Thesis Defense
Large-Scale Graph Computation on Just a PC

Aapo Kyrola

akyrola@cs.cmu.edu

Thesis Committee:

Carlos Guestrin Guy Blelloch Dave Andersen Alex Smola Jure Leskovec
University of CMU CMU CMU Stanford
Washington & CMU

Carnegie Mellon 1

Research
contributions

Carnegie Mellon

Research Fields o

< \
GraphlLab
Machine Motl.vat!on and
Learning/ | applications
Data |
Mining
\ Graph
Databases . analysis

This a"dm'"'y
thesis /

External
Systems —————— memory
research | algorithms
research

Large-Scale Graph Computation on Just a PC

Why Graphs?

Carnegie Mellon

BigData with Structure: BigGraph

Linkedm . amazon.com

social graph social graph follow-graph consumer-
products graph

MNA (scxl o
NETFU NG Google
user-movie DNA WWW
ratings interaction link graph networks (but
graph graph “only 3 hops”)

Carnegie Mellon

Large-Scale Graph Computation on a
Just a PC

Why on a single machine?

Can’t we just use the
Cloud?

Carnegie Mellon

Why use a cluster?

Two reasons:

|. One computer cannot handle my graph problem in a
reasonable time.

2. | need to solve the problem very fast.

Carnegie Mellon

Why use a cluster?

Two reasons:

|. One computer cannot handle my graph problem in a
reasonable time.

Our work expands the space of feasible problems on one
machine (PC):

- Our experiments use the same graphs, or bigger, than previous
papers on distributed graph computation. (+ we can do Twitter graph
on a laptop)

2. | need to solve the problem very fast.
Our work raises the bar on required performance for a
“complicated” system.

Carnegie Mellon

Benefits of single machine systems

Assuming it can handle your big problems. ..

|. Programmer productivity
— Global state, debuggers...

2. Inexpensive to install, administer, less power.
3. Scalability

— Use cluster of single-machine systems to solve
many tasks in parallel.

: < 32K \
bits/sec
A -_

Idea: Trade latency

for throughput

Large-Scale Graph Computation on
Just a PC

Computing on Big Graphs

Carnegie Mellon

Big Graphs != Big Data

connections

Data size: facebook.

Not a problem!

Computation:

S
Aeromental
e

_ chrisbrogan
N

9 Lady Gaga

ladygaga

When POP sucks the tits of ART.

New York, NY - http://www.ladygaga.com : o s Gu e strin

Followed by Agile informatics, 6Media, Tina Kelly and 28 others. \ ':’;\;&\ guestrin
3 St:(ejobs 4

Followed by Alex Smola and Mark Reid.

2,000 137,436 30,085,081 T '%}%\n\
A

1 27

Carnegie Mellon 10

Research Goal

Compute on graphs with billions of edges, in a
reasonable time, on a single PC.

— Reasonable = close to numbers previously reported
for distributed systems in the literature.

Experiment PC: Mac Mini (2012)

Carnegie Mellon

Terminology

* (Analytical) Graph Computation:

— Whole graph is processed, typically for several
iterations =2 vertex-centric computation.

— Examples: Belief Propagation, Pagerank,
Community detection, Triangle Counting, Matrix
Factorization, Machine Learning...

* Graph Queries (database)
— Selective graph queries (compare to SQL queries)

— Traversals: shortest-path, friends-of-friends,...

Carnegie Mellon

Graph Computation

PageRank Weakly Connected Components
SALSA Strongly Connected Components

Thesis statement

The Parallel Sliding Windows algorithm and the
Partitioned Adjacency Lists data structure enable

computation on very large graphs in external
memory, on just a personal computer.

Edge and vertex properties

Induced Subgraphs

Friends-of-Friends Graph sampling
Neighborhood query Link prediction

Shortest Path Graph traversal

DrunkardMob.: Paral!el GraphChin2
Random walk simulation

Carnegie Mellon

DISK-BASED GRAPH
COMPUTATION

Carnegie Mellon

GraphChi
(Parallel Sliding Windows)

Carnegie Mellon

Batch
comp.

Evolving
graph

PageRank
SALSA
HITS

Triangle Counting
Item-Item Similarity

Minimum Spanning Forest
Graph Contraction
k-Core

Graph Computation

Weakly Connected Components
Strongly Connected Components

Label Propagation

Community Detection
Multi-BFS

Loopy Belief Propagation
Co-EM

Matrix Factorization

15

Computational Model

* Graph G = (V,E)
— directed edges: e = (source,

destination)

. Terms: e is an out-edge
— each edge and vertex associated of A, and in-edge of B.

with a value (user-defined type)

— vertex and edge values can be
modified

* (structure modification also
supported)

e/ ©

Carnegie Mellon

Vertex-centric Programming

function Pagerank(vertex)
insum = sum(edge.value for edge in vertex.inedges)
vertex.value = 0.85 + 0.15 * insum
foreach edge in vertex.outedges:
edge.value = vertex.value / vertex.num_outedges

MyFunc(vertex)
{// modify neighborhood }

Carnegie Mellon

17

Computational Setting

Constraints:

A. Not enough memory to store the whole graph in
memory, nor all the vertex values.

B. Enough memory to store one vertex and its edges
w/ associated values.

Carnegie Mellon

The Main Challenge of Disk-based
Graph Computation:

Random Access

<< 5-10 M random
edges / sec to achieve

“reasonable
performance”

~ 100K reads / sec (commodity)
~ 1M reads / sec (high-end arrays)

Carnegie Mellon

Random Access Problem

— >

e — Random write!
Ne——
N
Disk | B: in-edges

> A\J File: edge-values
—— Processing sequentially

Random read!

Moral: You can either access in- or out-edges

sequentially, but not both!

Carnegie Mellon

Carnegie Mellon

Our Solution

Parallel Sliding Windows (PSWV)

21

Parallel Sliding Windows: Phases

* PSW processes the graph one sub-graph a
time:

* In one iteration, the whole graph is
processed.

— And typically, next iteration is started.

Carnegie Mellon 29

2. Compute
PSW: Shards and Intervals
3.Write
* Vertices are numbered from | to n
— P intervals
— sub-graph = interval of vertices
edge
source @&—>| destination
1 10(/ 700 /<<partition-by>} 10000
/ “\
interval interval(2) “\i\nterval(P)

In shards,
edges
sorted by l

source.

shard(1) shard(2) shard(P)

23

Carnegie Mellon

2. Compute
Example: Layout P
3.Write
Shard: in-edges for interval of vertices; sorted by source-id
Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

sorted by source_id

in-edges for vertices 1..100

<€

Shards small enough to fit in memory; balance size of shards

Carnegie Mellon 24

|. Load

PSW: Loading Sub-graph > =

] 3.Write
Load subgraph for vertices 1..100
Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

o l l
o

—i 1

: O

N1 ‘ | ‘

v QO 5 g

U O

2 5

£ 3

L wun

> >

“ O

L -

wn

o

3 2

7 |

= \

Load all in-edges
In memory

What about out-edges?

Arranged in sequence in other shards

Carnegie Mellon

lload |
PSW: Loading Sub-graph > =

Load subgraph for vertices 101..700 3.Write

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

S Shard 1

. ©

—i '_I

o 9

E 5

o 2

> >

- O

L -

w D

L

S 2

¢

v o€

Load all in-edges

in memory Out-edge blocks

Carnegie Mellon In memory 26

Parallel Sliding Windows

Only P large reads and writes for each interval.

= P2 random accesses on one full pass.

Interval 1

Shard 1 Shard 2 Shard 3 Shard 4

Works well on both SSD and magnetic hard disks!

Carnegie Mellon

Joint work:
Julian Shun

How PSW computes

“GAUSS-SEIDEL” /
ASYNCHRONOUS

Chapter 6 + Appendix
28

Carnegie Mellon

Synchronous vs. Gauss-Seidel

* Bulk-Synchronous Parallel (Jacobi iterations)

— Updates see neighbors’ values from previous
iteration. [Most systems are synchronous]

* Asynchronous (Gauss-Seidel iterations)
— Updates see most recent values.

— GraphlLab is asynchronous.
t t t t—1
Vi< F(Vy, Vi, ...,V | W V;H,...)

Carnegie Mellon

PSW runs Gauss-Seidel

Load subgraph for vertices 101..700

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000
- ' l
o
—i
. O
S
v QO
U O
25
£ o
U un
> >
- O
L o
v O
L
3 9
v
v S

Load all in-edges

. Fresh values in this
IN MMemor
4 “window” from Out-edge blocks

previous phase In memory

Carnegie Mellon 30

Carnegie Mellon

Synchronous (Jacobi)

1 > 2 5) 3)= 4
~:’<,¢‘ ~~"" \%: \: \,4
¢ Sn, e SN, < > ” Sy
1 | 1 \ 2) 3 3
1 | 1 1) 2) 3
1 { 1 { 1 {1) 2
1 | 1) 1) 1) 1

Bulk-Synchronous: requires graph

diameter —many iterations to propagate
the minimum label.

Each vertex
chooses
minimum label
of neighbor.

PSW is Asynchronous (Gauss-Seidel)

1) 2 \ 4) 3 5
1 | 1) 1 3 3
1 | 1 1 L1 1

Gauss-Seidel: expected # iterations on
random schedule on a chain graph

=(N-1)/(e-1)
= 60% of synchronous

Carnegie Mellon

Each vertex
chooses
minimum label
of neighbor.

Label Propagation

Side length = 100

S

Natural \ #*
graphs (web, -
social)

Carnegie Mellon

Joint work:
Julian Shun

iterations

Synchronous

199

100

298

graph
diameter -1

PSW: Gauss-Seidel
(average, random
schedule)

~ 57

Open
theoretical
question!

~52

~0.6*
diameter

Chapter 6

Joint work: Julian Shun

PSW & External Memory Algorithms
Research

* PSW is a new technique for implementing
many fundamental graph algorithms

— Especially simple (compared to previous work) for
directed graph problems: PSW handles both in-
and out-edges

* We propose new graph contraction algorithm
based on PSW

— Minimum-Spanning Forest & Connected Components

* ... utilizing the Gauss-Seidel “acceleration”

. SEA 2014, Chapter 6 + Appendix
Carnegie Mellon 2

GRAPHCHI:SYSTEM

EVALUATION

Carnegie Mellon

Consult the paper for a
comprehensive evaluation:

HD vs. SSD

Striping data across multiple
hard drives

Comparison to an in-memory
version

Bottlenecks analysis

Effect of the number of shards
Block size and performance.

GraphChi

(Parallel Sliding Windows)

GraphChi-DB
(Partitioned Adjacency Lists)

DrunkardMob: Parallel
Random walk simulation

Carnegie Mellon

Batch
comp.

Evolving
graph

Online graph
updates

Incremental
comp.

GraphChinr2

PageRank
SALSA
HITS

Graph Computation

Triangle Counting
[tem-Item Similarity

Minimum Spanning Forest
Graph Contraction

k-Core

Weakly Connected Components
Strongly Connected Components

Label Propagation

Community Detection
Multi-BFS

Loopy Belief Propagation
Co-EM
Matrix Factorization

Graph Queries

Induced Subgraphs

Friends-of-Friends

Neighborhood query

Shortest Path

Edge and vertex properties
Graph sampling
Link prediction

Graph traversal

36

GraphChi

* C++ implementation: 8,000 lines of code

— Java-implementation also available

* Several optimizations to PSWV (see paper).

Source code and examples:

Carnegie Mellon 37

Experiment Setting

* Mac Mini (Apple Inc.)
— 8 GB RAM
— 256 GB SSD, I TB hard drive
— Intel Core i5,2.5 GHz

* Experiment graphs:

Graph Vertices P (shards) Preprocessing
live-journal 4.8M 69M 3 0.5 min
netflix 0.5M 99Mm 20 1 min
twitter-2010 42M 1.5B 20 2 min
uk-2007-05 106M 3.7B 40 31 min
uk-union 133M 5.4B 50 33 min
yahoo-web 1.4B 6.6B 50 37 min

Carnegie Mellon

Comparison to Existing Systems

PageRank WebGraph Belief Propagation (U Kang et al.)

»,
-20) aghoo-web (6.7B edae

itte 0

/1

sus /

v'GraphChi can solve as big problems as %
N existing large-scale systems.
varrix ¥ Comparable performance.

o

Hadoo
v1 (8 cores)

0 2 4 6 8 10 12 0 50 100 150 200 250 300 350 400 450

Minutes Minutes

. Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to
Carnegle Mellon load the graph from disk. GraphChi computes asynchronously, while all but GraphLab synchronously.

OSDI'12

PowerGraph Comparison

* PowerGraph / GraphLab 2 Graph
outperforms previous systems =
by a wide margin on natural

graphs.
 With 64 more machines, 512

more CPUs:
— Pagerank: 40x faster than

<
Lab'

GraphChi
— Triangle counting: 30x faster v
than GraphChi. =
I I
GraphChi
GraphChi has good
CarnegieMellon performance / CPU. .

In-memory Comparison

* Total runtime comparison to 1-shard GraphChi, with
initial load + output write taken into account

Application SSD | In-mem | Ratio

Connectr “ f‘ 10 Nz
Commut HOWEVGI’, sometimes better

Matrix fi algorithm available for in-memory
Matrix fi than external memory /

- Compariso| distributed.
e -5 jterations of Pageranks / Twitter (1.5B edges)
GraphChi Mac Mini —SSD 790 secs
Ligra (J. Shun, Blelloch) 40-core Intel E7-8870 15 secs

Ligra (J. Shun, Blelloch) = 8-core Xeon 5550 230 s + preproc 144 s

PSW - inmem version, | 8-core Xeon 5550 100 s + preproc 210s

Carnegie. ?v(?glslhards (see Appendix)

Paper: scalability of other applications.

Scalability / Input Size [SSD]

* Throughput: number of edges processed / second.

PageRank -- throughput (Mac Mini, SSD)

2.50E+07

== uk-2007- X

AN domain Q§ uk-union

2.00E+07 +
Y == twitter-2010
c
& 1.50E+07
g yaho_ﬁ-web
‘E 1.00E+07 '
()
.

5.00E+06

0.00E+00

0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00
Billions

Graph size 2
Carnegie Mellon

Conclusion: the
throughput remains
roughly constant
when graph size is
increased.

GraphChi with
hard-drive is ~ 2x
slower than SSD
(if computational
cost low).

GRAPHCHI-DB

Carnegie Mellon

Graph Computation

PageRank Weakly Connected Components

SALSA Strongly Connected Components
HITS

Batch Label Propagation
GraphChi comp. Triangle Counting Community Detection
[tem-Item Similarity Multi-BFS

(Parallel Sliding Windows)

Evolving
graph

Minimum Spanning Forest Loopy Belief Propagation
Graph Contraction Co-EM
k-Core Matrix Factorization

Online graph
GraphChi-DB updates
(Partitioned Adjacency Lists)

Incremental
comp.

DrunkardMob: Parallel
Random walk simulation

GraphChinr2

Carnegie Mellon 44

Research Questions

* What if there is lot of metadata associated
with edges and vertices?

* How to do graph queries efficiently while
retaining computational capabilities?

* How to add edges efficiently to the graph!?

Can we design a graph database
based on GraphChi?

Carnegie Mellon

45

Existing Graph Database Solutions

1) Specialized single-machine graph databases

P®Neo4j

:°..‘ the world’s * d ex C++

leading graph database

Problems:
e Poor performance with data >> memory

* No/weak support for analytical computation

2) Relational / key-value databases as graph storage

Problems:

* Llargeindices

* In-edge / out-edge dilemma

* No/weak support for analytical computation

Carnegie Mellon

PARTITIONED ADJACENCY
LISTS (PAL): DATA STRUCTURE

Carnegie Mellon

Review: Edges in Shards

Edge = (src, dst)

10% 700 N

Cshard1 ‘Shard2

0 1

B ar P -

Ly

sorted by source _id

<€

Carnegie Mellon

Shard Structure (Basic)

Source Destination

1 8

1 193

1 76420
3 12

3 872

7 193

7 212

7 89139

Carnegie Mellon

Shard Structure (Basic)
Compressed Sparse Row (CSR)

193

76420

d VeILEX (872

193

() OIrde 212

89139

Carnegie Mellon Edge-array

PAL: In-edge Linkage

8

Source File
offset / —
1 0
-

76420
12

872

193

Pointer-array 212

89139

Carnegie Mellon Edge-array

51

PAL: In-edge Linkage

+ Index to the
first in-edge for

3 each vertex in
PrObIem 2: interval.
193
76420
How to find out- 5

edges quickly? 872

Note: Sorted inside a shard, but \1'93\

partitioned across all shards. 212

89139

Carnegie Mellon Edge-array

PAL: Out-edge Queries

Problem: Can be big -- O(V)

Option 1:
Sparse index (inmem)

Destina Next-in-

P - Binary search on disk slow. [tion offset
8 3339
512 Source File
offset 193 3
1024 76420 | 1092
12 289
872 40
yene 193 2002
Option 2:
Delta-coding Pointer-array 212 12
with unary code
(Elias-Gamma) 89139 22
- Completely
in-memory
Edge-array

Carnegie Mellon 53

Experiment: Indices

Elias-Gamma

out-edges . Sparse index

R o inder

Elias-Gamma

in-edges - Sparse index

No index

0 10 20 30 40 50 60

Time (ms)
Carn g.c.. - Median latency, Twitter-graph, 1.5B.edges

Queries: 1/O costs

In-edge query: only one shard

et

00 ¢

Out-edge query: each shard that has edges

Trade-off:
More shards =2
Better locality for in-

edge queries, worse
for out-edge
gueries.

Carnegie Mellon

E

io-cost|inquery(v)] < 1+ min (indeg(v), 55

io-cost[outquery(v)] < min(P,outdeg(v)) + |

)

outdeg(v)

B

J

55

Edge Data & Searches

Shard X amestamp:: ¥ . olief: (factor) No foreign

- adjacency [long] key required
to find edge
data!

(fixed size)

Note: vertex values stored similarly.

Carnegie Mellon

Efficient Ingest?

Shards on
Disk ' . ‘

Buffers in
RAM

Carnegie Mellon

57

Merging Buffers to Disk

Shards on
Disk

Buffers in
RAM

Carnegie Mellon

58

Merging Buffers to Disk (2)

Shards on

Disk
Merge requires loading existing shard from disk
—> Each edge will be rewritten always on a
merge.

Buffers in

RAM Does not scale: number of rewrites: data

size / buffer size = O(E)

Carnegie Mellon

New edges

Log-Structured g
Merge-tree (LSM) o
Ref: O'Neil, Cheng et al. (1996) v In-edge query:

J/ One shard on each level

LEVEL 1

(youngest) Out-edge query:

All shards
et * ’I;1tervals 1--.125' ‘.,
e ——— On-disk
LEVEL 2 Q ; —
/ shards

Downstream merge

Intervals 1--4 . ** Intervals (P-4) --P"* .

LEVEL 3 b OO0 O

(oldest)

interval 1 interval 2 interval 3 interval 4 Interval P-1 interval P
Carnegie Mellon 60

Experiment: Ingest

@=»GraphChi-DB with LSM ===GraphChi-No-LSM
1.5E+09

1.0E+09

Edges

5.0E+08

0.0E+00
0 2000 4000 6000 8000 10000 12000 14000 16000

Time (seconds)

Carnegie Mellon

61

Advantages of PAL

* Only sparse and implicit indices
— Pointer-array usually fits in RAM with Elias-Gamma.
—> Small database size.

* Columnar data model

— Load only data you need.
— Graph structure is separate from data.

— Property graph model
* Great insertion throughput with LSM

—> Tree can be adjusted to match workload.

Carnegie Mellon

EXPERIMENTAL
COMPARISONS

Carnegie Mellon

GraphChi-DB: Implementation

* Written in Scala FScala
* Queries & Computation
* Online database

Lo
All experiments shown in this - | !
talk done on Mac Mini (8 GB, -

SSD)

Source code and examples:

Carnegie Mellon 64

Comparison: Database Size

Database file size (twitter-2010 graph, 1.5B edges)

BASELINE H

Baseline: 4 + 4 bytes /

GraphChi-DB edge.

MySQL (data + indices)

0 10 20 30 40 50 60 70

Carnegie Mellon 65

Comparison: Ingest

Time to ingest 1.5B edges

GraphChi-DB (ONLINE) 1 hour 45 mins
Neo4j (batch) 45 hours
MySQL (batch) 3 hour 30 minutes

(including index creation)

If running Pagerank simultaneously, GraphChi-DB

takes 3 hour 45 minutes

Carnegie Mellon

66

Comparison: Friends-of-Friends Query

Latency percentiles over 100K random queries

Small graph - 50-percentile

Small graph - 99-percentile

0.4 0.379 10
035 — 8.078
w 03 . S 6.653 —
el ©
g 0.25 ——— g 6 — —
§ 02 0.127 :
E . . E 4 .
Z 0.15 _ e
0.1 —— 5 -
0 - T 0 -
GraphChi-DB Neodj GraphChi-DB Neodj
68M edges
Big graph - 50-percentile Big graph - 99-percentile
759.8
200 6000
5000 4776
g 10 %‘ 4000 ——
& 100 @ 3000
= = 1264 1631
E 50 2.4 s £ iggg
0 — : . - |
GraphChi-DB Neodj MysQL GraphChi-DB GraphChi-DB MysQL
+ Pagerank
1.5B edges 8

Carnegie Mellon

LinkBench: Online Graph DB Benchmark
by Facebook

* Concurrent read/write workload
— But only single-hop queries (“friends”).
— 8 different operations, mixed workload.
— Best performance with 64 parallel threads

* Each edge and vertex has:
— Version, timestamp, type, random string payload.

GraphChi-DB (Mac Mini) MySQL+FB patch, server,
SSD-array, 144 GB RAM

Edge-update (95p) 22 ms 25 ms
Edge-get- 18 ms 9 ms
neighbors (95p)

Avg throughput 2,487 req/s 11,029 req/s
Database size 350 GB 1.47TB

Carnegie Mellon See full results in the thesis.

Summary of Experiments

* Efficient for mixed read/write workload.
— See Facebook LinkBench experiments in thesis.
— LSM-tree = trade-off read performance (but, can
adjust).
* State-of-the-art performance for graphs that
are much larger than RAM.

— Neo4/’s linked-list data structure good for RAM.
— DEX performs poorly in practice.

More experiments in the thesis!

Carnegie Mellon 69

Carnegie Mellon

Discussion

Greater Impact
Hindsight

Future Research Questions

70

GREATER IMPACT

Carnegie Mellon

Impact: “Big Data’ Research

* GraphChi’s OSDI 2012 paper has received over
85 citations in just 18 months (Google scholar).

— Two major direct descendant papers in top
conferences:
¢ X-Stream:SOSP 2013
* TurboGraph: KDD 2013

* Challenging the mainstream:

— You can do a lot on just a PC - focus on right data
structures, computational models.

MIT
Technology

Review

Your Laptop Can Now Analyze
Big Data

al+]+I<]a]a]

New software makes it possible to do in minutes on a small computer

L what used to be done by large clusters of computers.
Carnegie Mellon
By John Pavlus on July 17, 2012

Impact: Users

* GraphChi’s (C++, Java, -DB) have gained a lot of
users
— Currently ~50 unique visitors / day.

* Enables ‘everyone’ to tackle big graph problems

— Especially the recommender toolkit (by Danny
Bickson) has been very popular.

— Typical users: students, non-systems researchers, small

com Pan ies oo What do you use GraphChi for?

Collaborative fil...
Graph analytics

To develop my own...
Machine learning

Other

Carnegie Mellon 73

Impact: Users (cont.)

How big datasets do you use? How much memory does your computer (that you use

for GraphChi) have?

16 GB [6]

< 1 gigabyte

1-5GB

5-10 GB 32 GB [2]
10-50 GB 64 GB [0]
more [0]
<2 GB[1]
2 GB [0]

50-100 GB
8 GB [5]
larger

4GB [4]

o
n
N
(=2}
=}

| work in a [EU country] public university. | can't use a a distributed
computing cluster for my research ... it is too expensive.
Using GraphChi | was able to perform my experiments on my laptop. |
thus have to admit that GraphChi saved my research. {(...)

Carnegie Mellon 74

EVALUATION: HINDSIGHT

Carnegie Mellon

What is GraphChi Optimized for?

* Original target algorithm: Belief
Propagation on Probabilistic Graphical

Models.

|. Changing value of an edge (both in- and
out!).

2. Computation process whole, or most of

the graph on each iteration.

3. Random access to all vertex’s edges.
— Vertex-centric vs. edge centric.

4. Async/Gauss-Seidel execution.

Carnegie Mellon

GraphChi Not Good For

* Very large vertex state.

* Traversals, and two-hop dependencies.

— Or dynamic scheduling (such as Splash BP).
High diameter graphs, such as planar graphs.
— Unless the computation itself has short-range interactions.

* Very large number of iterations.
— Neural networks.

— LDA with Collapsed Gibbs sampling.
* No support for implicit graph structure.

+ Single PC performance is limited.

Carnegie Mellon

Versatility of PSW and PAL

Graph Computation

PageRank Weakly Connected Components

SALSA Strongly Connected Components
HITS
Batch Label Propagation
i comp. Triangle Counting Community Detection
rap | Y
(Parallel Sliding Windows) [tem-Item Similarity Multi-BFS
Evolving Minimum Spanning Forest Loopy Belief Propagation
£ graph Graph Contraction Co-EM
k-Core Matrix Factorization
Online graph
GraphChi-DB updates
Partitioned Adjacency Lists .
(’ Y) Incremental Graph Queries
comp.

Induced Subgraphs Edge and vertex properties

Friends-of-Friends Graph sampling
Neighborhood query Link prediction
Shortest Path Graph traversal

DrunkardMob.: Paral!el GraphChin2
Random walk simulation

Carnegie Mellon

Future Research Directions

* Distributed Setting

|. Distributed PSW (one shard / node)
l. PSW is inherently sequential
2. Low bandwidth in the Cloud

2. Co-operating GraphChi(-DB)’s connected with a Parameter Server
* New graph programming models and Tools

— Vertex-centric programming sometimes too local: for example, two-
hop interactions and many traversals cumbersome.

— Abstractions for learning graph structure; Implicit graphs.

— Hard to debug, especially async = Better tools needed.
* Graph-aware optimizations to GraphChi-DB.

— Buffer management.

— Smart caching.

— Learning configuration.

Carnegie Mellon

WHAT IF WE HAVE PLENTY
OF MEMORY?

Carnegie Mellon

Observations

* The I/O performance of PSWV is only weakly
affected by the amount of RAM.

— Good: works with very little memory.

— Bad: Does not benefit from more memory

* Simple trick: cache some data.

* Many graph algorithms have O(V) state.

— Update function accesses neighbor vertex state.
* Standard PSWV:‘broadcast’ vertex value via edges.

* Semi-external: Store vertex values in memory.

Carnegie Mellon

Using RAM efficiently

* Assume that enough RAM to store many O(V)
algorithm states in memory.

— But not enough to store the whole graph.

Computation | state
Computation 2 state

computational state

Graph working
memory (PSW)

, RAM
Carnegie Mellon 82

Parallel Computation Examples

* DrunkardMob algorithm (Chapter 5):

— Store billions of random walk states in RAM.

* Multiple Breadth-First-Searches:

— Analyze neighborhood sizes by starting hundreds
of random BFSes.

* Compute in parallel many different
recommender algorithms (or with
different parameterizations).

— See Mayank Mohta, Shu-Hao Yu’s Master’s project.

Carnegie Mellon

CONCLUSION

Carnegie Mellon

Summary of Published Work

GraphLab: Parallel Framework for Machine Learning UAI 2010
(with J. Gonzaled, Y.Low, D. Bickson, C.Guestrin)

Distributed GraphLab: Framework for Machine Learning VLDB 2012 G rap h
and Data Mining in the Cloud (-- same --

GraphChi: Large-scale Graph Computation on Justa PC OSDI 2012
(with C.Guestrin, G. Blelloch)

DrunkardMob: Billions of Random Walks on Just a PC ACM RecSys

2013 4
Beyond Synchronous: New Techniques for External SEA 2014 %
Memory Graph Connectivity and Minimum Spanning L&
Forest (with Julian Shun, G. Blelloch)
GraphChi-DB: Simple Design for a Scalable Graph (submitted /
Database — on Just a PC (with C. Guestrin) arxiv)
Parallel Coordinate Descent for L1-regularized :Loss ICML 2011
Minimization (Shotgun) (with J. Bradley, D. Bickson,
C.Guestrin)

Carnegie Mellon First author papers in bold.

Summary of Main Contributions

* Proposed Parallel Sliding Windows, a new
algorithm for external memory graph
computation = GraphChi

* Extended PSWV to design Partitioned Adjacency
Lists to build a scalable graph database -
GraphChi-DB

* Proposed DrunkardMob for simulating billions of
random walks in parallel.

* Analyzed PSWV and its Gauss-Seidel properties
for fundamental graph algorithms = New
approach for EM graph algorithms research.

, Thank Youl!
Carnegie Mellon

ADDITIONAL SLIDES

Carnegie Mellon

Economics

Equal throughput configurations (based on OSDI'12)

_ GraphChi (40 Mac Minis) PowerGraph (64 EC2 ccl.4xlarge)

Investments 67,320 S -

Operating costs

Per node, hour 0.03S 1.30S

Cluster, hour 1.19S 52.00 S

Daily 28.56 S 1,248.00 S
Assumptions:

- Mac Mini: 85W (typical servers 500-1000W)
- Most expensive US energy: 35c / KwH

It takes about 56
days to recoup Mac

) Mini investments.
Carnegie Mellon

88

PSW for In-memory Computation

* External memory \CPU/

setting:
Small (fast) Memory

— Slow memory = size: M

hard disk / SSD

block
— Fast memory = RAM trgiisfers

* [n-memory:
y Large (slow) Memory
— Slow = RAM size: ‘unlimited’

— Fast = CPU caches

Does PSW help in the in-memory

setting?

Carnegie Mellon

PSW for in-memory

Min-label Connected Components (edge-values; Mac Mini)

1.5e+08

PSW outperforms (slightly) Ligra*, the fastest in-
memory graph computation system on Pagerank
with the Twitter graph, including preprocessing steps
of both systems.

013

Baseline — total throughput

L3 cache size (3 MB)

I I I I I
0 5 10 15 20

0.0e+00
|

Working set memory footprint (MBs)

Carnegie Mellon

Remarks (sync vs. async)

* Bulk-Synchronous is embarrassingly parallel
— But needs twice the amount of space

* Async/G-S helps with high diameter graphs

* Some algorithms converge much better
asynchronously
— Loopy BP, see Gonzalez et al. (2009)
— Also Bertsekas & Tsitsiklis Parallel and Distributed
Optimization (1989)
* Asynchronous sometimes difficult to reason
about and debug

* Asynchronous can be used to implement BSP

Carnegie Mellon

/O Complexity

* See the paper for theoretical analysis in the
Aggarwal-Vitter’s |/O model.

— Worst-case only 2x best-case.

* |ntuition:
1 Vv, Vv,

interval(1) | interval(2) interval(P)
C
Edge spanning intervals is
‘ \ M [0aded twice / iteration.
shard(1) shard(2) shard(P)

Carnegie Mellon

Impact of Graph Structure

* Algos with long range information
propagation, need relatively small diameter -
would require too many iterations

 Per iteration cost not much affected

* Can we optimize partitioning?
— Could help thanks to Gauss-Seidel (faster
convergence inside “groups”) > topological sort

— Likely too expensive to do on single PC

Carnegie Mellon

Graph Compression:Would it help?

* Graph Compression methods (e.g Blelloch et al,,
WebGraph Framework) can be used to compress
edges to 3-4 bits / edge (web), ~ 10 bits / edge (social)

— But require graph partitioning = requires a lot of memory.

— Compression of large graphs can take days (personal
communication).

* Compression problematic for evolving graphs, and
associated data.

* GraphChi can be used to compress graphs?
— Layered label propagation (Boldi et al. 201 1)

Carnegie Mellon

Previous research on (single computer)
Graph Databases

* 1990s,2000s saw interest in object-oriented and graph
databases:

— GOOD, GraphDB, HyperGraphDB...

— Focus was on modeling, graph storage on top of relational DB
or key-value store

e RDF databases

— Most do not use graph storage but store triples as relations +
use indexing.

* Modern solutions have proposed graph-specific storage:
— Neo4j: doubly linked list

— TurboGraph: adjacency list chopped into pages
— DEX: compressed bitmaps (details not clear)

Carnegie Mellon

LinkBench

GraphChi-DB MySQL + FB patch

laptop (SSD) server (SSD-array) [9]

pS0 | p75 | p95 || 50 | p75 P95
node_get 2 4 34 06| 1 9
node_insert 0.1 | 0.1 | 0.1 3 5 12
node_update 2 4 34 3 6 14
edge_ins-or-upd. | 0.7 2 15 7 14 25
edge_delete 0.1 109 | 7 1 7 19
edge_update | 3 22 7 14 25
edge_getrange 8 19 | 250 || 1 10
edge_outnbrs 04 | 3 18 |08] 1 9
Avg throughput 2,487 req/s 11,029 req/s

Table 4.2: LinkBench online database benchmark. Latencies are in milliseconds. Note: for clarity we
have modified the request names from the original. JVM’s garbage collection pauses cause the high 95-
percentiles.

Carnegie Mellon 96

Comparison to FB (cont.)

GraphChi load time 9 hours, FB’s 12 hours

GraphChi database about 250 GB,FB > 1.4
terabytes

— However, about 100 GB explained by different variable
data (payload) size

* Facebook/MySQL via JDBC, GraphChi embedded
— But MySQL native code, GraphChi-DB Scala (JVM)

* Important CPU bound bottleneck in sorting the
results for high-degree vertices

Carnegie Mellon

LinkBench: GraphChi-DB performance /
Size of DB

Requests / sec

10000
9000

8000 L eV
7000 everything in RAM? 2>

6000 computationally bound requests
5000

4000
3000
2000
1000

Why not even faster when

1.00E+07 1.00E+08 2.00E+08 1.00E+09
Number of nodes

Carnegie Mellon

Possible Solutions

1. Use SSD as a memory- 2. Compress the graph
extension? structure to fit into RAM?
[SSDAlloc, NSDI'11] [WebGraph framework]

Too many small Associated values

objects, need do not compress

millions / sec. well, and are
mutated.

3. Cluster the graph and

handle each cluster 4. Caching of hot nodes?
separately in RAM?

Expensive; The Unpredictable
number of inter- performance.

cluster edges is big.

Carnegie Mellon

Number of Shards

* If Pisin the “dozens”, there is not much effect on performance.

7#Shards and Performance

ox10 o
g Conn comp. (SSD)
815
(@))
(@]
L 1l Pagerank (SSD]
§_ Conn comp. (HD)
e
@) A
2 0.9 Pagerank (HD *
c
10’ 10° 10°

Number of shards (P)

Carnegie Mellon

Multiple hard-drives (RAIDish)

* GraphChi supports striping shards to multiple
disks = Parallel I/O.

® 1 hard drive ™ 2 hard drives 3 hard drives

3000

2500

2000 -

Seconds / iteration
&
3

Pagerank Conn. components

Experiment on a 16-core AMD server (from year 2007).

Carnegie Mellon

Bottlenecks

* Cost of constructing the sub-graph in memory is almost as large as
the I/O cost on an SSD

— Graph construction requires a lot of random access in RAM = memory
bandwidth becomes a bottleneck.

M Disk I0 M Graph construction Exec. updates
2500

2000

1500 -

1000 -

500 -

1 thread 2 threads 4 threads

Connected Components on Mac Mini / SSD
Carnegie Mellon

* GraphChi saturates SSD I/O with 2 threads.

Bottlenecks /| Multicore

* Computationally intensive applications benefit substantially from
parallel execution.

M Loading

Connected Components

Computation

1000

800

600

400

200

0

Runtime (seconds)

2
Number of threads

Carnegie Mellon

Experiment on MacBook Pro with 4 cores / SSD.

Matrix Factorization (ALS)

® Loading Computation
_ 160
% 140
C 120
9 100
Q g0
;’ 60
40
g 0
£ 1 2 4

Number of threads

In-memory vs. Disk

Application SSD | In-mem | Ratio
Connected components 45s 18s 2.5x
Community detection 110s 46 s 2.4x
Matrix fact. (D=3, 5 iter) 114s 65s 1.8x
Matrix fact. (D=20, 5 1ter.) | 560s 500s 1.1x

Table 3: Relative performance of an in-memory version
of GraphChi compared to the default SSD-based imple-
mentation on a selected set of applications, on a Mac Mini.
Timings include the time to load the input from disk and
write the output into a file.

Carnegie Mellon

Experiment: Query latency

1e+07
|

0 In-edge query

1e+05
|

microseconds

1e+03
|

+ Out-edge query

1e+01
I
CEEE- QOO
CORITIDH- CEED

In/oyt degrele |

1 10 100 1000 10000

See thesis for I/O cost analysis of in/out queries.

Carnegie Mellon 105

Example: Induced Subgraph Queries

* Induced subgraph for vertex set S contains
all edges in the graph that have both endpoints

in S.
* Very fast in GraphChi-DB:

— Sufficient to query for out-edges
— Parallelizes well - multi-out-edge-query

* Can be used for statistical graph analysis

— Sample induced neighborhoods, induced FoF
neighborhoods from graph

Carnegie Mellon

Vertices /| Nodes

* Vertices are partitioned similarly as edges

— Similar “data shards” for columns
* Lookup/update of vertex data is O(l)

* No merge tree here: Vertex files are “dense”

— Sparse structure could be supported

1 a+l

OO O

a 23 Max-id

Carnegie Mellon

ID-mapping

* Vertex IDs mapped to internal IDs to balance
shards:

— Interval length constant a

Original ID: 0O 1 2 255
256 257 258 511

/]

0 1 2 255
Carnegie Mellon

What if we have a Cluster?

Graph working
memory (PSW)

RAM

Trade latency for throughput!

Carnegie Mellon 109

Graph Computation: Research Challenges

|. Lack of truly challenging (benchmark)
applications

2. ... which is caused by lack of good data available
for the academics: big graphs with metadata
— Industry co-operation = But problem with
reproducibility
— Also:it is hard to ask good questions about graphs
(especially with just structure)

3. Too much focus on performance = More
important to enable “extracting value”

Carnegie Mellon

Random walk in an in-memory graph

* Compute one walk a time (multiple in parallel,

Of COUI"SG): parfor walk in walks:

for 1=1 to numsteps:
vertex = walk.atVertex()

walk.takeStep(vertex.randomNeighbor())

Carnegie Mellon DrunkardMob - RecSys '13

Problem:What if Graph does not fit in
memory?

o Twitter network visualization,
RN by Akshay Java, 2009

el) .
F &N Disk-based “single-
™ machine” graph

Distributed graph ;;.,as
systems:

- Each hop across
partition boundary
is costly.

rshiq

Paglng” from disk
is costly.

: Ste:vejob
\

K

oy

(ThIS talk)

Carnegie Mellon

Random walks in GraphChi

* DrunkardMob —algorithm

— Reverse thinking

ForEach interval p:
walkSnapshot = getWalksForInterval(p)
ForEach vertex in interval(p):
mywalks = walkSnapshot.getWalksAtVertex(vertex.1id)
ForEach walk in mywalks:

walkManager.addHop(walk, vertex.randomNeighbor())
B

f&l Q % Note: Need to store only
Q % % current position of each walk!

Carnegie Mellon

