose to solve this problem
by simulating a very large number walks in parallel. Instead
of executing one walk a time, we instead consider each ver-
tex in turn and add one hop to each walk currently at the
given vertex. Similar idea was first proposed in the exter-
nal memory setting by [10], but we instead use the available
RAM to keep track of walks while efficiently processing the
graph from disk.

4. DRUNKARDMOB

We now describe the main contribution of this paper, the
DrunkardMob algorithm.

4.1 High-level description

Instead of simulating one walk a time, DrunkardMob re-
verses the execution and instead simulates a massive number
of walks in parallel, possibly from a large number of source
vertices, and processes one verter a time: at each vertex, all
walks currently visiting that vertex are processed and moved
forward. The graph is streamed from disk, thus all memory
can be utilized for storing the walk states. The performance
relies on compact representation of walks in memory, which
we discuss in the next section.
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Figure 1: DrunkardMob: Class diagram.

The high-level object-oriented class diagram of the algo-
rithm is shown in Figure 1. We assume that the graph is
loaded efficiently from disk by some graph processing sys-
tem, which provides a stream of vertices with their incident
edges to the DrunkardMobDriver. WalkManager is a con-
tainer that keeps track of the current vertex each walk is
visiting (its interface is similar to an associated map from
vertex ids to lists of walk-items). For each vertex it receives
from the graph processor, DrunkardMobDriver queries Walk-
Manager for the set of walks currently at that vertex. For
each walk in the list, it invokes the user-defined walk-update
function that returns new destination for the walk and pos-
sibly updates the meta-data associated with the walk. In
addition, WalkManager provides the list of walks at the ver-
tex to DrunkardCompanion, which is a component that keeps
track of the visit frequencies (discussed in Sec. 4.3). Fi-
nally, DrunkardMobDriver provides the updated walks to the
WalkManager. This cycle is repeated over all vertices in the
graph for a predefined number of iterations. The number of
hops for each walk is equal to the number of iterations.

Algorithm 2: Batched operation of DrunkardMob

1 DrunkardMobDriverCallback(vertexArray) begin
2 walksForSet «—
walkManager.allWalksAt(vertexArray)
updatedWalks « ||
foreach vertex € vertices do
foreach w € walksForSetfvertez] do
w’ — walkUpdateFunc(vertex, w)
updated Walks.add(w’)
end

© 0 N0 DA W

end
10 walkManager.insert(updated Walks)
11 end

For improved performance, DrunkardMob handles ver-
tices in batched manner, i.e instead of processing one ver-
tex a time, it handles vertices in large chunks. This allows
DrunkardMobDriver to query walks from the WalkManager
for many vertices at once, enabling more efficient data struc-
tures in the WalkManager (see below). The pseudocode for
the batched operation is shown in Algorithm 2.

4.2 Efficient data structures

DrunkardMob assumes that the states of all walks is held
in memory. To maximize the throughput (number of walks
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vertices then A. Example C allows keeping track of each walk separately and uses 64 bits to represent each
walk. (c) Schematic diagram showing the DrunkardMob algorithm implemented on GraphChi.

simulated in time), it is important to minimize the memory
footprint of each walk. We will first discuss the mapping of
vertices to walks and then describe how the walks themselves
are encoded.

WalkManager continuously manages a mapping from ver-
tices to walks: for each vertex, it knows the walks whose
last hop is in that vertex. Simplest choice would be to de-
fine an array A of lists, where A[i] contains a linked list or
array-buffer of walk objects (alternatively, we could store
the vertex-list pairs in an associative map). Unfortunately,
as we are interested in working with very large graphs with
potentially hundreds of millions or a few billion vertices,
the memory required to store pointers to the lists for each
vertex quickly becomes a dominating cost. Moreover, with
high-level languages such as Java, each individual list object
can take tens of bytes of memory [14]. Instead we divide the
range of vertices [0,n — 1] to sufficiently long sub-intervals
(such as 128). For each sub-interval we associate a bucket,
which is implemented as a buffered array, see Figure 2(a).
When DrunkardMobDriver retrieves walks for a range of ver-
tices, the walks from the corresponding buckets (whose in-
tervals intersect the query interval) are sorted by the vertex.
Thus, each walk object needs to be associated with the offset
from the first vertex of the bucket. If the bucket intervals
have length 128, the offset requires in 7 bits (Figure 2(b)).

The walk objects themselves are also represented com-
pactly, typically as 32-bit words. Figure 2(b) shows three
examples of how to encode information into 32-bit or 64-
bit walk objects. Typically they encode the source vertex
by using 24 bits to represent the index of the source vertex
in the source vertex array. That is, this allows us to sim-
ulate walks from a maximum of 224 = 16,777,216 distinct
source vertices. The sources thus need to be registered to
WalkManager before the start of the simulation. Each walk
needs to also encode a bucket offset to store the current po-
sition of the walk. Rest of the bits can be used to encode
meta-data of the walk. For example, one bit can be used
for a “track-bit” to set whether the walk should be counted
in the visit frequency statistics (for example, we might not
want to include the immediate connections of a vertex in the
statistics).
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The compact encoding of walks allows us to run up to 0.5
billion walks on a typical laptop with 8 gigabytes in mem-
ory using Java. With C/C++, we could probably execute
significantly more walks due to lower runtime overheads.

4.3 Keeping track of walk visit frequencies

The next challenge is to keep track of the visit frequencies
for the walks, for each source vertex separately. As shown
In the class diagram (Figure 1), this is done by component
DrunkardCompanion, of which we have two different versions:

e Log each hop of the walk to a file or database (files
can be partitioned by sources) and analyze these log
files separately. For PPR and related algorithms, this
is efficient because each hop only requires storing the
source vertex and current vertex identifier. The final
analysis is done off-line.

Continuous in-memory tracking. In this model we
keep track of visit frequencies in-memory as they hap-
pen. The tracking can be done either locally in the
same address space as the DrunkardMob simulation
or remotely on a separate machine. Since walks are
processed in batches, the walks can be efficiently sent
over network in big packets.

In this paper, we concentrate in the in-memory tracking of
walks. The main challenge is how to keep track of visit fre-
quencies (for each source vertex separately), if the memory
is limited. Formally, we want to keep track of the empirical
distribution #{v; = w(i) |w € Wy, Vi}, where Wy is the set
of all simulated walks from source s. Alternatively, we might
only be interested in the top k vertices visited by the walks
for each source (not the actual frequencies).

In worst case, each hop visits a separate vertex and we
need O(num-of-walks x num-of-hops) of memory to store
the visit frequencies. This problem is similar to the clas-
sic problem in data streams: estimating the top-K frequent
items with limited memory. In our case, we can consider the
stream of hops for walks from a given source s as a single
data stream. For each source we maintain a vertex X visits
mapping for some maximum of K elements. To limit the
number of vertices in the map to K in principled manner we



use the FREQUENT algorithm described in [5], which was orig-
inally proposed by [25]. The idea is simple: when we record
a new visit to vertex v, as long as the number of distinct ver-
tices in the map is less than K, we either insert (v, 1) into
the mapping or increase the count for v by one if it already
was being tracked. If the size of the map is already K and
we were to insert a new value (v, 1), we decrease the count
of each vertex by one and remove all values that have a zero
count. The intuition is that if the map contains a long tail,
i.e many vertices with a count of one, the long tail will be
“cut” when the capacity limit of K is exceeded.

Theoretical guarantees for this algorithm are given in [5].
In practice a sufficiently skewed distribution (such as Zip-
fian) of the visits is required to maintain good approxima-
tion. In many real-world graphs, the in-degree distribution
of nodes is highly skewed, follows the power-law degree [9],
and thus also the visits frequencies of walks concentrate to
a small number of vertices. However, this may not be true
for walks from all sources: some vertices may be less con-
nected to the “hot” nodes than average nodes or reside in
distinct subgraphs outside the core of the graph [22]. We
leave further study of this issue as future work.

Our architecture allows programmers to easily plug in dif-
ferent implementations of DrunkardCompanion which could
support different trade-offs in approximation quality than
our solution.

4.3.1 Long random walks as many short ones

To advance each walk by one hop, we need to do a full
pass over the graph. Since we assume the graphs to be
very large, also full pass is expected to be rather expensive.
DrunkardMob is therefore suited only for walks that are rel-
atively short. However, the definition of PageRank [26] and
its variations is based on an infinitely long random walk with
resets (i.e jump to a random vertex or the source vertex in
Personalized PageRank). Therefore it would be natural to
simulate as long walk as possible to approximate the model.
But because of the resets, a random walk W! — W7 can
be decomposed into a sequence of 7 short walks w’ with the
same source vertex s (note, that 7 is a random variable):

1 2
W, =sows ow; 0---

owg
The short w? walks have length |w!| ~ Geom(d) where d is
the reset-probability (damping factor). The expected length
of the short walk is % hops and the expected fraction of short
walks longer than k is (1 —d)*. For example, with the usual
choice of d = 0.15, the expected length is approximately 6.7
hops. For a more detailed analysis, see Fogaras et. al. [10].
It therefore appears that a large number of short walks
could approximate the PageRank and related models well.
In the context of recommender systems, it may make sense
to bias towards shorter walks?: on typical social networks
and other natural graphs, the number of nodes in a k—hop
radius increases extremely fast as the expected distance be-
tween any two nodes is very small [1], even less than the fa-
mous “six degrees of separation” result by Milgram [24]. For
computing sensible recommendations, it thus makes sense
to concentrate the graph exploration using random walks to
a smaller radius of the source vertex.

20ur implementation of Personalized PageRank actually
continues the short walk after a reset, from the source vertex,
causing a large number very short walks to be simulated.
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4.4 Implementation on GraphChi

GraphChi [19] is a recently proposed very efficient disk
based graph processing system. It is able to execute vertez-
centric graph computation algorithms on graphs with bil-
lions of edges on just a commodity PC or laptop. GraphChi’s
performance is based on a “Parallel Sliding Windows” tech-
nique [19] : The edges of the graph are partitioned into a set
of P shards by their destination vertex, each shard represent-
ing a contiguous interval of vertex IDs, and then sorted by
their source vertex. Now to load a subgraph corresponding
to one interval of vertices, only the associated shard (in-
edges) and P — 1 contiguous blocks from the other shards
(out-edges) are loaded from disk. Updating the values of
edges to disk is symmetric. GraphChi can execute a full
pass over the graph by doing only a O(P?) non-sequential
disk accesses, enabling it to perform well on both hard drives
and SSDs.

We chose to implement DrunkardMob on GraphChi, be-
cause its method of processing vertices in large contiguous
intervals matches perfectly the batched operation of Drunk-
ardMob (Algorithm 2). In principle, DrunkardMob does not
require many of the features of GraphChi, and a simple pro-
cedure to load the graph one vertex a time from disk (in
adjacency list format) would have sufficed. However, in ad-
dition to saving us development time, the benefit of using
GraphChi is that DrunkardMob could work alongside any
other graph algorithm.

Figure 2(c) shows the high level operation of Drunkard-
Mob as implemented on GraphChi. GraphChi provides a
batch of vertices (corresponding to the vertex intervals that
define the shards) a time, and calls DrunkardMobEngine which
is implemented as a standard GraphChi update-function

[19]. When receiving a beginSubInterval() call from GraphChi,

DrunkardMobEngine requests the walks currently visiting the
vertices in the interval from WalkManager. This batch of
walks is also sent to the DrunkardCompanion, which can be
a local or remote component. Subsequently, GraphChi in-
vokes the DrunkardMobEngine for each of the vertices in the
interval separately: DrunkardMobEngine selects the walks for
the given vertex and calls the user-defined walk-update
function for each of the walks as shown in Algorithm 2.
DrunkardMob uses efficiently all available processor cores
because different vertices can be processed in parallel. Fig-
ure 3 shows the actual Java-code for the walk-update func-
tion for Personalized PageRank.

For improved performance, DrunkardMob utilizes the se-
lective scheduling feature of GraphChi. Each vertex is asso-
ciated a bit which is set if the vertex has any walks currently
visiting it. This allows GraphChi to save memory and avoid
loading inactive vertices from disk.

5. CASE STUDY:
TWITTER’S WHO-TO-FOLLOW

To demonstrate the viability of DrunkardMob to large-
scale applications, we implemented a complete recommen-
dation engine for the microblogging service Twitter following
the description in recently published paper by Gupta et. al.
[12]. The Twitter folllow-graph is a directed graph where
users are represented by vertices and an edge (u,v) exists
if user u follows user v’s postings. The purpose of Who-
to-Follow (WTF) service is to compute for each user a set



public void PPWalkUpdate(int[] walks,
ChiVertex vertex, DrunkardContext drunkardCtx) {
for(int walk : walks) {
if (rand.nextDouble() < RESET_PROBABILITY) {
drunkardCtx.resetWalk(walk, false);
} else {
int next = vertex.getOutEdgeId(
rand.nextInt (vertex.numOutEdges()));
drunkardCtx.forwardWalkTo(walk, next, true);

Figure 3: Walk-update function for Personalized
PageRank for DrunkardMob’s Java implementation.

of recommendations for other users she could follow. The
algorithm presented in [12] works in three steps.

Diagram based on Figure 2 in "WTF: The Who to Follow
Service of Service" by Gupta et. al. 2013

Followers of the
left hand side

"Circle of Trust"
of user

Figure 4: Bipartite graph used for computing rec-
ommendations for a Twitter user using the SALSA al-
gorithm [21]. Diagram is based on Figure 2 in [12].

For each user: (1) Simulate an egocentric random walk
and pick N most frequently visited vertices as the “Circle-of-
Trust” (CoT) for the user. (2) Construct a bipartite graph
by placing CoT vertices on the left side and a subset of
the users they follow on the right side (see Figure 4a). (3)
Compute SALSA algorithm on this graph and choose the top
K scored nodes on the right side as recommendations for
the user.

All details are not given in [12], so our algorithm might
differ slightly from theirs. First step is equivalent to approxi-
mating the Personalized PageRank [26] and choosing the top
ranked vertices. In our experiments, we chose N = 200 top
vertices as the CoT for each user. Using DrunkardMob we
simulate the egocentric random walks for a large number of
users in parallel, using DrunkardMob. For the second step,
we query the followers for each user in the CoT and count
the number of common followings among CoT and eliminate
all that have less than four common followers (this some-
what arbitrary filtering was done to improve performance).
We can query followers efficiently by imposing a sparse in-
dex over the GraphChi shard files and finding followers for
many users simultaneously. It is out of scope of this paper to
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describe the graph query functionality of GraphChi in more
detail. Finally, in the third step we execute SALSA [21] algo-
rithm in-memory on the constructed bipartite graph. Steps
2 and 3 are done for each user separately, but we use multi-
threading to compute several recommendations in parallel.

Experiment: We run the Twitter recommendation algo-
rithm on the twitter_rv graph, which is the almost complete
Twitter graph from year 2010%, using a Mac Mini (8GB,
SSD, two cores) and a MacBook Pro laptop (8GB, SSD, 4
cores). On the Mac Mini we computed recommendations
for 60,000 users a time, with average time of 2 hours and
52 minutes for a batch. For the MacBook Pro we computed
100,000 recommendations with mean time of 1 hour and 50
minutes. In both cases over 85% of the time was spent in
steps 2 and 3.

6. EXPERIMENTS

All experiments were done on DrunkardMob implemented
on top of Java-version of GraphChi. The graphs we used for
the experiments are listed in Table 1.

Graph name Vertices | Edges
live-journal [2] 4.8M 69M

domain [27] 26M 370M
twitter_rv[18] 65M 1.5B
uk-2007-05 [6] 106 M 3.7B
yahoo-web [27] 1.4B 6.6B
Twitter follow-graph (Sep 2012) - >20B

Table 1: Experiment graphs. The exact size of Twit-
ter’s follow graph cannot be disclosed.

6.1 Large-scale experiments

We run DrunkardMob to compute estimate of Personal-
ized PageRank for almost 15 million users on Twitter’s full
follow-graph in Sept 2012*. The exact size of the graph is
not public information, but we can disclose that it had more
than 20 billion follower-edges. For each source we started
900 walks and run six iterations. The total number of walks
was approximately 13.1 billion.

The experiment was run using two server machines with
144GB of RAM, an SSD and 24-core Intel Xeon 2.4GHz
CPUs. One server executed DrunkardMob on GraphChi,
while the other one was used to run DrunkardCompanion.

Approximate running times of our results are provided in
Table 2. The times have been scaled as-if the graph would
have 20 billion edges. It is interesting to note that the al-
gorithm runs much faster when the source vertices are the
first 15 million vertices than when vertices from the middle
of the ID range are chosen. This skew is probably explained
by the fact that Twitter issues user IDs in order: the early
Twitter users have smaller IDs than users who have regis-
tered later. Also, many of the celebrities are early users of
Twitter, and simply have had more time to collect followers
than later users. Based on this, we postulate random walks
started from early users concentrate faster around the pop-
ular nodes, allowing DrunkardMob to operate on smaller set
of active vertices. Unfortunately, we did not have opportu-
nity to study this phenomenon further.

3Unfortunately, we did not have access to the complete
Twitter follow-graph for this experiment.

4This experiment was conducted during author’s internship
at Twitter Inc in Fall 2012
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Figure 5: (a) Running time of DrunkardMob and in-memory graph walks with Cassovary. Both experiments

were made on a server with hard drive, 32 gigabytes of memory and 8 cores.

Cassovary’s timings are

extrapolated for clarity. (b) Running time of six iterations of DrunkardMob for 200 million walks on various
graphs (Mac Mini, hard drive and SSD). (c) Running time on the twitter_rv graph when the number of walks
is varied. Upper line is for a server with a normal hard drive, while lower is for a high-performance server
with an SSD. Time increases approximately linearly with the number of walks and the graph size. Shaded

areas show the standard deviation.

Source vertex IDs Type Runtime (1 iter.)

0 - 14.6M unweighted 47 min

14.6M - 29.2M unweighted 100 min

0 - 14.6M weighted 55 min

14.6M - 29.2M weighted 98 min
100M - 114.6M weighted 91 min
50M - 64.6M weighted 97 min
200M - 214.6M weighted 88 min

Table 2: Running time of DrunkardMob on the

full Twitter follow-graph. The numbers have been
scaled to approximate results on a graph with 20B
edges. For each source, 900 walks were issued.

Interestingly weighted and unweighted versions of Drunk-
ardMob have approximately the same running times. For
fast weighted sampling of edges we used the alias method by
Kronmal and Peterson [17]. It is plausible that the weighted
sampling causes the walks to concentrate faster on popular
nodes, accelerating the DrunkardMob operations and hiding
the increased cost of weighted sampling.

This experiment shows that DrunkardMob with GraphChi
can scale to one of the biggest graphs in the industry, on
just a single machine. We also run DrunkardMob on the
full Twitter graph on a MacBook Pro laptop with SSD and
8 gigabytes of RAM, and could execute half a billion walks
simultaneously in approximately one hour / iteration (these
experiments were run without a DrunkardCompanion, and
are thus not comparable with the results in Table 2).

6.2 Scalability and Performance

Comparison to in-memory walks: We compared Drunk-

ardMob with Cassovary®, a high-performance in-memory
graph library by Twitter which is able to load relative large
graphs into memory. Cassovary is implemented in Java/S-
cala, similarly to ours, allowing a fair comparison. In our

Shttps://github.com/twitter/cassovary
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experiments, we found Cassovary to be roughly 30% faster
in simulating walks than DrunkardMob on a small graph

(1ive-journal) and 2 times faster on the larger twitter_rv.net

graph. Timings for the latter are shown in Fig. 5a.

Scalability: Figure 5 shows the running time of Drunk-
ardMob when the graph size or number of walks is varied.
in Fig. 5b we plot the running time as function of graph
size. The experiments was conducted on a Mac Mini with 8
GB of memory and an SSD. For each experiment we simu-
lated a total of 200 million walks. In Figure 5c we used the
twitter_rv.net graph and varied the number of sources and
the number of walks simulated from each source. The higher
curve is on an old (from year 2008) 8-core Intel Xeon 3.4GHz
server with 32GB RAM and a hard drive; lower curve is for
a high performance Amazon hil.4zlarge instance with 16
virtual cores, 64GB of RAM and an SSD drive. The lat-
ter is faster, but both show close to linear scalability as the
number of walks increases. We found that the overhead of
Java’s garbage collection becomes the main bottleneck when
the the number of walks is very large.

On sufficiently large problems, the performance is close to
linear in both the graph size and the number of walks being
simulated. Based on these experiments, we can conclude
that DrunkardMob can simulate random walks in similar
time as an in-memory algorithm, but can process much big-
ger graphs, as it is not limited by the amount of RAM.

7. CONCLUSIONS AND FUTURE WORK

We presented DrunkardMob and demonstrated how it could
be used to simulate very large scale random walk simula-
tions on some of the biggest graphs available, on just a
single computer. Compared to previous work which have
used similar approaches, DrunkardMob on GraphChi pro-
vides a generic platform for implementing algorithms based
on walks (not necessarily random) on graphs. Programming
walks for DrunkardMob is as easy as it is for an in-memory



graph: programmer provides a simple walk-update function
and the system takes care of the rest.

There are several remaining challenges for future work:
First, could DrunkardMob be implemented on top of a dis-
tributed graph system such as GraphLab [11]?7 We also
would like to study whether we could increase the scalability
of DrunkardMob by utilizing the disk also to store the walk
status array. Finally, we would like to extend the Drunkard-
Mob to naturally support evolving graphs in a principled
manner, by implementing the incremental technique pro-
posed in [4].
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