A Case Study on the Lightweight Verification of a
Multi-Threaded Task Server *

Néstor Catafio™*, [jaz Ahmed®, Radu 1. Siminiceanu®, Jonathan Aldrichd

¢ Carnegie Mellon University - Portugal, The University of Madeira
Campus da Penteada, Funchal, Portugal
b Carnegie Mellon University - Portugal, Madeira ITI
Campus da Penteada, Funchal, Portugal
“National Institute of Aerospace, Hampton VA, USA
Institute for Software Research, School of Computer Science
Carnegie Mellon University, Pittsburgh PA, USA

Abstract

We present a case study of verifying the design of a commercial multi-threaded task
server (MTTS), developed by the Novabase company, used for massively parallelising
computational tasks. In a first stage, we employed the Plural tool, which is designed to
perform lightweight verification of Java programs using a Data Flow Analysis (DFA)
framework, to specify and verify the MTTS. We wrote the Plural specification for the
MTTS based on the code developed by Novabase, its informal documentation, and our
discussions with Novabase engineers, who validated our understanding of the MTTS
application. The Plural specification language is based on typestates and access per-
missions. In a second stage, we developed the Pulse tool that enhances the analysis per-
formed by Plural, and used the tool on the MTTS specifications. Pulse translates Plural
specifications into an abstract state-machine model that captures the semantics of all
the possible concurrent programs implementing the given specifications, and uses the
evmdd-smc symbolic model-checker to verify the machine model. The experimental
results on the MTTS specification show that the exhaustive model-checking approach
scales reasonably well and is efficient at finding errors in specifications that were not
previously detected with the Data Flow Analysis (DFA) capabilities of Plural.

Keywords:
Concurrency, Parallelism, Formal Methods, Specification, Verification,
Model-Checking, Program Analysis.

*This work has been supported by the Portuguese Research Agency FCT through the CMU-Portugal
program, R&D Project Aeminium, CMU-PT/SE/0038/2008.
*Corresponding author
Email addresses: ncatano@uma .pt (Néstor Catafio), ijaz.ahmed@u-iti.org (Ijaz Ahmed),
radu@nianet.org (Radu I. Siminiceanu), jonathan.aldrich@cs.cmu.edu (Jonathan Aldrich)

Preprint submitted to Science of Computer Programming December 1, 2013

1. Introduction

Multi-core processor platforms are poised to become massively parallel within the
next few years. To take advantage of this new technology, computer scientists are
working on the development of programming languages and programming paradigms
that exploit the parallel computing power provided by the new hardware, while at the
same time helping programmers ensure correctness in a parallel context.

Developing correct parallel programs is difficult, in part because of the danger of in-
terference betwen tasks. If two tasks read and write to shared, mutable state, they must
be synchronized to ensure that the state of the program does not become inconsistent.
Unfortunately, it is easy for programmers to omit synchronization or to incorrectly
synchronize, resulting in errors such as race conditions when multiple threads read and
write to the same locations in the heap.

In order to help programmers reason about access to shared mutable state, re-
searchers have therefore developed a number of abstractions that can be used to charac-
terize the way that multiple threads access potentially shared state. An early example
of this was Boyland et al.’s capabilities for sharing, which are annotations that can
be associated with references in the program [1]. A capability (now more commonly
called a permission [2]) restricts the way that different threads can use the object to
which the reference points. For example, a Unique permission describes an object that
is writable but not shared between threads, while an Immutable permission describes
an object that is potentially shared between threads, but cannot be written to. In either
case, the object can be accessed following the rules of the permission without fear of
introducing a race condition.

Permissions and related concepts have since been applied to address issues related
to safe concurrency [3] as well as security [4]. This paper focuses on a case study about
the use of (the existing tool) Plural [5] to specify and verify concurrency properties of
an industrial application, and on our development of the Pulse tool [6] that enhances
the analysis performed by Plural. The Plural specification language is based on a form
of permissions known as access permissions [7] as well as typestates. While access
permissions describe whether an object can be read or written through various refer-
ences, typestates specify the legal order of operations that may be applied to the object,
specified as a state machine [8]. The two forms of specification are complimentary:
in addition to helping to verify safe concurrency, permissions enable a dataflow anal-
ysis to more precisely track the changes to the typestate of an object as the program
executes.

We used Plural for the specification and verification of a multi-threaded task server
(MTTS), implemented by Novabase, which has been extensively used for massively
parallelising the processing of computational tasks. MTTS is part of several software
applications used by Novabase’s clientele, e.g. it has been used in the financial sector
to parallelise the archiving and processing of documents. The MTTS application is
implemented in Java, and uses queues to store tasks that are executed by a pool of
threads.

The MTTS case study revealed a series of limitations of the analysis performed
by the Plural tool. These limitations are related to the impossibility of exhaustively
analysing arbitrary sequences of method calls and with checking Plural specifications

in isolation. We therefore developed the Pulse tool, as an Eclipse plug-in [6], to
overcome these limitations. Pulse translates Plural specifications into abstract state-
machine models that capture the semantics of all the possible concurrent programs
implementing a given specification. We used the evmdd-smc [9] symbolic model-
checker, a minimalist high-performance tool with an input language inspired by SAL
(Symbolic Analysis Laboratory) [10], to model the abstract machines and to perform
the verification.

The contributions of Pulse to the analysis performed by Plural are: (i.) an exhaus-
tive yet tractable approach to analyse specifications at an appropriate level of abstrac-
tion for concurrent execution; (ii.) a discrete semantics for access permission manipu-
lation that is scalable; (iii.) a translation algorithm that allows full automation; (iv.) an
integration of model checking techniques into the Plural framework. The verification
methodology implemented in Pulse is not limited to Plural specifications alone, but
may be employed for any language that captures the concepts of typestates, permis-
sions and concurrency, such as the Fugue checker [11].

The rest of this paper is organised as follows. Section 2 introduces the Plural and
Pulse tools. Section 3 presents our specification of the MTTS application, shows mis-
cellaneous aspects of the verification of the MTTS with Plural, and discusses about
the limitations of the analysis performed by Plural. This discussion includes a list of
desirable features regarding the analysis done by Plural. Sections 4 and 5 lay the the-
oretical background for the automated extraction of discrete state models from Plural
specifications that is implemented in the core of Pulse. Section 6 presents the results of
using Pulse on the specifications for the MTTS application. Section 7 presents related
work, and Section 8 discusses future work and conclusions.

2. Preliminaries

2.1. The Plural Tool

Plural is a specification and checker tool, implemented as a plug-in to Eclipse [5].
The Plural tool takes a Java program annotated with Plural specifications and checks
whether the program complies with its specifications or not. Plural implements a sim-
ple effects analyser that checks if a particular method has side effects, and an annotation
analysis tool that checks whether annotations are well formed.

2.1.1. The Plural Specification Language

The Plural specification language is a general language designed to facilitate the
development of component-based and concurrent software. The Plural specification
language combines access permissions and typestates specifications. Access permis-
sions are abstract capabilities allowing a method to access a particular object state [1].
Plural uses access permissions to keep track of the various references to a particular
object, and to check the types of accesses these references have. Accesses can be read-
ing or writing (modifying). Typestates define protocols on finite state machines [8].
They describe the sets of valid object states on which a method can be called.

This reference | Other references
Unique | 0
Full | Pure
Share | Share, Pure
Pure | Full, Share, Pure, Inmutable
Immutable | Pure, Inmutable

Current permission Access through
read/write read-only other permission
Unique - none
Full Immutable read-only
Share Pure read/write

Figure 1: Simultaneous access permissions taxonomy [7]

Plural provides five types of access permissions, namely, Unique, Full, Share,
Pure, and Immutable. Figure 1 presents a taxonomy of how different access permis-
sions can coexist, e.g. Full access to a referenced object allows the existence of any
other reference with Pure access to the same referenced object.

Unique(x). It guarantees that reference x is the sole reference to the referenced
object. No other reference exists, so X has exclusive reading and modifying
(writing) access to the object.

Full(x). It provides reference x with reading and modifying access to the refer-
enced object. Additionally, it allows other references to the object (called aliases)
to exist and to read from it, but not to modify it.

Share(x). Its definition is similar to the definition of Full(x), except that other
references to the object can further modify it.

Pure(x). It provides reference x with read-only access to the referenced object. It
further allows the existence of other references to the same object with read-only
access or read-and-modify access.

Immutable(x). It provides x and any other existing reference to the same ref-
erenced object with non-modifying access (read-only) to the referenced object.
An Immutable permission guarantees that all other existing references to the
referenced object are also read-only Pure(x) or Immutable(x) permissions.

Plural specifications are embedded in Java code within special marked comments.
A simple Plural specification for a method combines pre- and post-conditions, em-
bedded immediately before the method declaration. The pre-condition describes (1)
the typestate the object must be before the method starts, and (2) the type of access
the object permits. In the spirit of Girard’s Linear Logic [12], access permissions are

produced and consumed. The method post-condition describes the produced access
permissions and the typestate the object will be after the method ends.

In Plural, a method specification is written with the aid of a @Perm clause!, com-
posed of a requires part, describing the resources required by the method to be ex-
ecuted (the pre-condition), and an ensures part (the post-condition), describing the
resources generated after method execution. Some methods can legally be called with
and can produce different sets of resources (declared within a @ Cases clause). Hence,
if the client does not know which case pre-condition in the specification will be se-
lected, it must be prepared to deal with any of the post-conditions listed by the @ Cases
specification. A typestate is declared within a @State clause, and several typestates are
made available inside a @ClassStates declaration. Additionally, an object can be in
different dimensions representing the dynamic typestates of the object. In Plural, di-
mensions are declared with the aid of the @dim keyword.

Figure 2 illustrates an example of a Plural specification taken from the MTTS case
study presented in Section 3. Class Task models a generic task in the MTTS. The
internal information about the task is stored in an object “data” of type MttsTaskDataX.
A task can be in four possible typestates: Created, Ready, Running, or Finished. The
constructor of class Task allocates a Unique object that is in state Created. A task is
in state Ready once it has been given some data to be executed. It is in state Running
when it is running, and it is in state Finished when it has been executed and its data
has been consumed.

Looking at the state transitions in more detail, method “setData()” requires this
to have Full permission to its referenced object, which should be in state Created,
and simultaneously requires that its first parameter is different than null. The operator
“*” combines several specifications. Method “execute()” requires this to have Full
permission and to be in state Ready, and ensures that this will have Full permission
on its referenced object, which will be in state Finished.

2.2. The Pulse Tool

We implemented Pulse as an Eclipse plug-in that works on top of the Plural tool.
The Pulse tool [6] takes a Plural annotated Java spec and produces an abstract state
machine model expressed in the input language of the evmdd-smc [9] model-checker?.
We use the state-of-the-art evmdd-smc symbolic model checker 3 to verify that the
Plural specifications satisfy a set of basic integrity properties. The input language of
evmdd-smc is similar to SAL (Symbolic Analysis Laboratory), however evmdd-smc
is more efficient than SAL for several reasons. The evmdd-smc is powered by an
edged-valued decision diagrams (EVMDD) library, 1ibevmdd® that can be orders of
magnitude faster [9] than the ubiquitous CUDD, especially for models that capture
concurrency. Secondly, the much leaner evmdd-smc is free of all of the syntactic
sugar provided by SAL, which often leads to tremendous pre-processing overhead.

lAlternatively, Plural allows the use of @Case.
2Sections 4 and 5 give full details on how these models are generated.
3 Available at http: //research.nianet.org/ radu/evmdd/.

@ ClassStates (

{
@State (name = ‘‘Created’’, inv = ‘‘data == null’’),
@State (name = ‘‘Ready’’, inv = ‘‘data != null’’),
@State (name = ‘‘Running’’, inv = ‘‘data != null’’),
@State(name = ‘‘Finished’’, inv = ‘‘data == null’’)

13}
public Task implements AbstractTask {
private MttsTaskDataX data;

@Perm(ensures = ‘‘Unique(this) in Created’’)
public Task() { ... }
@Perm(requires = ‘‘Full(this) in Created % data != null’’,
ensures = ‘‘Full(this) in Ready’’)
public void setData(MttsTaskDataX data) { ... }
@Perm(requires = ‘‘Full(this) in Ready’’,
ensures = ‘‘Full(this) in Finished’’)

public void execute () throws Exception { ... }

Figure 2: Example of a specification for a generic task

The ability to express custom temporal logic properties for concurrent programs gives
evmdd-smc further freedom to perform verification tasks tailored to each application.

In the following, we explain the different evmdd sections generated for the Plu-
ral specification in Figure 3. The figure introduces the MttsTask class that models a
generic programming task. The internal information about the task attributes is stored
in an object data of type MttsTaskDataX. An object of type MttsTaskDataX can be (in
typestate) Empty or Filled. The state Empty represents the fact that the data has not
been set and state Filled indicates that data has been set. An object of type MttsTask
can be in state Created, Ready, Complete, or Destroyed. It is in state Ready once
it has been given some data to be run (by method setData). It is in state Complete
(method execute) when its execution has been finished, and it is in state Destroyed
(method delete) when it does not exist any more. Method setData requires the object
this to have Full access to its referenced object, to be in state Ready, and requires the
parameter “d” to have Pure access to its referenced object. Method setData further
ensures that on method termination, the object this will be in state Filled with Pure ac-
cess permission. Method getTaskStatus requires Pure access permission and provides
the status of the task such as ready, running etc.

a) Declarations/Initialisations.

The model declares eight variables to represent the typestate (state), the class
method (meth), the total number of read (tkrB) and write (tkwB) tokens, the pro-
gram counter (pc), the total number of access permissions (ap), and the number
of read (tkr) and write (tkw) an object reference owns. The numbers between
brackets are the possible values a variable can have, where 8 is used in all cases to
represent the value “undefined”. All the initial state values are undefined except
for the total number of read and write tokens.

@ ClassStates ({

@State (name=‘‘Created’’ , inv="‘‘data!=null’’),
@State (name="‘‘Ready’’ , inv="‘data!=null’’),
@State (name="‘‘Complete’’, inv=‘‘datal!=null’’),
@State (name="‘‘Destroyed’’, inv=‘‘data == null’’)

D)
public class MttsTask {

private MttsTaskDataX data;

@Perm (ensures= °‘‘Unique(this) in Created’’)
MttsTask () { ... }

@Perm(requires=°‘Full(this) in Created«Pure(d) in Filled’’,
ensures="‘‘Full(this) in Ready’’)
public void setData(MttsTaskDataX d) { ... }

@Cases ({

@Perm(requires = ‘Pure(this) in Ready’’, ensures=‘‘Pure(this) in Ready’’)
@Perm(requires =‘‘Pure(this) in Complete’’ ,ensures="‘‘Pure(this) in Complete’’)
13

@Perm(ensures="‘‘Pure(result) in Filled’’)

public MttsTaskDataX getData() { ... }

@Perm(requires=°‘Full (this) in Ready’’, ensures=‘‘Full(this) in Complete’’)

public void execute() { ... }

@Perm(requires=°‘Full(this) in Complete’’, ensures=‘‘Full(this) in Destroyed’’)
public void delete() { ... }

@Perm(requires=‘‘Pure(this)’’, ensures="‘‘Pure(this)’’)
public int getTaskStatus() { ... }

Figure 3: Specification of class MttsTask

DECLARATION: INITIAL_STATES:
state_Mttstask_0bj® [0,4] state_MttsTask_0Obj0=0
meth_MttsTask_Obj0 [0,6] meth_MttsTask_0bj=0
tkrB_MttsTask_Obj® [0,1] tkrB_MttsTask_0bj0=1
tkwB_MttsTask_Obj0® [0,1] tkwB_MttsTask_Obj0=1
pc_MttsTask_0Obj® [0,2] pc_MttsTask_0Obj0=0
ap_MttsTask_Obj® [0,5] ap_MttsTask_Obj0=0
tkr_MttsTask_Obj®_Ref® [0,1] tkr_MttsTask_Obj®_Ref0=0
tkw_MttsTask_Obj®_Ref® [0,1] tkw_MttsTask_Obj®_Ref0=0

b) Transitions. Each transition has a guard (the enabling condition) and an up-
date expression (executed when the guard holds). Transitions are identified by a
unique label.

1. Pulse generates the evmdd code below for the constructor of class MttsTask.
Prior to the call to the constructor the object does not exist, so the guard be-
low (the part before ->) checks that no permission has been created already
for the object. In the update part (the part after ->) all the variables are
primed, meaning the after-value of the unprimed variables. The update part
sets the program counter to exe, which stands for “executing”, the method
identifier meth_MttsTask_Obj® to be a constructor (represented as 1),
and grants the object a Unique access permission. The update part trans-

fers one token from tkrB_MttsTask_0bj0 to tkr_MttsTask_Obj_Ref®,
and from tkwB_MttsTask_Obj0 to tkw_MttsTask_Obj®_Ref0.

start_MttsTask_ObjO:

ap_MttsTask_Obj0=0
->

pc_MttsTask_Obj®’= 1 /* exe */ /\
meth_MttsTask_Obj®’=1 /* MttsTask */ /\
ap_MttsTask_Obj0’=1 /* Unique */ /\
tkrB_MttsTask_Obj0’=0 /\
tkwB_MttsTask_Obj0’=0 /\
tkr_MttsTask_ObjO_Ref®’=1 /\
tkw_MttsTask_ObjO_Ref®’=1

2. For method “execute” in Figure 3, Pulse generates the evmdd code below.
The guard contains five conjuncts. Therefore, the object must exist, the
method cannot be executing, the object typestate should be Ready, some
read tokens must be available, and all write tokens must be available. The
update expression is composed of seven parts. Therefore, the program
counter is set to executing, the method identifier is set to “execute”, the
access permission is set to Full, all the write tokens are transferred, and
only one read tokens is transferred.

start_execute_MttsTask_Obj0:
ap_MttsTask_0bj0!=0 /\
pc_MttsTask_0bj®=2 /* done */ /\
state_MttsTask_Obj®=1 /* Ready */ /\
tkrB_MttsTask_Objo>0 /\
tkwBMttsTask_Obj0=1

->
pc_MttsTask_0bj®’=2 /* exe */ /\
meth_MttsTask_Obj0’=3 /* execute */ /\
ap_MttsTask_Obj0’=2 /* Full */ /\
tkwB_MttsTask_ObjO=0 /\
tkrB_MttsTask_Obj0®’=tkrB_MttsTask_ObjoO-1 /\
tkr_MttsTask_ObjO_Ref®’=1 /\
tkw_MttsTask_Obj®_Ref’=1

3. The evmdd code below describes the case when method execute transi-
tions from “currently executing” (exe) to “finished” (done), leaving the ob-
ject in state Complete and setting reading and writing accesses that match
the Full access permission.

end_execute_MttsTask_Obj0:

pc_MttsTask_Obj0O=1 /* exe */ /\

meth_MttSTask_Obj®:3 /* execute */
->

pc_MttsTask_Obj0®’=2 /* done */ /\

state_MttsTask_Obj®’= 3 /* Complete */ /\
tkrB_MttsTask_Obj0®’=tkrBMttsTask_ObjO+1 /\
tkwB_MttsTask_Obj®’=1 /\
tkr_MttsTask_ObjO_Ref®’=0 /\
tkw_MttsTask_ObjO_Ref®’=0

4. To create an alias, the referenced object must exist, the alias should be
afresh, and sufficient read and write tokens should exist to generate a Pure
access permission (see the guard part). The update expression just creates
the reference with a Pure access permission.

create_alias_MttsTask_ObjO_Ref0:
state_MttsTask_0bj®!=0 /\
ap_MttsTask_0bjo=0 /\
tkrB_MttsTask_Objo>0

->
pc_MttsTask_0bj®’= 2 /*done*/ /\
meth_MttsTask_0bj®’=0 /\
ap_MttsTask_Obj0’= 3 /*Pure*/

3. Specification and Verification of the MTTS

Our goals for the case study on the specification and verification of the MTTS ap-
plication using Plural were two-fold: (i) to evaluate the design of a massively parallel
commercial application like the MTTS, and (i) to determine how well the Plural tool
performs on a complex commercial application. The Plural specifications we wrote for
the MTTS are based on our understanding of the MTTS application, built from direct
inspection of the code of the MTTS, the informal code documentation, and on our dis-
cussions with Novabase’s engineers. After our discussions with Novabase’s engineers
took place, we wrote a technical report describing the architecture, the functionality
implemented by the MTTS, and the kind of design properties we were interested in
checking [13]. The technical report was validated by Novabase and constituted the
basis of our work with Plural.

For this case study, we were interested in checking with Plural standard properties
related with concurrency such as absence of deadlocks, and the mutual exclusion to a
critical section. Checking these properties is essential for the MTTS as it implements
programming tasks over threads that are all together accomplishing a common job so
that threads need to access shared resources in a synchronized way. It was important too
to find out whether Plural could verify these intricate properties or not, or under which
circumstances Plural was able to produce a correct answer. We were also interested
in checking design properties of the MTTS, properties that must be enforced for the
MTTS to be in a validate state, for instance, we were interested in checking whether
acquired locks were eventually released. This prompted us to the question on how well
Plural deals with reachability properties.

There is an additional value in writing formal specifications for applications. Spec-
ifications can be used by engineers to generate a collection of documents describing
the behaviour of an application. This documentation can be used by engineers to (re-)

design an application or to resolve differences between members of a quality assurance
team regarding the expected behaviour of the application. The process of verifying the
MTTS application with Plural revealed a series of issues related to good programming
practices and design decisions made in the MTTS that Novabase’s engineers used to
evolve and improve the MTTS after the case study finished. These issues would not
have been revealed otherwise, for example through direct code inspection, which con-
firms the importance of using automated tools like Plural to increase the confidence
on the correctness of the implementation of software applications. For this case study,
we kept the code of the MTTS unchanged as much as possible and tried to keep the
semantics of the code intact whenever we introduced any changes to it.

3.1. Overview of the MTTS Application

The MTTS is the core of a task distribution server that is used to run tasks over
different execution threads. This core is used in the financial sector to process bank
checks in parallel with time bound limits. MTTS’ implementation is general in the
sense that it makes no assumptions on the nature of the running tasks. The MTTS
organises tasks through queues and schedules threads to execute the task queues. Tasks
are stored in databases. The MTTS is a typical client server application, divided into
3 main components, namely, TaskRegistration, RemoteOperationControl and Queue-
Manager. MTTS’ clients use the TaskRegistration component to register tasks. This
component stores the registered tasks in a database. The QueueManager component
implements some working threads that fetch and execute tasks. The RemoteOperation-
Control component is used to monitor and to control the progress of the tasks. Every
queue implements a mutex manager algorithm to synchronise tasks.

3.2. Implementation of the MTTS

The MTTS is composed of four packages, namely, library, mtts-api, il and server.
The library package extends the Java database and Collection classes. The mtts-api
package models tasks and queues. The il package models “intelligent locks™ and the
server package is the main package of the MTTS application and uses features imple-
mented by the other packages as depicted in Figure 4.

Class Task implements tasks and Queuelnfo implements queues. Class IMutex-
Imp in the il package implements a mutex algorithm to synchronise tasks, and class
MutexManager creates and destroys locks. Lock status and statistics are implemented
in classes IMutexStatus and IMutexStatistics respectively. The server package imple-
ments code that fetches tasks from the database and distributes them through different
threads. Class ServerWrapper runs the server as a system service and Class MttsServer
implements the basic functionality to start and stop the server. Class TaskCreator and
class QueueManager create tasks and manage queues respectively. Class Remote-
TaskRegistration provides an interface to remotely register tasks and class Remote-
OperationControl provides an interface to clients to remotely view the progress of
tasks. Class ThreadPool keeps a list of class ExecutionThread objects that execute
running threads. Class DBConnection implements the basic features to communicate
with database.

10

pkg server |

-mttsServer -creator -creator

-remoteOC. -queueM -thread /|

. " -queueM A L4 ;
| RemoteOperationContrg)r’I» ------------- bl QueueManager | | ExecutionThread |
- -~ /
remoteTR. queueM -queue .~ -pool {
) S P {
| RemoteTaskRegistration | | TaskQueue | | MttsThreadGroup |

Figure 4: The server package.

3.3. The General Specification Approach

Since Plural performs a modular analysis of programs, we commenced writing
specifications starting from the most basic classes of the MTTS, e.g. classes that are
inherited from or are used by other classes. Since the specification of more complex
classes depends on the specification of the most basic ones, we provided basic classes
with a sufficiently detailed specification. We specified the basic packages mtts-api and
il first and specified package server last. Because Plural does not include a specifi-
cation for Java standard classes, e.g. List and Map, we wrote specifications for these
Java classes as well. We also wrote specifications for Java classes related to database
interaction, e.g. Connection and DriverManager. In the following, we present some of
the specifications of the three main packages of the MTTS, discuss various aspects of
the specification and verification of the MTTS application with Plural, discuss on the
limitations of the Plural tool, and present an evaluation of the case study.

3.4. Aspects on the Verification of the MTTS

We verified various properties of the MTTS application ranging from simple non-
null properties to the absence of deadlocks and mutual exclusion to a critical section.
Our experience indicates that Plural is a practical tool that can effectively be used to
verify complex system properties. In the following, we discuss all these aspects on the
specification and verification of properties of the MTTS.

Processing Tasks. Figure 2 in Section 2.1.1 presents an excerpt of the specification of
class Task. Several aspects of this class’s specification are worthy of note. Although
we would like to distinguish typestates Ready and Running, their associated invariants
are the same. Plural ensures that if an object is in state Ready, then variable data is
different than null. However, the opposite direction is not necessarily true. If one
wished to fully distinguish these two typestates then one could add conditions isready
and !isready to their respective invariants. But then one would need to modify the
source code of class Task by creating a boolean variable isready and to keep track of
the value of this variable through the code of class Task. This is error-prone and we

11

further wanted to keep the source code of the MTTS intact as much as possible. Thus,
we left the invariants the same, which is not a problem in Plural.

The specification of class Task ensures that a task cannot be executed twice. Only
the class constructor leaves a task in state Created. Only method setData transitions
a task from Created to Ready. And a task needs to be in state Ready to be executed.
The specification also ensures that setData must be called before execute().

Mutual Exclusion. Method acquire() acquires a lock and method release() releases
the lock. Method acquire() is the only class method that transitions from typestate
NotAcq into typestate Acq, and method release() is the only class method that takes an
object from typestate Acq into typestate NotAcq. Hence, non-nested calls to method
acquire() must be preceded by a call to release().

@Perm(requires=°‘‘Full (this) in NotAcq’’, ensures=‘‘Full(this) in Acq’’)
public abstract void acquire() { }

@Perm(requires=°‘Full(this) in Acq’’, ensures=‘‘Full(this) in NotAcq’’)
public abstract void release () { }

Mutual exclusion to a critical section is thus ensured by enclosing the code of the
section between a call to method acquire() and a call to method release() as in method
doErrorRecovery() below.

@ ClassStates ({
@State (name="‘‘FullMutex’’, inv=‘‘Full (mutex) in NotAcq’’),
13}
class ExecutionThread extends Thread {
private IMutex mutex;

@Perm(requires = ‘‘Full(this) in FullMutex’’
ensures = ‘‘Full(this) in FullMutex’’)
private void doErrorRecovery(Exception e) {
try { mutex.acquire(); ...
finally { ... mutex.release(); }
}
}

Absence of Deadlocks. The Plural specification for methods acquire() and release()
ensures that if a thread has acquired a lock, then the thread needs to release the lock
before another thread can acquire the lock. This is a source for deadlocks: one needs
to check that an acquired lock is eventually released. However, Plural does not provide
support for reachability analysis so we were unable to prove the absence of deadlocks
in the MTTS implementation in general*, but only in particular settings, e.g. by direct
code inspection. As an example of this, the code of method doErrorRecovery in class
ExecutionThread above is enclosed between a call to acquire() and a call to release().
This was often the case for methods in class ExecutionThread. Method doErrorRecov-
ery uses a Java try-catch-finally statement to ensure that the release() method is always
finally called regardless of the method termination status (normal or exceptional).

4Asa consequence of this and other limitations, we developed the Pulse tool [6].

12

Destroying a Non-Released Lock. Method “destroy” in class MutexManager removes
a mutex “m” from the list of mutexes. However, destroying (removing) a mutex can
lead the system to a deadlock (or to a state that might enable some abnormal behaviour)
as the thread that acquired the lock will never be able to release the lock and so other
threads waiting for the first thread to release the lock will wait forever. To ensure that
a mutex is not destroyed before it is first released, we added the specification “Full(m)
in NotAcq” to the requires part of method destroy. Therefore, Plural will generate an
error for any code that calls destroy with a mutex object m in a state other than NotAcq.

Reentrant Mutexes. According to the implementation and the documentation of the
MTTS, although two different threads cannot acquire the same lock, a single thread can
acquire the same lock several times. Class IMutexImp implements interface IMutex.
It declares a thread field o that keeps track of the thread that owns the lock, and an
integer variable nesting that keeps track of the number of times the owner thread has
acquired the lock. From the implementation of class IMutexImp, it appears evident
that nesting is 0 whenever object “o0” is null (a class invariant property). We can define
two typestates: NestAcq (acquired several times by the same thread) and SingleAcq
(acquired exactly once) as sub-typestates of Acq. We can associate NestAcq with the
invariant “o != null * nesting > 1” and use this typestate in the specification of all the
methods of the class, e.g. acquire() and release(). However, Plural does not provide
support for integer arithmetic. As an alternative, we could modify the code of class
IMutexImp to declare and use a boolean variable nested to be true whenever nesting
is greater than 1, and modify the invariant associated to the typestate NestAcq to be “o
!=null * nested==true”. This approach is potentially error-prone: it requires us to set
variable nested accordingly all through class IMutexImp whose code is large.

An additional problem related to the specification of reentrant mutexes has to do
with the analysis performed by Plural. We describe this problem with the aid of the
specification of the method release() below. This method requires the receiver object to
be in state NestAcq, so that nested equals to true. This indicates that the if-statement
in the method release() can never be executed, and hence the receiver object remains in
the super-typestate Acq (though potentially transitioning from NestAcq to SingleAcq).
However, the Plural tool issues a warning saying that it cannot establish the post-
typestate specification. This proves another limitation of the analysis performed by
Plural. To determine that the if-statement is never executed, it is necessary to anal-
yse the invariant property associated with the definition of the NestAcq typestate. The
actual implementation of Plural does not perform such data-flow analysis.

// note: only one case (NestAcq) of the specification is shown

@Perm(requires=°‘Full (this) in NestAcq’’, ensures =‘‘Full(this) in Acq’’)
public void release () {
if (o '= null && nested==false) { //change to state NotAcq }

else { //remain in Acq (either NestAcq or SingleAcq) }
}

Plural and Good Programming Practices. Class ExecutionThread declares a boolean
variable “terminate” that is used to determine whether the thread has finished its exe-
cution or not. The variable is not explicitly initialized in its declaration, yet according

13

to the Java specification language its default value is false. Typestate ThreadCreated
represents the state in which a thread has just been created. The constructor of class Ex-
ecutionThread does not set variable “terminate”. Despite the fact that the initial value
of variable “terminate” is false, Plural issues an error for the execution of the con-
structor of class ExecutionThread. This error states that the object cannot be packed to
typestate ThreadCreated.

@ ClassStates ({
@State (name="‘‘ThreadCreated’’, inv=‘‘terminate==false’’),

1)
class ExecutionThread extends Thread {
private boolean terminate;

@Perm (ensures = ‘‘Unique(this) in ‘‘ThreadCreated")
ExecutionThread(...) { ... }

)

Although this shows a bug in the Plural tool, we report it as a programming bad
practice. Programmers should explicitly initialize variables to their intended value,
thus avoiding relying on the underlying compiler or on external tools, e.g. external
typestate analysers like Plural. In this sense, Plural can be used to enforce initialization
of class variables. Without proper tool support for analysing large pieces of code, even
small bugs like this would remain undetected.

Specification of Standard Libraries. The MTTS stores tasks and related information
in a database. The DBConnection class of the MTTS implements the basic features
that support communication with databases. Plural does not furnish specifications for
standard Java classes such as Connection and DriverManager, so we needed to write
specifications for these classes as well. The specification of these classes allowed us to
prove that the MTTS adheres to general protocols of database interaction. For instance,
we proved that a connection is always open whenever database operations such as
fetching a task from the database and updating task information stored in the database
are taking place.

Abstract class MttsConnection below presents part of the specification we wrote for
class MttsConnection. Class MttsConnection defines a root typestate Connection with
two sub-typestates OpenConnection and ClosedConnection, modelling an open and
closed database connection respectively. According to the Java specification language,
method open() can be called on an object to transition it into state OpenConnection,
and close() can be called on an object to transition it into state ClosedConnection.
The specification of other standard libraries was conducted in a similar way using Java
abstract classes.

@Refine ({
@States (dim="‘‘Connection’’,
value={‘‘OpenConnection’’, ‘‘ClosedConnection’’})
D)
public abstract class MttsConnection {
@Perm(ensures = ‘‘Unique(this) in OpenConnection’’)
MttsConnection () { }

@Perm(value="‘Connection’’, ensures=°‘‘Full(this) in OpenConnection’’)

14

public abstract void open() throws java.sql.SQLException;

@Perm(value="‘‘Connection’’, ensures=°‘‘Full(this) in ClosedConnection’’)
public abstract void close () throws java.sql.SQLException;
}

Starting and Shutting Down the MTTS Server. Class MttsServer is the main class
of the MTTS application. It implements methods start() and stop() to start and to shut-
down the server. It declares three variables OpControlRemote, TaskRegistrationRe-
mote and queueManager to manage the three major features of the server: control
of remote operations, task registration, and the queue manager, respectively. One of
the design consistency properties of the server is “the server is in the starting state
ServerStart if and only if its three components are in their starting states TStart,
CStart and QStart respectively”. And a second consistency property is “the MTTS
server is in state ServerShutdown if and only its three components are in their shut-
down states TShutdown, CShutdown and QShutdown respectively”. Although the
implementation of method start() verified the definition of typestate ServerStart, the
implementation of method stop() did not verify the definition of typestate ServerShut-
down. Therefore, method stop() does not shutdown all its components but only the
queueManager.

We report this as a flaw in the design of the MTTS server application. Due to the
size of the MttsServer class and all the classes it uses, discovering this design flaw
could be difficult with other approaches such as direct code inspection.

@ ClassStates ({
@State (name="‘ServerStart’’,
inv="‘Full (queueManager) in QStart x
Full (OpControlRemote) in CStart =
Full (TaskRegistrationRemote) in TStart’’),
@State (name="‘‘ServerShutdown’’ ,
inv="‘Full (queueManager) in QShutdown
Full (OpControlRemote) in CShutdown x
Full(TaskRegistrationRemote) in TShutdown)’’})
class MttsServer {
private OpControl OpControlRemote;
private TaskRegistration TaskRegistrationRemote ;
private QueueManager queueManager;

@Perm(ensures="‘‘Full (this) in ServerStart’’)
public void start () throws MttsException { ... }

@Perm(requires=°‘Full(this) in ServerStart’’,

ensures="‘Full (this) in ServerShutdown’’)
public void stop () throws MttsException {
queueManager . shutdown () ;

}

3.5. Discussion on the Limitations of Plural

In the following, we summarise Plural limitations. Some of these limitations have
already been discussed in previous sections.

15

o The Plural tool approximates the semantics of loops by unrolling them a fixed
number of times, which can lead to spurious warnings. We found one case where
we had to (unsoundly) approximate a loop with an if statement because Plural
ran out of memory when trying to analyze the loop. This is an area where the
engineering and scalability of the tool could be improved.

e Plural was not designed to support integer arithmetic. So, one cannot define
invariants that use integer variables. Plural provides support for the analysis
of boolean expressions that check equality or non-equality of references and
boolean expressions that check (non-) nullness of references.

In the implementation of the MTTS, class IMutexImp implements a mutex algo-
rithm that is used to synchronise threads. Mutexes can be acquired or released.
Thus, if a thread acquires a lock then no other thread can acquire the same lock.
A thread can acquire a lock several times. So, it must release the lock the same
number of times it acquired it for any other thread to (eventually) be able to ac-
quire the lock. However, Plural does not allow one to define a typestate that de-
scribes the situation that occurs when a thread has acquired a lock several times
as this will require the invariant related to the typestate to rely on an integer
arithmetic expression “nesting > 1”.

e Plural does not implement a strong specification typechecker, therefore program-
mers may unintentionally write specifications that include misspelled (nonexis-
tent) typestates, and the Plural analysers can unconsciously use the misspelled
typestate in their analysis. Plural does not issue any error on a specification that
uses a nonexistent typestate. This feature was intentional—it allows developers
to use typestates without declaring them—but nevertheless we found that this
feature made it too easy to write incorrect specifications that the tool does not
identify.

e Plural does not provide support for reachability analysis, that can be used to
answer questions such as if a thread object is in state Acq, will the object ever
be in state NotAcq? In practice, for small classes, one can inspect the code and
trace how states evolve manually. For large classes and complex pieces of code
this becomes prohibitively difficult.

e Method execute() in Figure 2 transitions a task object from typestate Ready to
typestate Running, and thereafter to typestate Finished. These two transitions
occur both within method execute(). Typestate Ready is required by method
execute() and typestate Finished is produced by method execute(). Running is
an intermediate typestate for which the specification of method execute() does
not provide any information. It would be possible for execute() to invoke empty
helper methods such as startRunning() and stopRunning() that exist merely to
specify the two state transitions, however this is at best an awkward workaround.
Not being able to reason more cleanly about intermediate program states is a
limitation of the analysis performed by the Plural tool. The information about
intermediate states could be used by programmers (and tools) to assert certain
facts that otherwise cannot be asserted explicitly. For instance, in the verification

16

of the MTTS, we could not specify the property stating that a running task cannot
be deleted.

3.6. Evaluation of the Case Study

It has taken approximately nine months to undertake this case study. The three
first months were spent on developing a precise understanding of the MTTS. During
this process, we communicated by email with the Novabase engineers and conducted
face-to-face meetings. The other six months were spent on writing the specifications
for the MTTS. Most of the specifications are written by the second author, who before-
hand did not have any experience with Plural or the Plural language, or with writing
formal specifications in general. The first author, who had experience in writing formal
specifications with JML [14, 15], but not with Plural, supervised the work and made
suggestions to improve the specifications. The third author, the principal designer of
Plural, provided feed-back on writing Plural specifications.

We specified and verified forty nine Java classes with 14451 lines of Java code and
546 lines of program specifications. The automation of the analyses performed by the
Plural tool ranges from a couple of milliseconds for the verification of small classes to
a couple of minutes for the verification of large classes.

4. Model Checking Plural Specifications

4.1. Methodology

The Plural tool takes as input a specification, an implementation of that specifi-
cation, and optionally a client program. The implementation and client are checked
against the specification. An issue stemming from this style of verification is that if the
specification itself has errors or unintended semantics, the programmer might never
become aware of it. For example, if the specification is tested against just one client,
the specification may preclude behavior that was intended to be possible but did not
show up in that client, and the tool will not point this out.

We have developed an approach to identifying issues with Plural specifications.
In our approach, the behavior of object oriented concurrent programs is defined as a
maximally unconstrained interleaving of threads. The interleavings are represented as
sequences of method calls obeying access permission rules and typestate definitions.

We use the high-performance symbolic model checker evmdd-smc [9], developed
for NASA by the National Institute of Aerospace. The input language of evmdd-smc is
similar to SAL (Symbolic Analysis Laboratory), however evmdd-smc is more efficient
than SAL for several reasons. The evmdd-smc is powered by an edged-valued decision
diagrams (EVMDD) library, 1ibevmdd®, which can be orders of magnitude faster than
the ubiquitous CUDD, especially for models that capture concurrency [9]. Secondly,
the much leaner evmdd-smc is free of all of the syntactic sugar provided by SAL,
which often leads to tremendous pre-processing overhead.

5 Available at http://research.nianet.org/ radu/evmdd.

17

4.2. Abstract Models of Plural Specifications.

Our abstract state-machine models attempt to capture the collective dynamic be-
haviour of the object references described in Plural specifications in a concurrent envi-
ronment. The models are not concerned with the body of methods, but only with their
specifications — i.e., preconditions, postconditions, typestates, and access permissions
— and the interleavings of concurrently executing processes.

A Plural specification comprises a finite set of class declarations C = {Cy, ..., C.}.
Every class C; contains a set of typestate declarations, 7S; = {tl.1 ey tf." }, where [; is the
number of typestates of class C;, for 1 <i < ¢. We identify each object that appears in
the specification (including method parameters and class fields) O = {oy, ..., 0,}. Each
object is mapped to its class declaration via an implicit mapping class_of : O — C.
To capture the issue of concurrency, for each object 0;, 1 < i < n, we create a number
of instances of references to that object: R; = {r?, r}, R r{, R riK}. K is a parameter
that can be set by the user to a desired value. For K = 0, there is no concurrency in
the model, while for any strictly positive value, K other independent aliases will be
introduced for each reference, corresponding to a truly concurrent setting.

The question whether there exists a smallest value for K that is sufficiently large
to capture all “relevant” behaviors depends on the expressiveness of the specification
logic. If integer arithmetic is allowed for typestate definitions (for invariant definitions),
it is easy to construct a model where no such smallest upper bound exists, for example
by defining a typestate that is entered when the reference count to the object exceeds
a certain value n. In this implementation, we do not include integer arithmetic in the
invariant expressions. However, the existence of an upper bound for K in this case,
while possible, has not been determined yet.

The Basic Component. In the following, we reserve the symbol L for undefined values
(for multiple domains: typestates, access permissions, methods), throughout the paper.

The building block of the developed model is the state-machine of an object refer-
ence r{ , where h = class_of (i), which includes:

(a) the abstract program counter, (pc{) € PC; = {exe,done} x {L}U M), M, =

{M /11, e MZ“’ }, is the set of methods defined for object o;, including constructors.

(b) the access permissions associated with r{ : a field of enumerated type
ap! € AP = {1, Unique, Full, Pure, Inmutable, Share}.
(c) additionally, each object has an associated typestate ts; € 7S;, = {L}U {t,i, e tZ’ 5

State Transition Rules. The model allows a non-deterministic transition from done-
local-states (i.e. a local states with pc{ = (done, -)) to any other exe-local-state provided
it respects its transition guards. This covers all possible sequences of method calls for
K + 1 concurrently executing references, which is behaviorally equivalent to placing
the reference (this, 0;) in any reachable global context with K other references. The
transitions from done-local-states to exe-local-states are guarded by expressions that
capture:

(i) the required typestate condition of the exe-local-state

18

(ii) the access permission constraints determined by the splitting rules described in
subsection 5.1.

Additionally, from each exe-local-state (exe, m) a reference can only transition to
its matching done-local-state (done, m), capturing the completion of the call to method
m. The transition is guarded by the postcondition associated with the method in the
specification and reflects the change in typestate and access permissions that may occur.

5. The Translation Algorithm

The translation algorithm from Plural to evmdd builds the two components of a
finite state machine: the set of potential global states S and the transition relation
between states, R C S X §. The potential state space is simply the cross product of the
local state spaces of all n objects. This includes the typestate of the object (common to
all references to that object), and the program counter and access permission for each
of the K + 1 references:

S = Iil TSixﬁ(PCixﬂP)
i=1

J=0

The transition relation can be defined component-wise. For each reference rl.j there
are two local transitions, corresponding to starting a method and ending a method.
The global transition relation is the asynchronous composition of the local transition
relations. We use the standard notation for pairs of states (from-states, fo-state) in
the transition relation, where unprimed variables refer to the from-state and primed
variables to the fo-state. We also employ the following type definitions:

GlobalTypestate = TS| Xx...xTS,

LocalState = (PC,AccessPermission)

GlobalState = Array[l..n] of Array [0..K] of LocalState
Reference = (Objectldx, Aliasldx)

Triple = (Reference, Typestate, AccessPermission)

The routines StartMethod and EndMethod listed in Algorithms 1 and 2 are used to
construct the transition relation. They correspond to starting and ending a method m
by a reference r/, respectively. The input for these routines are the calling reference

rij , the method m, the global context (the global state s and the typestate), and two

triples. The triples (rl{]“, tsf,‘;’, apo) and (rl’l ' tsf.‘]‘,apl) encode the requires (indexed ip)
and ensures (indexed i;) clauses from the method’s specification, i.e. the required and
ensured typestate, reference, and access permission. The output of the routines are two
Boolean formulae: guard and update. The guard formula must hold for the transition
to be enabled, and the update formula encodes the changes in the values of global states
that occur by executing a transition.

For StartMethod, if the reference r{ exists, and it is not already executing a method,

and the global type state of object iy is the required typestate ts{;’, and the required
access permission of object iy is compatible with the current apy, and the ensured
access permission of object i; is compatible with ap; (all conjuncts are part of the

19

Algorithm 1 for the transition corresponding to starting a method

StartMethod(s : GlobalState, t : GlobalTypestate, r;.i : Reference, m : Method;,
((r{:, tsﬁ:’, apo) , (r{]' , tsfl' , apl)) : Triple X Triple

guard «— slilljl.ap # L A s[i][j].pc = (done,) A tlig] = t5)' A
Compatible (s[iplljol-ap, apo) A Compatible (s[ii][ji11.ap,ap1)
update «— §'[i][j].pc = (exe,m) A ChangePermission (s[io][jol, apo)
return guard = update

Algorithm 2 for the transition corresponding to ending a method.
EndMethod(s : GlobalState, t : GlobalTypestate, rl’ : Reference, m : Method;,
((rl]:, tsf(:’, apo) , (r'l.]]' , tsfl' , ap1>) : Triple X Triple

guard « s[il[j]l.pc = (exe, m)
update «— t'[ij] = tsfl‘ A S'li11lj1].ap = ap A s’'[i][j].pc = (done, m)A
ChangePermission (s[i1][ji1].ap,ap1)
return guard = update

guard), then we update the status of the program counter of rij to be “executing method
m”, and we update the global state.

For EndMethod, if method m is the one currently executed (the guard), then we
update the typestate of ri’] ' to its ensured typestate, its access permission to ap;, and the

status of the program counter of the calling reference rlj to “done”,

In the special case when m is a constructor, the guard for StartMethod is slightly
different: the first predicate, s[i][jl.ap # L, enforcing that the reference rl’ exists, is
replaced by #[i] = L, that enforces the opposite: the object o; has not been created yet.

There are two routines that require further explanations. Compatible(ap., ap,), im-
plements a Boolean function that decides whether the access permissions ap, and ap,
are “compatible”, i.e. if ap, can be downgraded or upgraded to ap, according to Sec-
tion 5.1. The second routine, ChangePermission(ap,, ap,), builds the update formula
corresponding to a compatible access permission transformation from ap, to ap,.

5.1. Access Permission Compatibility and Transformation Rules

Object permissions must guarantee that an object reference having write permis-
sion does not conflict with another reference to the same object having write or a read
permission, e.g race conditions should not occur. The presence of object aliases makes
the analysis of permissions harder. To enhance this analysis, permissions in Plural can-
not be duplicated and can be split in fractions of a permission. A permission can take
a fractional value in the interval (0, 1]. Fractional permission analysis as implemented
in Plural has been influenced by Boyland’s work in [2]. Representing permissions as
fractions explains when writes permissions conflict with other permissions. A write
permission requires to have the whole fraction of the object permission to write to the

20

Unique(x,0,k) <= Full(xy,0,k) Q Pure(x;, 0, k)
Unique(x,0,k) <= Share(x;,o0,k;) ® Share(x,, 0, k)
Full(x,0,k) <= Immutable(x,o,k;)® Immutable(x,,o,k,)
Immutable(x,0,k) <= Pure(x,o0, k) ® Immutable(x,, 0, k)
Immutable(x,0,k) <= Immutable(x;,o,k;)® Immutable(x,,o,k,)

Figure 5: Access permission splitting rules

object, so two aliases of an object cannot simultaneously write to an object or read and
write to it. On the other hand, two read permissions can coexist. Our implementation
of fractions as described in Section 5.2 uses the bounding assumption of a K maximum
number of object references, and thus permissions take values of a fraction in the range
(0, K]. In Plural, a Unique permission is represented by 1 and an Immutable permis-
sion is represented by a fraction between 0 and 1 so that other permissions are allowed
to exist. Figure 5 presents all the splitting rules Plural enforces. For all of the listed
rules, k = ky + k, and at least one of the references x; and x; is x.

Next AP Unique Full Share = Immutable Pure L
this O this O this O this O this O this O
Current AP 'w I'W I'w I'W I'W I'W W I'W ™ IW ™ IW

Unique © l l !))
== == ==+4+=| == ++ | =— += =— ++ —— ++

Full T © l l) l
== -=| == == ===+ | =— == =—=+ | —— =+

Share 1 0 N) l l

Immutable 0 T © l)
=+—-=|=4== | =+=+4 | == == ===+ | —==+

Pure) T T T ©)
=+ —— | =4+=— | =+ == = =- == == | —= ==

1 T T T T T o
++ —— ++ == | 4+ == | += =-— + === == ==

Figure 6: Access Permission Transformations (downgrade/upgrade).

Figure 6 shows the routines Compatible() and ChangePermission() presented in the
beginning of Section 5. There can be two generic ways of access permission transfor-
mations. i. downgrade: this reference may give up rights and the other references may
gain rights. ii. upgrade: this reference may acquire more rights and the other references
may lose rights. The directional arrows denote the nature of the transformations: | for
downgrade, T for upgrade, < for no change, and X for disallowed. The second row
of symbols describes the read and write permissions change for reference this and the
other references (“the rest of the world” denoted by O): + for gaining, — for losing, =
for no change. Therefore, a Full permission is compatible with a Share permission.

21

Additionally, Full can be downgraded to Share if this gives up writing permissions
that are gained by the other references. Our analysis has found a single case of incom-
patibility, between Share and Immutable permissions, so they cannot be transformed
one from another.

5.2. A Discrete State Semantics for Fractional Access Permissions

The access permission transformations are based on an underlying concept of “col-
lective management” of permissions among references to the same object. Intuitively,
access permissions are viewed as resources (tokens), stored in a central location (bank)
and available globally. The references can take a portion (fraction) or all tokens, de-
pending on access’s needs and then return them back to the bank. ' _

We describe the access permissions of a reference r{ as a pair of fractions: (f rij , f w{),
with f r{ f w{ € [0, 1], representing the fraction of the read and write permissions to ob-
ject o; owned by reference r{ . There are three semantic classes for the values of a frac-
tion f: f = 0 (no permission), 0 < f < 1 (partial/shared permission), or f = 1 (exclu-
sive rights). The preservation of access permissions is a global invariant, with f rlB and
fw? the unused fractions (still in the bank): fr? + 25-(:0 frij =1Afwl+ Zf:() fw{ =1

this Semantic Bank (0]

frl=0nfw =0 null frE>0n fwB>0 any

fr,.j =0A fwl.’ >0 no meaning - -

0<frl<1Afw/ =0 | Immutable | fw?=1 Siej fwi=0
0<frl<1Afw/ =0 | Pure B <1 Vi#j:fwl >0
0<frfwl <1 Share 0<frB<1n0<fwB<1 | Vizj:0<frl i<l
O<fr{<1/\fw{:l Full Osfrf’,<1/\fw;.3:0 Vlij:fwﬁ:O
fri=1nfw =0 Immutable | fr¥=0a fwf =1 Vi#j:fri=0Afwl=0
frl=1nfw =0 Immutable | frf=0A fwf <1 Vi#jifri=0Afwl >0
frl=1A0<fw/ <1 | nomeaning - -

fri=1nfw =1 Unique frE=0nfwE=0 Vi#jifri=0Afwl=0

Figure 7: A fractional permission model

The possible combinations of values for fractions are listed in Figure 7. The mean-
ingless combinations arise from the implicit subordination of read permissions to mod-
ifying (write) permissions: a reference with modifying permissions has to have reading
permissions as well. Also note that the nature of others rights can be inferred from the
value of this and the bank: Y,; frl = 1= (fr! + fr¥)and 3 1,; fw! = 1= (fw] + fw).
This helps determine locally the evaluation of the quantified formulae in the definition
of certain access permissions without having to consult the actual values of the other
references. This has practical importance for model checking in particular, where event
locality can impact the efficiency of the analysis.

Our implementation uses the bounding assumption of maximum K co-existing ref-
erences to translate this framework into a fully discrete model, where we map fractions

from the continuous interval [0, 1] to the set {0, 1, ..., K + 1}, via the abstraction
0, if f=0
N:[0,1] > {0,1,...,K+1}, N(f)=4 xe{l,....K}, if 0<f<1
K+1, if f=1

22

We can define two functions for the required number of tokens needed for the next
operation, N, and N,,. There are multiple ways to define this pair of functions, as
there is still non-determinism in the abstraction from fractions to integer values. The
definition below corresponds to the most conservative approach in which references
request the minimum amount of resources required for their operation:

0, if a=1

N, : AP —{0,.,K+1},N.(@)={ 1, if a € {Full, Pure, Immutable, Share}

K+1, if a = Unique

0, if a € {1, Pure, Immutable}

N, : AP - {0,...,K+1},N,(a) =< 1, if a = Share

K+, if a € {Unique, Full}

To complete our model, in addition to the field ap in the basic module, we introduce
tkr and tkw, to represent the number of read and write tokens for each reference g = r‘l.’ .

For example, if a method requires non-exclusive rights (Pure), the guard for start-
ing the method checks whether the reference has the one read token necessary (a) or it
needs to “borrow” it (b). This results in two distinct types of transitions:

()
(b)

If thrf + tkr] > 1, then thr') = 1 A thr’® = thr® + thr] — 1

If thrf + tkrl =0 A3k # j: pcl = (done,) A thr > 1, then thr'] = 1 A thr'? =
tkr? — 1 (one read token transferred from rl’? to "}'I)

5.3. The Model Generator.

An evmdd model contains four sections: variable declarations, variable initialisa-

tions,

the transition relation, and a set of CTL temporal logic [16] properties.

a) Abstract variable domains.

b)

As all variables in the model have to be discrete (more precisely of an integer in-
terval type) we have to define the abstract domains for all of them. The domains
TS;={L}U {til, R tf"'} are mapped to [0, i;]. The domain of method identifiers
{L1u {Mi1 ..., M} is mapped to [0, m;]. The domain of access permission types
AP = {1, Unique, Full, Pure, Immutable, Share} is mapped to [0, 5]. For the
variables referring to tokens, we use the domain [0, K + 1]. For the {exe, done}
type we use [0, 1].

Variable declarations.

For each object o;, we declare two categories of variables. One category refers to
the proper object and includes three variables: state; of type 7S;, tkrﬁB and tkwf;
of type [0, K + 1]. The second category is for references to the object. For each
of the K + 1 references to o;, we define five variables: pcl.’ of type [0, 1], method{
of type [0, m;], ap{ of type [0, 5], tkrlj and tkw{ of type [0, K + 1]. Hence, we have
c*(3+5x*(K+ 1)) variables in the model.

23

9

d)

Variable initializations.

For each object: state; = 1(0) A tkr? = K + 1 A tkw? = K + 1.

For each reference: 0 < j < K: pc{ = done(1), method{ = 1(0), ap{ = 1(0),
tkr! = thkw! = 0.

Transition relation.

Each transition has a guard expression (the enabling condition) and an update
expression (the transformation performed by executing the transition). Recall
that unprimed variables refer to values before the update (the “from” state), while
primed variables refer to values after the update (the “to” state). We identify
four categories of transitions in our model, described in detail below.

1. Reference rl’ starts a constructor.
The guard enforces that the object has not been created: /\fzo(ap{ =1).
The update expression sets the program counter and method of rl’ and takes
all K + 1 tokens of both types (read and write) from the bank: pc’{ = exe
A method'] = constructor A ap’/ = Unique A thr'® = 0 A thw'® = 0 A
thr'! = K+ 1A thw'! = K + 1.

2. Reference rl.j starts a method mf‘
The guard contains four conjuncts. The first requires rl’ to exist (i.e., not
undefined): ap{ # L. The second requires it to be in a done state (i.e. not
executing something else): pc{ = done. The third conjunct enforces that:
statey, = t, and the fourth conjunct checks the availability of access permis-
sion tokens. As explained in the definition of N, and N,,, there may be 0,
1, or K + 1 tokens requested for read and/or write permissions associated
with method m¥. In general, if 7r% and tw* are the number of tokens needed
to execute method m¥, then the fourth conjunct is: tkr{ > trk A thw? > twk.
Note that if tri.‘ = 0, the expression tkrﬁB > trff is always true, hence it can be
ignored. The same observation holds for the case twf.‘ = 0. The update ex-
pression has two conjuncts. The first reflects the changes in the state of rlj :
pc’f =exe A method’{ =kA ap’{ = ap. The second reflects the changes
in the distribution of tokens: tkr'? = tkr? — e A tkw'B = thw? — wk A
thr'l = tkrl + 0% A thw'] = thw? + 1wk,

3. Reference rlj ends a method mf
The guard ensures that the reference is actually executing method mf : pc{ =
exe A method{ = k. The update expression reflects the change in the state
of rlj : pc’{ = done, and returns all the access permission tokens held by r{
back to the bank: tkr'? = tkrf + 1% A thw'® = thw? + 1wk A thr'! = thr! — 1k

A tkw’{ = thw? - twf.‘. If the specification of mf‘ also ensures that some

object oy, (again, not necessarily the same o;) is left in state 7, the second

conjunct enforces that: state’;, = t;.

24

4. Reference rij is a newly created alias.
The guard expression requires that the object exists, state; # L, rl.j has not
been previously created, aplj = 1, and enough read tokens exist for a pure
access, tkrf > 1, which is the most conservative approach.
The update expression is pc"l." =done A method"ij =1A ap"ij = Pure.

6. Running Pulse on the Specification of the MTTS

6.1. Checking the Absence of Sink States (global deadlocks)

The presence of states without successors (sink states) may have different root
causes, including improper use of access permissions that block the progress of all
threads, among which deadlock (due to a mutual circular wait) is one particular un-
desired behaviour. In the CTL temporal logic, this can be expressed as the property
deadlock : —EX(true). Note that local deadlocks may exist even when there are no
global sinks, but testing for all local deadlocks requires an exponential number of tests.

6.2. Checking the Absence of Unreachable Methods

Pulse uses the information of the requires clause of a method’s specification to
check whether it can be reached from another method or not. In our model, we rep-
resent with the predicate satisfiability;(m,) to check whether the precondition of the
method m,, is satisfiable.

V1 <i<c,Vm, € M;: satisfiability,(my,) : EX(pclJ = (m,, exe))

When we run Pulse on the specifications of Figure 3, Pulse states that three methods
setData, execute, and delete are unreachable because of the unsatisfiability of the re-
quires clauses of these methods. The ensures clause of MttsTask constructor produces
an object with Unique access permission and in typestate Created. A Unique access
permission can be transformed into two access permissions i.e Full and Pure (accord-
ing to the fractional permission rules). The Full access permission and the typestate
Created can be used to match the first part of the requires clause of method setData,
however the second part of the requires clause i.e the parameter “d” should be in state
Filled can not be matched, as none of the methods defined in class MttsTaskDataX
transitions into typestate Filled, and hence as a result the method setData is unreach-
able. The unsatisfiability of the setData requires clause will not produce the ensures
typestate i.e typestate Ready. The non-availability of the typestate Ready will lead to
the unsatisfiability of the requires clause of the method execute, so the method execute
will remain unreachable. Similarly the unreachability of the method execute will result
into the non-availability of the the typestate Complete that will lead to the unreachabil-
ity of the method delete.

6.3. Checking Whether Methods Can be Executed in Parallel

Access permissions can be used to represent parallel executions of methods m;
and m, along with other dependency information. Pulse can find all possible pairs of
methods that can be executed in parallel and all pairs of methods that can never be

25

2

8

4 wn

gl 18 ¢e =5

S| 2| % |58 &

MittsTask YT Thin T r

setData YIiHi I I KN

getData Ararararal

execute ¥l H I WK

delete MEEE R AR AR

getTaskStatus | J | /| |l Y1 H W

Table 1: Method Concurrency Matrix
Packages Classes | Methods | State Space #Properties
SS MR STM
library 8 39 1x105| 1] 39| 6
il 13 61 7x10° | 1 61 96
mtts 19 166 [2x 10 [1] 166 | 98
il, library 21 100 | 1x10™ | 1] 100 | 102
i1, library, mtts 40 266 | 2x10°* [1| 266 | 200
il, library, mtts, 55 368 | 8x10°% | 1 | 368 | 280
server

Table 2: Pulse Results showing State Space and Checked Properties of the MTTS specification.

executed in parallel. In CTL this can be expressed as V1 < i < ¢,0 < j; # jo» <
K,Ym; £ my € M;:

concurrent; (my,my) : EF (pc{‘ = (my, exe) A pc{2 = (my, exe))

An empty set of states satisfying concurrent; (m;, my) indicates that m; and m; can
never be executed in parallel.

When we run Pulse on the specifications of Figure 3, Pulse produced the concur-
rency matrix as shown in the Table 1. The symbol || indicates that the methods can be
executed parallel and the symbol }f indicates that methods cannot be executed in paral-
lel. For instance, no methods can be executed in parallel with the constructor MttsTask;
similarly, methods that requires Full (modifying) access permissions, e.g. execute and
delete, cannot be executed in parallel. However, the methods that requires Pure (read-
only) access permissions, e.g. getData and getTaskStatus, can be executed in parallel
with each other.

6.4. Performance Analysis

Tables 2 and 3 show the results produced by Pulse on the full MTTS specifica-
tion. In both tables, SS stands for sink states, MR for method reachability and STM

26

Packages Classes Methods Runtime(s) Violations

SS MR STM SS | MR | STM
library 8 39 | 0.07 0.30 004 | O 0 1
il 13 61 0.10 0.18 0.09 | 0 0 9
mtts 19 166 | 0.11 0.33 017 | 0| 44| 26
il, library 21 100 | 0.08 0.25 015 0 01| 27
il, library, 40 266 | 043 0.89 044 | 0| 44| 37
mtts
il, library, 55 368 | 24.34 | 152.39 | 282447 | 0| 58 | 60
mtts, server

Table 3: Pulse Results showing Time and Detected Violations of the MTTS specification.

for state transition matrix. Table 2 provides metrics about state space and number of
checked properties. For an instance, Pulse used a state space of 8 X 103 to check all
the properties of the whole MTTS specification. In Table 3, columns 4 to 6 show the
time taken by Pulse (in seconds) to perform the tests. The first five rows represent
partial models when the three utility packages are checked in isolation. The last row
includes the server package that has most of the class interdependencies and hence
there is a significant jump in the time (Runtime), taken by Pulse to verify the proper-
ties. The last three columns show the number of violations found, more precisely, the
number of sink sates, unreachable methods, and unreachable typestates, respectively.
For an instance, Pulse found 58 unreachable methods and 60 unreachable typestates in
whole MTTS specifications. The main reasons of these violations are (a) the writing of
wrong specifications that lead to unreachable typestates or methods. We also observe
that sometimes, the specifications of complex code (that involves many typestates)
lead to wrong (unwanted) transitions, (b) the specification of class constructors that do
not produce access permissions. Wrongly specified constructors lead to a situation in
which class method preconditions are never satisfied, and (c) added specification on a
method’s parameter but then necessary definition of parameter’s typestate is missing,
in the respective parameter class.

7. Related Work

In previous work [17], we used JML to specify an electronic purse application
written in the Java Card dialect of Java. JML is a behavioural interface specification
language for Java [18]. Typestates can be regarded as JML abstract variables and,
therefore, JML tools can be used to simulate the typestate verification of specifica-
tions. However, JML does not provide support for the reasoning about access permis-
sions and JML’s support for concurrency is rather limited. The work presented here
is more complex than the work in [17], as it involves reasoning about the concurrency
properties of a system. A similar direction is taken in [19] with a formal framework to
model-check JML specification using the Bogor model-checker. The Plural group has
conducted several case studies to verify API protocols using DFA techniques [7]. By

27

contrast, our technique is able to analyze the specification for any possible concurrent
execution of programs implementing it, while the DFA analysis of Plural is designed
to study one program at a time. In [11], DeLine and Fahndrich use the Fugue protocol
checker on a relatively large .Net web based application. Like Plural, Fugue provides
support for typestate verification, however, reasoning is provided only in the case of
more restrictive Unique permissions.

Related techniques for formal verification of specifications include: In [20], the
requirements for the TCAS airborne, collision avoidance protocol formulated in RSML
were checked with SMV. The model checker builds a highly abstract model to avoid the
state-space explosion problem. The TLA™ specification of a Compaq multiprocessor
cache coherence protocol was verified in TLC to verify design. An “everything is a
set” approach to translating Z into SAL is presented in [21], but not fully automated
and applied only to small models. The Alloy analyser [22] supports a very expressive
language, but is not a temporal logic model checker. ProB [23] is an animator and
model checker for B specifications that can detect deadlocks and invariant violations.
The Verifast tool [24] provides support for verifying fractional permissions in a similar
fashion to Plural. Validating temporal properties of software has been proposed in [25]
and applied to Windows NT drivers. The technique, based on predicate abstraction, is
implemented in the SLAM toolkit. In [26], the Vault programming language is used
to describe resource management protocols that the compiler can statically enforce
through a certain order of operations for a given data object. In [27], the Bandera
Specication Language (BSL) based on assertions and pre/post conditions of methods,
is translated into the input of several model checkers such as Spin and NuSMYV, to
verify a variety of system correctness properties. In [28], a more expressive LTL¢
is proposed to verify high-level specification languages such as B, Z and CSP. The
model checker based on extended LTL® can query deadlock and partially explored
state spaces in an effective way. In a slightly recent work [29], a small specification
language PL that models business process, is translated into linear temporal formulas,
to check the deadlock freedom of interacting business processes of an airline ticket
reservation system. In another work [30], We have also used symbolic model checking
to check the locking mechanism of the Linux Virtual File System (VFS) by extracting
abstract models from the Linux kernel. Our work analyses specifications based on
access permissions and typestates, that according to best knowledge of authors is not
the subject of previous work. We apply our technique on a relatively large set of MTTS
specifications. The generated model also does not require any pre-processing overhead,
due to less syntactic sugar.

8. Conclusion and Future Work

The MTTS is a relatively large size commercial application that implements a
server with a thread pool that runs processing tasks. The specification and verifica-
tion of the MTTS was a challenging due to the scale and complexity of the application.
Overall, we specified and verified forty nine Java classes with 14451 lines of Java code
and 546 lines of program specifications written in Plural. Plural takes between a cou-
ple of milliseconds for the verification of small classes to a couple of minutes for the
verification of large classes. The code of the MTTS was not originally documented so

28

we needed to document it prior to its specification and verification. We kept the code of
the MTTS unchanged as much as possible and tried to keep the semantics of the code
intact whenever we introduced any changes to it.

This is the first case study on the use of Plural for the verification of a commercial
large sized application. Some of the limitations of Plural (see discussion in Section
3.5 for a full list) hampered our specification and verification work. Nonetheless, we
managed to specify and verify important design properties backing the implementation
of the MTTS application. The written typestate specifications can further be used to
generate a collection of documents describing the behaviour of the MTTS, which can
be used for the quality assurance team of Novabase for different purposes. Our expe-
rience provides evidence that typestate and permission-based verification tools, such
as Plural, can be practically applied to commercial software and can assure important
properties of the source code.

In order to overcome some of Plural’s limitations, particularly with respect to en-
suring that the specification is valid, we developed the Pulse tool. Pulse was able to
identify over a hundred previously unknown issues in the MTTS specification in the
form of unreachable states and methods. In addition, Pulse was able to show the ab-
sence of deadlock states. This experience suggests that Pulse can be a useful tool in
checking the consistency of specifications based on typestate and permissions.

Our study suggested a number of interesting directions for future work. As writing
program specifications for medium sized or large applications can be a laborious and
sometimes complex task, we are investigating inference of Plural specifications. Our
study showed that particularly in concurrent applications, it’s useful to keep track of
intermediate states that an object may go through while the object is executing. Plural
could be improved by an explicit specification construction indicating transition into
and out of these intermediate states. Finally, in the Eminium project [31] we are
investigating leveraging the permissions used in Plural not just for verification, but also
to parallelize code. Through further work in the area, we believe permissions will
prove to provide a solid foundation for specification, verification, and implementation
of robust concurrent software in the future.

References

[1] J. Boyland, J. Noble, W. Retert, Capabilities for sharing: A generalisation
of uniqueness and read-only, in: Proc. 15th European Conference on Object-
Oriented Programming, ECOOP, Springer-Verlag, London, U.K., 2001, pp. 2-27.

[2] J. Boyland, Checking interference with fractional permissions, in: Proceedings of
the 10th International Conference on Static analysis, SAS, 2003, pp. 55-72.

[3] C. Boyapati, R. Lee, M. C. Rinard, Ownership types for safe programming: pre-
venting data races and deadlocks, in: Proceedings of International Conference on
Object-Oriented Programming, Systems and Applications, OOPSALA, 2002, pp.
211-230.

[4] J. Vitek, B. Bokowski, Confined types, in: Proceedings of conference on Object-
Oriented Programming Systems and Applications, OOPSALA, 1999, pp. 82-96.

29

[5] The Plural Tool, http://code.google.com/p/pluralism/.

[6] I. Ahmed, N. Catafio, R. Siminiceanu, J. Aldrich, The Pulse tool, http://
poporo.uma.pt/~ncatano/Projects/aeminium/pulsepulse/pulse.php
(2011).

[7] K. Bierhoff, J. Aldrich, Modular typestate checking of aliased objects, in: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-Oriented Pro-
gramming Systems and Applications, OOPSLA, 2007, pp. 301-320.

[8] R.E. Strom, S. Yemini, Typestate: A programming language concept for enhanc-
ing software reliability, IEEE Transactions on Software Engineering (TSE) 12 (1)
(1986) pp. 157-171.

[9] P. Roux, R. Siminiceanu, Model checking with edge-valued decision dia-
grams, in: NASA Formal Methods Symposium (NFM), NASA/CP-2010-216215,
NASA, Langley Research Center, 2010, pp. 222-226.

[10] L. de Moura, S. Owre, N. Shankar, The SAL Language Manual, Tech. Rep. SRI-
CSL-01-02, CSL Technical Report (2003).

[11] R. DeLine, M. Féhndrich, The Fugue protocol checker: Is your software
baroque?, Tech. Rep. MSR-TR-2004-07, Microsoft Research (Jan. 2004).

[12] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1) (1987) pp. 1-101.

[13] I. Ahmed, N. Catafio, Architecture of Novabase’ MTTS application, Tech.
rep., The University of Madeira, http://www3.uma.pt/ncatano/aeminium/-
Documents_files/mtts.pdf (2010).

[14] C.-B. Breunesse, N. Catafio, M. Huisman, B. Jacobs, Formal methods for smart
cards: An experience report, Science of Computer Programming 55 (1-3) (2005)
53-80.

[15] N. Catafio, M. Huisman, Formal specification of Gemplus’ electronic purse case
study, in: L.-H. Eriksson, P. A. Lindsay (Eds.), Formal Methods Europe (FME),
Vol. 2391 of Lecture Notes in Computer Science, Springer-Verlag, Copenhagen,
Denmark, 2002, pp. 272-289.

[16] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logic Specifications, ACM Transaction on
Programming Languages and Systems (TOPLAS) 8 (2) (1986) pp. 244-263.

[17] N. Cataio, T. Wahls, Executing JML specifications of Java Card applications: A
case study, in: 24th ACM Symposium on Applied Computing, Software Engi-
neering Track, SAC-SE, Honolulu, Hawaii, 2009, pp. 404—408.

[18] G. Leavens, A. Baker, C. Ruby, Preliminary design of JML: A behavioral in-
terface specification language for Java, Software Engineering Symposium (SIG-
SOFT) 31 (3) (2006) pp. 1-38.

30

[19] Robby, E. Rodriguez, M. B. Dwyer, J. Hatcliff, Checking jml specifications using
an extensible software model checking framework, STTT 8 (3) (2006) 280-299.

[20] M. P. E. Heimdahl, N. G. Leveson, Completeness and consistency in hierarchi-
cal state-based requirements, IEEE Transactions on Software Engineering 22 (6)
(1996) 363-377.

[21] G. Smith, L. Wildman, Model checking Z specifications using SAL, in: 4th In-
ternational Conference of B and Z Users (ZB), Vol. 3455 of Lecture Notes in
Computer Science, 2005, pp. 85-103.

[22] D. Jackson, Alloy: Lightweight object modelling notation, ACM Transactions on
Software Engineering and Methodology 11 (2) (2002) 256-290.

[23] D. Plagge, M. Leuschel, Validating Z specifications using the ProB animator and
model checker, in: Integrated Formal Methods, Vol. 4591 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2007, pp. 480-500.

[24] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, F. Piessens, Veri-
fast: a powerful, sound, predictable, fast verifier for C and Java, in: Proceedings
of the Third international conference on NASA Formal methods, NFM, Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 41-55.

[25] T. Ball, S. K. Rajamani, Automatically validating temporal safety properties of
interfaces, in: Proceedings of the 8th international Workshop on Model checking
Software, SPIN, 2001, pp. 103-122.

[26] R. DeLine, M. Fihndrich, Enforcing high-level protocols in low-level software,
in: Proceedings of the ACM SIGPLAN 2001 conference on Programming Lan-
guage Design and Implementation, PLDI, 2001, pp. 59-69.

[27] J. C. Corbett, M. B. Dwyer, J. Hatcliff, Robby, Expressing checkable properties
of dynamic systems: the bandera specification language, International Journal on
Software Tools for Technology Transfer (STTT) 4 (2002) 34-56.

[28] D. Plagge, M. Leuschel, Seven at one stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more, International Journal on Software Tools
for Technology Transfer (STTT) 12 (1) (2010) 9-21.

[29] P. Y. H. Wong, J. Gibbons, Property specifications for workflow modelling, Sci-
ence of Computer Programming 76 (10) (2011) 942-967.

[30] A. Galloway, G. Liittgen, J. Miihlberg, R. Siminiceanu, Model-Checking the
Linux Virtual File System, in: Verification, Model Checking, and Abstract In-
terpretation (VMCALI), Savannah, GA, Vol. 5403 of Lecture Notes in Computer
Science, 2009, pp. 74-88.

[31] S. Stork, P. Marques, J. Aldrich, Concurrency by default: using permissions to
express dataflow in stateful programs, in: Proceedings of Onward!, 2009, pp.
933-940.

31

