Thesis Defense Large-Scale Graph Computation on Just a PC

Aapo Kyrölä

akyrola@cs.cmu.edu

Thesis Committee:

Carlos Guestrin
University of
Washington & CMU

Guy Blelloch CMU

Dave Andersen CMU

Alex Smola CMU

Jure Leskovec
Stanford

Research Fields

Large-Scale Graph Computation on Just a PC

Why Graphs?

BigData with Structure: BigGraph

social graph

social graph

follow-graph

consumerproducts graph

user-movie ratings graph

DNA interaction graph

WWW link graph

Communication networks (but "only 3 hops")

Large-Scale Graph Computation on a Just a PC

Why on a single machine?

Why use a cluster?

Two reasons:

One computer cannot handle my graph problem in a reasonable time.

2. I need to solve the problem very fast.

Why use a cluster?

Two reasons:

One computer cannot handle my graph problem in a reasonable time.

Our work expands the space of feasible problems on one machine (PC):

- Our experiments use the same graphs, or bigger, than previous papers on distributed graph computation. (+ we can do Twitter graph on a laptop)
- 2. I need to solve the problem very fast.

Our work raises the bar on required performance for a "complicated" system.

Benefits of single machine systems

Assuming it can handle your big problems...

- I. Programmer productivity
 - Global state, debuggers...
- 2. Inexpensive to install, administer, less power.
- 3. Scalability
 - Use cluster of single-machine systems to solve many tasks in parallel.

Idea: Trade latency for throughput

Large-Scale Graph Computation on Just a PC

Computing on Big Graphs

Big Graphs != Big Data

Data size:

140 billion connections

≈ 1 TB

Not a problem!

Research Goal

Compute on graphs with billions of edges, in a reasonable time, on a single PC.

 Reasonable = close to numbers previously reported for distributed systems in the literature.

Experiment PC: Mac Mini (2012)

Terminology

- (Analytical) Graph Computation:
 - Whole graph is processed, typically for several iterations → vertex-centric computation.
 - Examples: Belief Propagation, Pagerank,
 Community detection, Triangle Counting, Matrix
 Factorization, Machine Learning...
- Graph Queries (database)
 - Selective graph queries (compare to SQL queries)
 - Traversals: shortest-path, friends-of-friends,...

Carnegie Mellon 12

Graph Computation

PageRank SALSA

Weakly Connected Components Strongly Connected Components

Thesis statement

(Paralle

The <u>Parallel Sliding Windows algorithm</u> and the <u>Partitioned Adjacency Lists</u> data structure enable computation on very large graphs in *external memory*, on just a personal computer.

Gr (Partition

comp.

Induced Subgraphs

Friends-of-Friends Graph sampling

Neighborhood query

Link prediction

Shortest Path

Graph traversal

Edge and vertex properties

DrunkardMob: Parallel Random walk simulation

GraphChi^2

DISK-BASED GRAPH COMPUTATION

Graph Computation

GraphChi

(Parallel Sliding Windows)

Batch comp.

Evolving graph

PageRank SALSA HITS

Weakly Connected Components Strongly Connected Components

Label Propagation

Triangle Counting Community Detection

Item-Item Similarity Multi-BFS

Minimum Spanning Forest

Graph Contraction

k-Core

Loopy Belief Propagation

Co-EM

Matrix Factorization

GraphChi-DB

(Partitioned Adjacency Lists)

Online graph updates

Incremental comp.

Graph Queries

Induced Subgraphs Edge and vertex properties

Friends-of-Friends Graph sampling

Neighborhood query Link prediction

Shortest Path Graph traversal

DrunkardMob: Parallel Random walk simulation

GraphChi^2

Computational Model

- Graph G = (V, E)
 - directed edges: e = (source, destination)
 - each edge and vertex associated
 with a value (user-defined type)
 - vertex and edge values can be modified
 - (structure modification also supported)

Terms: **e** is an **out-edge** of A, and **in-edge** of B.

Vertex-centric Programming

```
function Pagerank(vertex)
```

insum = *sum*(edge.value for edge in vertex.inedges)

vertex.value = 0.85 + 0.15 * insum

foreach edge in vertex.outedges:

edge.value = vertex.value / vertex.num_outedges

Computational Setting

Constraints:

- A. Not enough memory to store the whole graph in memory, nor all the vertex values.
- B. Enough memory to store *one* vertex and its edges w/ associated values.

The Main Challenge of Disk-based Graph Computation:

Random Access

~ 100K reads / sec (commodity)

~ 1M reads / sec (high-end arrays)

<< **5-10 M** random edges / sec to achieve "reasonable performance"

Random Access Problem

Moral: You can either access in- or out-edges sequentially, but not both!

Our Solution

Parallel Sliding Windows (PSW)

Carnegie Mellon 21

Parallel Sliding Windows: Phases

 PSW processes the graph one sub-graph a time:

- In one iteration, the whole graph is processed.
 - And typically, next iteration is started.

PSW: Shards and Intervals

- I. Load
- 2. Compute
- 3.Write

- Vertices are numbered from I to n
 - P intervals
 - sub-graph = interval of vertices

Example: Layout

I. Load

3.Write

2. Compute

Shard: in-edges for interval of vertices; sorted by source-id

Shards small enough to fit in memory; balance size of shards

Carnegie Mellon 24

PSW: Loading Sub-graph

- I. Load
- 2. Compute
- 3.Write

Load subgraph for vertices 1..100

Load all in-edges in memory

What about out-edges?
Arranged in sequence in other shards

PSW: Loading Sub-graph

Load subgraph for vertices 101..700

- I. Load
- 2. Compute
- 3.Write

Out-edge blocks in memory

Parallel Sliding Windows

Only P large reads and writes for each interval.

= P² random accesses on one full pass.

Works well on both SSD and magnetic hard disks!

Joint work: Julian Shun

How PSW computes

"GAUSS-SEIDEL" / ASYNCHRONOUS

Synchronous vs. Gauss-Seidel

- Bulk-Synchronous Parallel (Jacobi iterations)
 - Updates see neighbors' values from previous iteration. [Most systems are synchronous]
- Asynchronous (Gauss-Seidel iterations)
 - Updates see most recent values.
 - GraphLab is asynchronous.

$$V_i^t \leftarrow F(V_0^t, V_1^t, \dots, V_{i-1}^t, V_i^{t-1}, V_{i+1}^{t-1}, \dots)$$

Carnegie Mellon

PSW runs Gauss-Seidel

Load subgraph for vertices 101..700

Synchronous (Jacobi)

Each vertex chooses minimum label of neighbor.

Bulk-Synchronous: requires graph diameter —many iterations to propagate the minimum label.

Carnegie Mellon 31

PSW is Asynchronous (Gauss-Seidel)

Each vertex chooses minimum label of neighbor.

Gauss-Seidel: expected # iterations on random schedule on a chain graph
= (N - 1) / (e − 1)
≈ 60% of synchronous

Label Propagation

iterations

Side length = 100

Synchronous	S
-------------	---

199

100

298

graph diameter - 1 PSW: Gauss-Seidel (average, random schedule)

~ 57

~ 0.6 * diameter

Chapter 6

PSW & External Memory Algorithms Research

- PSW is a new technique for implementing many fundamental graph algorithms
 - Especially simple (compared to previous work) for directed graph problems: PSW handles both inand out-edges
- We propose new graph contraction algorithm based on PSW
 - Minimum-Spanning Forest & Connected Components
- ... utilizing the Gauss-Seidel "acceleration"

Consult the paper for a comprehensive evaluation:

- HD vs. SSD
- Striping data across multiple hard drives
- Comparison to an in-memory version
- Bottlenecks analysis
- Effect of the number of shards
- Block size and performance.

Sneak peek

GRAPHCHI: SYSTEM EVALUATION

Carnegie Mellon 35

Graph Computation

GraphChi (Parallel Sliding Windows)

Batch comp.

Evolving graph

PageRank SALSA HITS

SA Stro

Triangle Counting
Item-Item Similarity

Minimum Spanning Forest Graph Contraction

k-Core

Weakly Connected Components
Strongly Connected Components

Label Propagation

Community Detection

Multi-BFS

Loopy Belief Propagation

Co-EM

Matrix Factorization

GraphChi-DB

(Partitioned Adjacency Lists)

Online graph updates

Incremental comp.

Graph Queries

Induced Subgraphs Edge and vertex properties

Friends-of-Friends Graph sampling

Neighborhood query Link prediction

Shortest Path Graph traversal

DrunkardMob: Parallel Random walk simulation

GraphChi^2

GraphChi

- C++ implementation: 8,000 lines of code
 - Java-implementation also available
- Several optimizations to PSW (see paper).

Source code and examples: http://github.com/graphchi

Carnegie Mellon 37

Experiment Setting

- Mac Mini (Apple Inc.)
 - 8 GB RAM
 - 256 GB SSD, ITB hard drive
 - Intel Core i5, 2.5 GHz

•	Experiment	grap	ns:
---	------------	------	-----

Graph	Vertices	Edges	P (shards)	Preprocessing
live-journal	4.8M	69M	3	0.5 min
netflix	0.5M	99M	20	1 min
twitter-2010	42M	1.5B	20	2 min
uk-2007-05	106M	3.7B	40	31 min
uk-union	133M	5.4B	50	33 min
yahoo-web	1.4B	6.6B	50	37 min

Comparison to Existing Systems

WebGraph Belief Propagation (U Kang et al.)

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the graph from disk. GraphChi computes asynchronously, while all but GraphLab synchronously.

PowerGraph Comparison

- PowerGraph / GraphLab 2
 outperforms previous systems
 by a wide margin on natural
 graphs.
- With 64 more machines, 512 more CPUs:
 - Pagerank: 40x faster than GraphChi
 - Triangle counting: 30x faster than GraphChi.

VS.

GraphChi

GraphChi has good performance / CPU.

In-memory Comparison

 Total runtime comparison to 1-shard GraphChi, with initial load + output write taken into account

Application		SSD	In-mem	Ratio
Connect	1	15 ~	10 ~	25-
	mmur However, sometimes better			
Matrix fa	f algorithm available for in-memory		ory	
Matrix fa	than external memory /			·
mpariso distributed.				

• - 5 iterations of Pageranks / Twitter (1.5B edges)

GraphChi	Mac Mini – SSD	79	90 secs
Ligra (J. Shun, Blelloch)	40-core Intel E7-88	370 15	5 secs
Ligra (J. Shun, Blelloch)	8-core Xeon 5550	230 s + pre	eproc 144 s
PSW – inmem version,	8-core Xeon 5550	100 s + pre	eproc 210 s
700 shards (see Appendix)			

Carnegie

Scalability / Input Size [SSD]

Throughput: number of edges processed / second.

Conclusion: the throughput remains roughly constant when graph size is increased.

GraphChi with hard-drive is ~ 2x slower than SSD (if computational cost low).

Graph size →

New work

GRAPHCHI-DB

Graph Computation

GraphChi

(Parallel Sliding Windows)

Batch comp.

Evolving graph

PageRank SALSA HITS

Triangle Counting
Item-Item Similarity

Minimum Spanning Forest Graph Contraction

k-Core

Weakly Connected Components
Strongly Connected Components

Label Propagation

Community Detection

Multi-BFS

Loopy Belief Propagation

Co-EM

Matrix Factorization

GraphChi-DB

(Partitioned Adjacency Lists)

Online graph updates

Incremental comp.

Graph Queries

Induced Subgraphs

Edge and vertex properties

Friends-of-Friends

Graph sampling

Neighborhood query

Link prediction

Shortest Path

Graph traversal

DrunkardMob: Parallel Random walk simulation

GraphChi^2

Research Questions

- What if there is lot of metadata associated with edges and vertices?
- How to do graph queries efficiently while retaining computational capabilities?
- How to add edges efficiently to the graph?

Can we design a graph database based on GraphChi?

Existing Graph Database Solutions

1) Specialized single-machine graph databases

Problems:

- Poor performance with data >> memory
- No/weak support for analytical computation
- 2) Relational / key-value databases as graph storage

Problems:

- Large indices
- In-edge / out-edge dilemma
- No/weak support for analytical computation

Our solution

PARTITIONED ADJACENCY LISTS (PAL): DATA STRUCTURE

Review: Edges in Shards

Shard Structure (Basic)

Sou	ırce	Destination
1		8
1		193
1		76420
3		12
3		872
7		193
7		212
7		89139
`	,	••••

Shard Structure (Basic)

Compressed Sparse Row (CSR)

Problem 1:

How to find in-edges of a vertex quickly?

Note: We know the shard, but edges in random order.

Destination

8

193

76420

12

872

193

212

89139

••••

Edge-array

PAL: In-edge Linkage

	Source	File		8
		offset		193
	1	О		
				764
İ	3	3		
	J	3		12
l	7	г		
	7	5		872
	••••	,	-	193
I	Pointer-arro	ay		212
		,		

Destination 420 89139

Edge-array

PAL: In-edge Linkage

Problem 2:

How to find outedges quickly?

Note: Sorted inside a shard, but partitioned across all shards.

	Destination	Link	
	8	3339	
	193	3	
	76420	1092	
	12	289	
	872	40	
2	193	2002	
	212	12	
	89139	22	

+ Index to the first in-edge for each vertex in interval.

Augmented linked list for in-edges

Edge-array

PAL: Out-edge Queries

Destina tion	Next-in- offset
8	3339
193	3
76420	1092
12	289
872	40
193	2002
212	12
89139	22

Edge-array

Experiment: Indices

Queries: I/O costs

In-edge query: only one shard

Out-edge query: each shard that has edges

Trade-off:
More shards →
Better locality for inedge queries, worse for out-edge queries.

$$\begin{split} &\text{io-cost[inquery(v)]} \leq 1 + \min\left(\text{indeg(v)}, \frac{E}{PB}\right) \\ &\text{io-cost[outquery(v)]} \leq \min(P, \text{outdeg(v)}) + \lfloor \frac{\text{outdeg(v)}}{B} \rfloor \end{split}$$

Edge Data & Searches

Note: vertex values stored similarly.

Efficient Ingest?

Merging Buffers to Disk

Merging Buffers to Disk (2)

Experiment: Ingest

Advantages of PAL

- Only sparse and implicit indices
 - Pointer-array usually fits in RAM with Elias-Gamma.
 - → Small database size.
- Columnar data model
 - Load only data you need.
 - Graph structure is separate from data.
 - Property graph model
- Great insertion throughput with LSM
 - Tree can be adjusted to match workload.

Carnegie Mellon 62

EXPERIMENTAL COMPARISONS

GraphChi-DB: Implementation

Written in Scala

64

- Queries & Computation
- Online database

All experiments shown in this talk done on Mac Mini (8 GB, SSD)

Source code and examples: http://github.com/graphchi

Carnegie Mellon

Comparison: Database Size

Database file size (twitter-2010 graph, 1.5B edges)

Baseline: 4 + 4 bytes / edge.

Comparison: Ingest

System	Time to ingest 1.5B edges
GraphChi-DB (ONLINE)	1 hour 45 mins
Neo4j (batch)	45 hours
MySQL (batch)	3 hour 30 minutes (including index creation)

If running **Pagerank simultaneously**, GraphChi-DB takes 3 hour 45 minutes

Comparison: Friends-of-Friends Query

Latency percentiles over 100K random queries

Small graph - 99-percentile

Big graph - 50-percentile

Big graph - 99-percentile

1.5B edges

Carnegie Mellon

LinkBench: Online Graph DB Benchmark by Facebook

- Concurrent read/write workload
 - But only single-hop queries ("friends").
 - 8 different operations, mixed workload.
 - Best performance with 64 parallel threads
- Each edge and vertex has:
 - Version, timestamp, type, random string payload.

	GraphChi-DB (Mac Mini)	MySQL+FB patch, server, SSD-array, 144 GB RAM
Edge-update (95p)	22 ms	25 ms
Edge-get- neighbors (95p)	18 ms	9 ms
Avg throughput	2,487 req/s	11,029 req/s
Database size	350 GB	1.4 TB esults in the thesis.

Carnegie Mellon

See full results in the thesis.

Summary of Experiments

- Efficient for mixed read/write workload.
 - See Facebook LinkBench experiments in thesis.
 - LSM-tree → trade-off read performance (but, can adjust).
- State-of-the-art performance for graphs that are much larger than RAM.
 - Neo4J's linked-list data structure good for RAM.
 - DEX performs poorly in practice.

More experiments in the thesis!

Discussion

Greater Impact
Hindsight
Future Research Questions

GREATER IMPACT

Impact: "Big Data" Research

- GraphChi's OSDI 2012 paper has received over 85 citations in just 18 months (Google Scholar).
 - Two major direct descendant papers in top conferences:
 - X-Stream: SOSP 2013
 - TurboGraph: KDD 2013
- Challenging the mainstream:
 - You can do a lot on just a PC → focus on right data structures, computational models.

Impact: Users

- GraphChi's (C++, Java, -DB) have gained a lot of users
 - Currently ~50 unique visitors / day.
- Enables 'everyone' to tackle big graph problems
 - Especially the recommender toolkit (by Danny Bickson) has been very popular.

- Typical users: students, non-systems researchers, small

companies...

Impact: Users (cont.)

How big datasets do you use?

How much memory does your computer (that you use for GraphChi) have?

I work in a [EU country] public university. I can't use a a distributed computing cluster for my research ... it is too expensive.

Using GraphChi I was able to perform my experiments on my laptop. I thus have to admit that GraphChi saved my research. (...)

EVALUATION: HINDSIGHT

What is GraphChi Optimized for?

- Original target algorithm: Belief
 Propagation on Probabilistic Graphical Models.
- Changing value of an edge (both in- and out!).
- 2. Computation process whole, or most of the graph on each iteration.

- 3. Random access to all vertex's edges.
 - Vertex-centric vs. edge centric.
- 4. Async/Gauss-Seidel execution.

GraphChi Not Good For

- Very large vertex state.
- Traversals, and two-hop dependencies.
 - Or dynamic scheduling (such as Splash BP).
- · High diameter graphs, such as planar graphs.
 - Unless the computation itself has short-range interactions.
- Very large number of iterations.
 - Neural networks.
 - LDA with Collapsed Gibbs sampling.
- No support for implicit graph structure.
- + Single PC performance is limited.

Versatility of PSW and PAL

Graph Computation

GraphChi

(Parallel Sliding Windows)

Batch comp.

> **Evolving** graph

PageRank **SALSA** HITS

Triangle Counting Item-Item Similarity

Minimum Spanning Forest **Graph Contraction**

k-Core

Weakly Connected Components Strongly Connected Components

Label Propagation

Community Detection

Multi-BFS

Loopy Belief Propagation

Co-EM

Matrix Factorization

GraphChi-DB

(Partitioned Adjacency Lists)

Online graph updates

Incremental comp.

Graph Queries

Induced Subgraphs Edge and vertex properties

Friends-of-Friends Graph sampling Link prediction Neighborhood query

Graph traversal **Shortest Path**

DrunkardMob: Parallel Random walk simulation

GraphChi^2

Future Research Directions

- Distributed Setting
 - I. Distributed PSW (one shard / node)
 - I. PSW is inherently sequential
 - 2. Low bandwidth in the Cloud
 - 2. Co-operating GraphChi(-DB)'s connected with a Parameter Server
- New graph programming models and Tools
 - Vertex-centric programming sometimes too local: for example, two-hop interactions and many traversals cumbersome.
 - Abstractions for learning graph structure; Implicit graphs.
 - Hard to debug, especially async \rightarrow Better tools needed.
- Graph-aware optimizations to GraphChi-DB.
 - Buffer management.
 - Smart caching.
 - Learning configuration.

Semi-External Memory Setting

WHAT IF WE HAVE PLENTY OF MEMORY?

Observations

- The I/O performance of PSW is only weakly affected by the amount of RAM.
 - Good: works with very little memory.
 - Bad: Does not benefit from more memory
 - Simple trick: cache some data.
- Many graph algorithms have O(V) state.
 - Update function accesses neighbor vertex state.
 - Standard PSW: 'broadcast' vertex value via edges.
 - Semi-external: Store vertex values in memory.

Using RAM efficiently

- Assume that enough RAM to store many O(V) algorithm states in memory.
 - But not enough to store the whole graph.

Parallel Computation Examples

- **DrunkardMob** algorithm (Chapter 5):
 - Store billions of random walk states in RAM.
- Multiple Breadth-First-Searches:
 - Analyze neighborhood sizes by starting hundreds of random BFSes.
- Compute in parallel many different recommender algorithms (or with different parameterizations).
 - See Mayank Mohta, Shu-Hao Yu's Master's project.

CONCLUSION

Summary of Published Work

GraphLab: Parallel Framework for Machine Learning (with J. Gonzaled, Y.Low, D. Bickson, C.Guestrin)	UAI 2010	
Distributed GraphLab: Framework for Machine Learning and Data Mining in the Cloud (same)	VLDB 2012	Grap
GraphChi: Large-scale Graph Computation on Just a PC (with C.Guestrin, G. Blelloch)	OSDI 2012	
DrunkardMob: Billions of Random Walks on Just a PC	ACM RecSys 2013	7
Beyond Synchronous: New Techniques for External Memory Graph Connectivity and Minimum Spanning Forest (with Julian Shun, G. Blelloch)	SEA 2014	THESIS
GraphChi-DB: Simple Design for a Scalable Graph Database – on Just a PC (with C. Guestrin)	(submitted / arxiv)	
Parallel Coordinate Descent for L1-regularized :Loss Minimization (Shotgun) (with J. Bradley, D. Bickson, C.Guestrin)	ICML 2011	() () () () () () () () () ()

Summary of Main Contributions

- Proposed DrunkardMob for simulating billions of random walks in parallel.
- Analyzed PSW and its Gauss-Seidel properties for fundamental graph algorithms

 New approach for EM graph algorithms research.

Thank You!

ADDITIONAL SLIDES

Economics

Equal throughput configurations (based on OSDI'12)

	GraphChi (40 Mac Minis)	PowerGraph (64 EC2 cc1.4xlarge)
Investments	67,320 \$	-
Operating costs		
Per node, hour	0.03 \$	1.30 \$
Cluster, hour	1.19 \$	52.00 \$
Daily	28.56 \$	1,248.00 \$

Assumptions:

- Mac Mini: 85W (typical servers 500-1000W)
- Most expensive US energy: 35c / KwH

It takes about 56 days to recoup Mac Mini investments.

PSW for In-memory Computation

- External memory setting:
 - Slow memory = hard disk / SSD
 - Fast memory = RAM
- In-memory:
 - Slow = RAM
 - Fast = CPU caches

Does PSW help in the in-memory setting?

PSW for in-memory

Min-label Connected Components (edge-values; Mac Mini)

Remarks (sync vs. async)

- Bulk-Synchronous is embarrassingly parallel
 - But needs twice the amount of space
- Async/G-S helps with high diameter graphs
- Some algorithms converge much better asynchronously
 - Loopy BP, see Gonzalez et al. (2009)
 - Also Bertsekas & Tsitsiklis Parallel and Distributed
 Optimization (1989)
- Asynchronous sometimes difficult to reason about and debug
- Asynchronous can be used to implement BSP

I/O Complexity

 See the paper for theoretical analysis in the Aggarwal-Vitter's I/O model.

Impact of Graph Structure

- Algos with long range information propagation, need relatively small diameter > would require too many iterations
- Per iteration cost not much affected

- Can we optimize partitioning?
 - Could help thanks to Gauss-Seidel (faster convergence inside "groups") → topological sort
 - Likely too expensive to do on single PC

Graph Compression: Would it help?

- Graph Compression methods (e.g Blelloch et al., WebGraph Framework) can be used to compress edges to 3-4 bits / edge (web), ~ 10 bits / edge (social)
 - But require graph partitioning \rightarrow requires a lot of memory.
 - Compression of large graphs can take days (personal communication).
- Compression problematic for evolving graphs, and associated data.
- GraphChi can be used to compress graphs?
 - Layered label propagation (Boldi et al. 2011)

Previous research on (single computer) Graph Databases

- 1990s, 2000s saw interest in object-oriented and graph databases:
 - GOOD, GraphDB, HyperGraphDB...
 - Focus was on modeling, graph storage on top of relational DB or key-value store
- RDF databases
 - Most do not use graph storage but store triples as relations + use indexing.
- Modern solutions have proposed graph-specific storage:
 - Neo4j: doubly linked list
 - TurboGraph: adjacency list chopped into pages
 - DEX: compressed bitmaps (details not clear)

LinkBench

	GraphChi-DB			MySQL + FB patch		
	laptop (SSD)			server (SSD-array) [9]		
	p50	p75	p95	50	p75	p95
node_get	2	4	34	0.6	1	9
node_insert	0.1	0.1	0.1	3	5	12
node_update	2	4	34	3	6	14
edge_ins-or-upd.	0.7	2	15	7	14	25
edge_delete	0.1	0.9	7	1	7	19
edge_update	1	3	22	7	14	25
edge_getrange	8	19	250	1	1	10
edge_outnbrs	0.4	3	18	0.8	1	9
Avg throughput	2,487 req/s		11,029 req/s			

Table 4.2: LinkBench online database benchmark. Latencies are in milliseconds. Note: for clarity we have modified the request names from the original. JVM's garbage collection pauses cause the high 95-percentiles.

Comparison to FB (cont.)

- GraphChi load time 9 hours, FB's 12 hours
- GraphChi database about 250 GB, FB > 1.4 terabytes
 - However, about 100 GB explained by different variable data (payload) size
- Facebook/MySQL via JDBC, GraphChi embedded
 - But MySQL native code, GraphChi-DB Scala (JVM)
- Important CPU bound bottleneck in sorting the results for high-degree vertices

LinkBench: GraphChi-DB performance / Size of DB

Possible Solutions

 Use SSD as a memoryextension?
 [SSDAlloc, NSDI'11]

Too many small objects, need millions / sec.

2. Compress the graph structure to fit into RAM?[→ WebGraph framework]

Associated values do not compress well, and are mutated.

3. Cluster the graph and handle each cluster separately in RAM?

Expensive; The number of intercluster edges is big.

4. Caching of hot nodes?

Unpredictable performance.

Number of Shards

• If P is in the "dozens", there is not much effect on performance.

Multiple hard-drives (RAIDish)

 GraphChi supports striping shards to multiple disks -> Parallel I/O.

Experiment on a 16-core AMD server (from year 2007).

Bottlenecks

- Cost of constructing the sub-graph in memory is almost as large as the I/O cost on an SSD
 - Graph construction requires a lot of random access in RAM

 memory bandwidth becomes a bottleneck.

Connected Components on Mac Mini / SSD

Bottlenecks / Multicore

- Computationally intensive applications benefit substantially from parallel execution.
- GraphChi saturates SSD I/O with 2 threads.

In-memory vs. Disk

Application	SSD	In-mem	Ratio
Connected components	45 s	18 s	2.5x
Community detection	110 s	46 s	2.4x
Matrix fact. (D=5, 5 iter)	114 s	65 s	1.8x
Matrix fact. (D=20, 5 iter.)	560 s	500 s	1.1x

Table 3: Relative performance of an in-memory version of GraphChi compared to the default SSD-based implementation on a selected set of applications, on a Mac Mini. Timings include the time to load the input from disk and write the output into a file.

Experiment: Query latency

See thesis for I/O cost analysis of in/out queries.

Example: Induced Subgraph Queries

- Induced subgraph for vertex set S contains all edges in the graph that have both endpoints in S.
- Very fast in GraphChi-DB:
 - Sufficient to query for out-edges
 - Parallelizes well → multi-out-edge-query
- Can be used for statistical graph analysis
 - Sample induced neighborhoods, induced FoF neighborhoods from graph

Vertices / Nodes

- Vertices are partitioned similarly as edges
 - Similar "data shards" for columns
- Lookup/update of vertex data is O(I)
- No merge tree here: Vertex files are "dense"
 - Sparse structure could be supported

ID-mapping

- Vertex IDs mapped to internal IDs to balance shards:
 - Interval length constant a

What if we have a Cluster?

Trade latency for throughput!

Graph Computation: Research Challenges

- I. Lack of truly challenging (benchmark) applications
- 2. ... which is caused by lack of good data available for the academics: big graphs with metadata
 - Industry co-operation → But problem with reproducibility
 - Also: it is hard to ask good questions about graphs (especially with just structure)
- 3. Too much focus on performance → More important to enable "extracting value"

Random walk in an in-memory graph

Compute one walk a time (multiple in parallel, of course):

```
parfor walk in walks:
   for i=1 to numsteps:
     vertex = walk.atVertex()
```

walk.takeStep(vertex.randomNeighbor())

Problem: What if Graph does not fit in memory?

Random walks in GraphChi

- DrunkardMob —algorithm
 - Reverse thinking

