
A Visualization for Software Project Awareness and Evolution

Roger M. Ripley, Anita Sarma and André van der Hoek
University of California, Irvine

Donald Bren School of Information and Computer Sciences
Department of Informatics

Irvine, CA 92697-3425 USA
{rripley,asarma,andre}@ics.uci.edu

Abstract

Real-time awareness of other developers’ activities
is a powerful tool to assist in coordination of developer
activities. Thus far, this type of awareness has focused
only on individual developers, with information regard-
ing individual artifacts provided in a contextualized
visualization. Here, we build upon our prior work, but
take a broader perspective: visualization and explo-
ration of workspace activity and evolution on a project-
wide basis. We believe this visualization helps project
managers who now have a comprehensive view of all
project activities, allowing them to intelligently steer
development and adjust task assignments. Developers
can also benefit from this high level view by under-
standing how their work relates with each other and
to the project as a whole. Another interesting aspect
of our work is that we can visualize the evolution
of workspaces—and the emergent project evolution—
either live or postmortem: since our tool stores all the
workspaces’ events, we can replay, stop, rewind, and
visually inspect the effort at any given point in time to
find trends, problems, and other patterns of interest.

1. Introduction

Coordination of development activities is one of
the core activities in a software development project.
Awareness tools, and their associated visualizations,
aim to support developers by arming them with aware-
ness of parallel activities, allowing them to self-
coordinate their actions by placing their work in the
context of others’ actions.

Some awareness tools (CVS watch [1],
COOP/Orm [2]) provide awareness of activities
taking place in the repository, while others take a
step further and provide workspace awareness by
informing developers of ongoing parallel changes

(State Treemap [3], Jazz [4], Palantı́r [5]). These
awareness tools generally provide information
regarding which artifacts are being changed by which
developers in parallel, along with other metadata for
the changes (e.g., when was the artifact changed, what
is the size of the change, would the change cause
any artifact in the local workspace to be out-of-sync).
Awareness information is either presented to the user
as separate visualizations or by embedding awareness
widgets in the development environment.

Workspace awareness tools tend to focus only on
needs of individual developers, with information re-
garding individual files provided in contextualized vi-
sualizations. While these tools do help developers in
identifying “remote” concurrent changes to artifacts
that are present in their “local” workspace, they fall
short in representing the full extent of parallel activities
of the entire team. None of these tools describe the
effect of the changes on other artifacts in the project,
the evolution of the system, or the development process
within a workspace. These tools are marginally useful
to a project manager looking for guidance in task
realignment or even confirmation of instincts.

While current workspace awareness tools are geared
solely toward the individual developer, there are
repository-based awareness tools. Some track system
evolution based on the lines of code (or other cal-
culated metrics) that have changed over time (Au-
gur [6], CVSscan [7], Seesoft [8], Spectrographs [9]).
Others visualize the overall structure of the system,
that is, the constituent classes and interfaces, from the
structural level (Ariadne [10], Evolution Matrix [11],
SeeSys [12]). However, since these tools gather their
information from the repository, they can only visu-
alize changes that have already been committed, with
no insight into what happened in the workspace itself
in between commits. There is a need for workspace
awareness tools that provide an overview of both past



and ongoing changes in workspaces for better handling
of project management.

In this paper, we build on our previous work to
provide an activity viewer that allows one to visualize
and explore workspace activities and their evolution
on a project-wide basis. The activity viewer is a three-
dimensional (3D) visualization tool that builds on the
underlying infrastructure of our research prototype,
Palantı́r, and its events [13]. The 3D visualization gives
an overview of all workspaces at the same time, from
the perspective of either developers or artifacts, while
simultaneously allowing the viewer to discern the loci
of activity, by placing the most important and relevant
data at the forefront of the visualization. We believe
that this view will help managers, who can now get a
comprehensive view of all project activities and adjust
task assignments if needed, and also developers, who
can benefit from the high level view and place their
work in the context of others’ activities. In addition to
showing the current state of a project, there is a movie-
like capability to replay past events, which can be used
for analysis of project dynamics and other forensics.
Visualizing this quantity of data may lead to scalability
issues, an issue which we address integrally through
the use of user-definable filters.

To test the behavior of our tool we ran it on five
open source projects, of which one will be discussed
later. Since we lacked real workspace activity data—
CVS has no provision to capture it—we simulated
actual workspace activities based on randomizations of
the patterns between the known check-outs and check-
ins. While this necessarily represents a limitation, it
allows us to make interesting observations regarding
the evolution of real projects in real settings. Our
next work, obviously, is aimed at instrumenting a real
project with our data collection tool, so that we will
be able to visualize accurate data regarding ongoing
changes in workspaces, rather than simulated data
between check-ins.

The remainder of this paper is organized as follows.
Section 2 discusses the approach we took to develop
the activity viewer visualization. Next, in Section 3,
we discuss the infrastructure on which we have based
this work. Section 4 delves into the implementation
of our workspace activity viewer. In Section 5 we
demonstrate two of the projects that our tool has
visualized. Finally, we conclude in Section 6 with an
outlook at future work.

2. Approach

Maletic, et al. [14] categorize software visualizations
via five dimensions: tasks, audience, target, represen-

tation, and medium. Our goal for the activity viewer
visualization was to be as malleable in each of those
categories as possible, so that the same visualization
can be used in a variety of situations.

The tasks of the visualization are three-fold. First,
the visualization should serve as a passive awareness
widget for a developer’s or manager’s desktop. Sec-
ond, the visualization should allow for analysis of the
present state of the system’s development. Third, the
visualization should allow for the history and evolution
of the system to be analyzed after the fact.

The audience of the visualization is everyone in-
volved with implementing a software project, from
coders to managers. We feel that having the same vi-
sualization for each stratum of the organization would
enable everyone involved in the project to gain a
shared understanding, as well as the ability to use the
visualization as a communication aid.

The target of the visualization is either workspace
data captured by awareness tools such as Palantı́r or
data mined from a software configuration management
repository.

The medium of the visualization ranges from a small
window in the corner of a developer’s or manager’s
desktop, to an entire monitor, to a wall-sized display.
Again, by having the same visualization usable across
a range of mediums maintains continuity as interaction
modes change.

The representation of the visualization should take
advantage of basic metaphors that are easily processed
by humans. This led us to choose a three-dimensional
representation, since a person can look over a cityscape
from a hill, and quickly pick out places of note,
skyscrapers, civic center, cathedrals, even though there
is an extreme amount of visual information presented
to them. From that same hill, the person can use
binoculars to see the faces of individuals conversing in
the marketplace. Our visualization consists of stacks of
cylinders: tall stacks arranged front-and-center rightly
command attention, while short stacks in the distance
are likely to be of little importance. Similar 3D spatial
layouts have been successfully employed for other
uses, such as Robertson, et al.’s Data Mountain for
web browser bookmarks [15].

3. Infrastructure

Our work in providing a 3D visualization for
workspace activities builds upon our existing infra-
structure for Palantı́r. In this section, we discuss the
important parts of Palantı́r (on the philosophy and
design of Palantı́r, see [5], [13]); in the next section, we



discuss how we have leveraged these parts in building
our solution.

Palantı́r is a workspace awareness tool based on the
hypothesis that conflicts in parallel development can be
considerably reduced, both in magnitude and number,
by providing developers with an insight into ongoing
project activities. Palantı́r does not supplant existing
software configuration management (SCM) systems,
but builds on top of them: collecting, distributing,
organizing, and presenting workspace information.

Palantı́r does not change the way users interact with
the SCM system. Instead, Palantı́r silently intercepts
the interactions of the developer with the repository
(e.g., check-in, check-out, synchronize), monitors the
activities of the developer in the workspace (e.g., edit,
save, local delete), and then transmits that information
to other “remote” workspaces via Palantı́r events.

4. Activity Viewer

Thus far, Palantı́r has focused on individual de-
velopers, with contextualized visualizations providing
awareness of activities that affect artifacts in the lo-
cal workspace. We believe such self-centered views
provide only a limited view of activities in a project
and that both developers and managers will benefit by
having an overview of all concurrent workspaces and
changes in each workspace.

Another limitation of current Palantı́r visualizations,
with respect to our objectives in this paper, is that
they only present the current view of project activities;
they do not depict any project evolution based on the
past activities in workspaces. It is well known that
managers generally monitor the state of the project
(e.g., when is the project stagnating, which parts are
changing concurrently, who is responsible for major
code changes) to better manage their project and teams.
As long check-out/check-in cycles hide potential con-
flicts, we believe a project management view that
visualizes the history and project dynamics will help
managers in making these kinds of decisions.

We have built a workspace activity viewer on top
of Palantı́r’s infrastructure that addresses these types
of issues by: (1) presenting an overview of the devel-
opment activities of the entire team, and (2) providing
insight into the evolution of the project.

4.1. Overview of Development Activities

The workspace activity viewer is a 3D visualiza-
tion that presents a snapshot of all ongoing changes
taking place in a set of workspaces at a particular
time, as shown in Figure 1. The visualization has

two primary modes: developer-centric and artifact-
centric, which we will discuss shortly. Common to
both modes, the visualization shows only active ar-
tifacts and workspaces, thereby eliminating the clut-
ter of inactive entities. Stacks of cylinders represent
workspace activities (changes to artifacts), with each
cylinder corresponding to a particular artifact in a
particular workspace with the dimensions representing
the size of the change (the bigger the change, the larger
the cylinder).1

In the developer-centric view (see Figure 1, in-
set), a stack of cylinders represents a developer’s
workspace with each cylinder representing an artifact
being changed in that workspace. Workspaces with
many activities correspond to tall stacks of cylinders.
The stacks of cylinders with the most recent changes
are placed in the front of the view and, as time elapses,
stacks for workspaces with “older” activity slowly start
moving to the back, representing dormancy. Thereby, a
user is able to quickly discern the loci of activities from
the height of the stacks and recency of these activities
from their position. The artifact-centric view (see Fig-
ure 1, bottom) behaves similarly to the developer view,
but instead each stack of cylinders represents a partic-
ular artifact and each cylinder in the stack represents
changes to that artifact made by a particular workspace.

For both views, a cylinder captures the state of an
artifact in a workspace at a particular moment in time:
it can represent either changes that have already been
committed to the repository or ongoing changes in
the workspace. Clicking on a cylinder displays meta-
information about the change (e.g., whether the change
is already committed or is in progress, the time of the
change, which workspace made the change, the name
of the artifact, and all the metrics generated as a result
of the change) in the left panel of the visualization.

To ensure that users notice changes in the view,
the cylinders slowly expand or contract to represent
increasing or decreasing changes to artifacts. The shade
of individual cylinders changes from dark to light
as their distance from the base increases. Differently
shaped stacks of cylinders represent different devel-
opment practices. For example, a workspace with a
large stack of small cylinders represents numerous
incremental changes to several artifacts simultaneously
(left workspace in Figure 2), whereas a single large
cylinder signifies a one-time large change to an artifact
(center workspace in Figure 2).

The view can be configured in a number of ways to

1. In the future, we plan to assign different metrics to each
dimension (height, width, and depth), e.g., the number of interfaces
that have changed, or the number of external references to methods
whose implementation has changed.



Figure 1. 3D Visualization in Artifact Mode; Developer Mode inset.

represent different facets of project activities. By de-
fault, stacks of cylinders that have a high occurrence of
activities (number of cylinders in a stack) are placed in
the center of the visualization to enable quick detection
of the center of activity in the team space, but the sort
conditions can be changed to show stacks of cylinders
with the largest cumulative changes in the center
(maximum volume), or cylinders with the single largest
change in the center (the largest cylinder in the stack).

4.1.1. Filters. A number of filters can be applied to the
view. Each filter has two options that can be applied to
a cylinder or a stack of cylinders: display and highlight.
Display determines if the entity will be shown to or
hidden from the user. Highlight, on the other hand,
visually accents the entity with a user chosen color and
optionally, if the entity is a stack, centers it in the visu-
alization. Table 1 gives a full overview of all possible
filters; here we discuss one representative example.

The artifact filter presents a tree view of the artifacts
in the project with the option to view, hide, or color
each artifact individually. The artifacts Copy.java,
Delete.java and Rename.java in Figure 2 are
highlighted in different colors: red, green and blue,
respectively. The top cylinders on both Ellen’s (right)
and Pete’s (left) stacks are green, signifying that both

developers are working on Delete.java. Similarly,
both Ellen’s bottom cylinder and Pete’s third cylinder
from the top are shaded red: both are working on
Copy.java. Pete’s second cylinder from the top is
shaded blue as he is the only developer working on
Rename.java. Pete’s bottom cylinder and Mike’s
only cylinder (center) are both shaded gray, indicating
that they were not matched by the filter. Even so,
a user could click on the cylinders to identify those
artifacts. Color coding artifacts allows users to quickly
trace which workspaces are changing specific artifacts.
Other filters are discussed in the context of the case
studies (Section 5).

4.1.2. Rotation. A drawback of the aforementioned
view is that, as changes age, the cylinders move to
the back. In situations with a large number of recent
changes, changes that have occurred in the past are
hard to discern behind cylinders for recent changes. To
alleviate this situation, the visualization can be rotated
about both the X and Y axes to better portray evolution
with respect to changes over time. The visualization
can be rotated about the X-axis to present an overhead
view of the activities in a set of workspaces (see Fig-
ure 3). This view represents recency of changes based
on the relative position of the stacks and concurrency



Table 1. Filters.

Artifact The artifact filter allows the user to hide or
highlight particular artifacts via a tree view of
the artifacts in the project. In artifact mode,
where each stack represents an artifact, the filter
affects an entire stack; otherwise, it affects only
individual cylinders.

Developer The developer filter allows the user to hide or
highlight particular developers by selecting them
from a list of all the developers in the project.
In developer mode, where each stack represents
a developer, the filter affects an entire stack;
otherwise, it affects only individual cylinders.

Age The age filter allows the user to set a matching
criteria based on if an artifact is older than
or newer than a certain relative time period to
current (e.g., two weeks ago). The filter only
applies to individual cylinders.

Absolute
Date

The absolute date filter is like the age filter, but
instead of the user choosing a time relative to
current, the user specifies a specific point in time
(e.g., July 7, 2007 10:30 AM). The filter applies
to individual cylinders.

Artifact
Pattern

The artifact pattern filter is similar to the artifact
filter, but instead of selecting from a tree view
of all the artifacts, the user is able to enter
regular expressions to match against artifact
names. This allows the user to hide or highlight
certain classes of artifacts (e.g., all graphics). In
artifact mode, the filter applies to entire stacks;
otherwise, it affects individual cylinders.

Event Type The event type filter allows the user to match
cylinders that were generated because of certain
event types (e.g., setting commits and changes
in progress to different colors). The filter only
applies to individual cylinders.

Parallelism The parallelism filter allows the user to highlight
artifact cylinders that are on the stacks of mul-
tiple developers, or hide those that are not. This
filter applies to individual cylinders in developer
mode and entire stacks in artifact mode.

based on the color gradient of the cylinders. Similar to
a shaded relief map, cylinders near the base are dark
and lighten as the stacks grow. In Figure 3, the three
artifacts on the bottom have recent changes (with the
furthest left being slightly less recent), while the two
on top have been changed in the past.

4.2. Awareness Widget

The visualization can be run as an awareness widget
in the corner of a developer’s or manager’s desktop—
or on a second display—so that they can passively
track the state of the project they are working on, and
notice when major activity is occurring. As shown
in Figure 4(a), the large stack in the center front of
the visualization represents an artifact being worked
on by multiple developers who are all making large
changes to it. The small stacks that surround it, while

Figure 2. Development styles with artifact filter.

Figure 3. Overhead view.

they also represent parallel work, represent changes of
much smaller magnitude. Figure 4(b) shows the same
project after the changes being made to that artifact
have been committed. The stack is now on the far left
and is drifting toward the back of the visualization as
the artifact becomes dormant.

4.3. Tracing Project Evolution

Project history information is critical for managers
to understand the dynamics of the project, the con-
tribution and responsibilities of individual developers,
and the health of the project. Typically, managers
track project dynamics using tools that are not geared
toward this use: bug trackers, email archives, as well
as personal experience and memory.

Palantı́r stores the history of all the workspace ac-
tivities in a separate database. The workspace activity
viewer takes advantage of this to give the user a
movie-like ability to replay, pause, rewind, and visually
inspect the project at any given point in time to find



(a) Actively developed artifact with large changes
is positioned in the center front.

(b) Artifact moves to side (left) and toward the rear
as changes are committed and activity stops.

Figure 4. Visualization as awareness widget.

trends, problems, and other patterns of interest. This
playback can either be a continuous animation or in
discrete steps. The history can be played backward or
forward in time, and the period of time that needs to
be visualized can be limited by either using the age or
absolute date filters.

Certain obvious uses of being able to see the project
evolution are to gain understanding regarding when
the project was stagnating, when there were flurries
of activity (can signify potential conflict zones), and
which artifacts have been changed multiple times or
by multiple developers (can signify unstable artifacts).
This information can in turn allow managers to un-
derstand which artifacts are the cornerstones in the
project and are used by most developers, whether task
assignments were clear or should be revised, which
developers contribute more, and so forth. Effects of
external factors (e.g., hiring, termination, team refac-
toring and new management) on the project can also
be observed by correlating the activities in the project
space with the specific events.

When being used to analyze project evolution, run-
ning the visualization on multiple large high-resolution
displays, or even wall-sized displays, may be neces-
sary. As will be shown later in Figure 6, there can be
many stacks being shown simultaneously, especially
when using the visualization in artifact mode.

5. Case Studies

To test the behavior of our tool we ran it on five
open source projects, listed in Table 2. We discuss two
of those projects, FreeMind and Gaim, in Sections 5.1
and 5.2, respectively. The only data available was what
was contained in the CVS repository. Since we lacked
workspace activity data, we simulated workspace ac-
tivities between check-outs and a check-ins.

Table 2. Summary of projects visualized.

Project Name Developers Artifacts Events
ArgoUML [16] 15 1635 483,026

FreeMind [17] 5 637 151,490

Gaim [18] 22 1861 1,180,192

jEdit [19] 8 1431 450,732

Scarab [20] 37 2305 884,030

To generate the simulation data, we used the CVS
metadata for each commit (who, when, and how much
changed) to establish points of known state for each
artifact. Before each of these check-ins, we generate
events indicating that the artifact is being changed by
the developer who checked it in, with the frequency
and severity (magnitude of change) increasing as the
commit time approaches. As a result, our simulation
is accurate at commits, and plausible in between.

5.1. FreeMind

FreeMind [17] is mind-mapping software which,
in essence, allows one to organize knowledge and
thoughts. With the FreeMind project we were able to
witness the evolution of the project from creation by
one developer, to stagnation, to revitalization as new
developers took the lead.

FreeMind’s first commit took place in August 2000.
Through September 2001, the creator of FreeMind,
ponder (Jörg Müller), worked alone on the project.
Figure 5(a) shows an example of that pattern from
April 2001. There is only one stack, ponder’s. There is
an active age filter highlighting artifacts in green that
have been modified within the previous month, and
the stack is about two-thirds green. From September
2001 until October 2003, there was no activity on the
project, as show in Figure 5(b); the stack is at the rear
of the field, and all the artifacts have reverted to gray.
At the end of October 2003 two new developers start
contributing to the project, as shown in Figure 5(c).
sviles (Stephen Viles) contributes primarily graphics—
this is his only major contribution to the project.
christianfoltin (Christian Foltin), who will turn out to
be a major force in the development of FreeMind, is
just starting to contribute. Both their stacks are solid
green and at the front of the field. By March 2004,
christianfoltin has indeed become the dominant force
in the project, confirmed in Figure 5(d). His stack is
the only stack at the front of the field, is the tallest
stack by far, and is over half green—indicating active
work on many artifacts. We were also able to correlate
these observations to the “authors and contributors”



(a) April 2001 (b) March 2003 (c) November 2003 (d) March 2004

Figure 5. Evolution of the FreeMind project.

section of the FreeMind website which documents who
worked on the project for each version [17].

5.2. Gaim

Gaim [18] is a multi-protocol instant messaging
client. Figure 6 shows the Gaim project in May 2005.
An artifact pattern filter is highlighting C header files
(.h) in green, C source files (.c) in red, and graphics
(primarily pixmaps: .xpm) in yellow. Figure 6(a) has
no additional filters, and is fundamentally unusable due
to the vast amount of artifact piles being shown—the
visualization even exceeds the bounds of the display.
In Figure 6(b), we add an age filter to remove ev-
erything that has been stagnant for two months. This
starts to become useful, but noticing parallel work is
still difficult. Therefore, in Figure 6(c), we add the
parallelism filter, only showing artifacts that have been
worked on by more than one developer during that time
period. There are 34 artifacts involved in parallel work.
Even though it is difficult to see in Figure 6(c), each
of the artifact stacks consist of at least two developer
segments, as in the zoomed insets. If you look closely
you can even see a recurrent pattern of a small change
accompanying a larger one. These artifacts would be
a starting point for a manager looking for duplicated
work, or for testers looking for errors manifesting from
indirect conflicts.

6. Conclusions and Future Work

In this paper, we presented a prototype of a 3D visu-
alization for workspace activity. Our work contributes
a visualization that, unlike previous work focused on
visualizing the state of repositories, focuses exclusively
on visualizing the state of workspaces. This visualiza-
tion shows only active workspaces and artifacts and

depicts activities as changes to artifacts. Each change
to an artifact is denoted as a cylinder, and stacks
of such cylinders represent activities in a particular
workspace (developer-centric) or activities carried on
in different workspaces to a specific artifact (artifact-
centric). We applied the visualization to several open-
source projects and demonstrated project evolution and
other interesting situations.

Our future work will address three concerns: scala-
bility, utility, and actual use. With respect to scalability,
we will migrate the activity viewer to a small tiled
display so we are able to visualize large projects in
their entirety. For utility, we will update the filters to
match sequences of events that occur over a period of
time, instead of only single events and immediate state.
With respect to actual use, we are in the process of
hooking the activity viewer into the workspace events
of a real distributed development environment.

Acknowledgments

Effort partially funded by the National Science
Foundation under grant numbers CCR-0093489, IIS-
0205724, and IIS-0534775. Effort also supported by an
IBM Eclipse Innovation grant and an IBM Technology
Fellowship.

References

[1] B. Berliner, “CVS II: Parallelizing software develop-
ment,” in USENIX Winter 1990 Technical Conference,
1990, pp. 341–352.

[2] B. Magnusson and U. Asklund, “Fine grained version
control of configurations in COOP/Orm,” in Sixth In-
ternational Workshop on Software Configuration Man-
agement, vol. 1167, 1996, pp. 31–48.



(a) Artifact pattern filter. (b) Artifact pattern filter & age filter.

(c) Artifact pattern filter, age filter & parallelism filter.

Figure 6. Parallel work in the Gaim project.

[3] P. Molli, H. Skaf-Molli, and C. Bouthier, “State
treemap: an awareness widget for multi-synchronous
groupware,” in International Workshop on Groupware,
2001.

[4] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson,
“Jazzing up Eclipse with collaborative tools,” in 18th
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
/ Eclipse Technology Exchange Workshop, Anaheim,
California, 2003, pp. 102–103.

[5] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantı́r:
Raising awareness among configuration management
workspaces,” in 25th International Conference on Soft-
ware Engineering, Portland, Oregon, 2003, pp. 444–
454.

[6] J. Froehlich and P. Dourish, “Unifying artifacts and
activities in a visual tool for distributed software de-
velopment teams,” in 26th International Conference
on Software Engineering, Edinburgh, United Kingdom,
2004, pp. 387–396.

[7] L. Voinea, A. Telea, and J. J. van Wijk, “CVSscan: visu-
alization of code evolution,” in SoftVis ’05: Proceedings
of the 2005 ACM symposium on Software visualization,
2005, pp. 47–56.

[8] S. G. Eick, J. L. Steffen, and E. E. Summer, Jr.,
“Seesoft—a tool for visualizing line oriented soft-
ware statistics,” IEEE TSE, Special issue on software
measurement principles, techniques, and environments,
vol. 18, no. 11, pp. 957–958, 1992.

[9] J. Wu, R. C. Holt, and A. E. Hassan, “Exploring
software evolution using spectrographs,” in WCRE ’04:
Proceedings of the 11th Working Conference on Re-
verse Engineering (WCRE’04), Washington, DC, 2004,
pp. 80–89.

[10] E. Trainer, S. Quirk, C. de Souza, and D. Redmiles,
“Bridging the gap between technical and social de-

pendencies with Ariadne,” in eclipse ’05: Proceedings
of the 2005 OOPSLA workshop on Eclipse technology
eXchange, 2005, pp. 26–30.

[11] M. Lanza, “The evolution matrix: Recovering software
evolution using software visualization techniques,” in
2001 International Workshop on the Principles of Soft-
ware Evolution, 2001, pp. 28–33.

[12] M. J. Baker and S. G. Eick, “Space-filling software
visualization,” Journal of Visual Languages and Com-
puting, vol. 6, no. 2, pp. 119–133, 1995.

[13] A. Sarma and A. van der Hoek, “Visualizing parallel
workspace activities,” in IASTED International Confer-
ence on Software Engineering and Applications (SEA),
Marina Del Rey, California, 2003, pp. 435–440.

[14] J. I. Maletic, A. Marcus, and M. L. Collard, “A task
oriented view of software visualization,” in VISSOFT
’02: Proceedings of the 1st International Workshop on
Visualizing Software for Understanding and Analysis,
2002, pp. 32–40.

[15] G. Robertson, M. Czerwinski, K. Larson, D. C. Rob-
bins, D. Thiel, and M. van Dantzich, “Data mountain:
using spatial memory for document management,” in
UIST ’98: Proceedings of the 11th annual ACM sympo-
sium on User interface software and technology, 1998,
pp. 153–162.

[16] Tigris.org, “ArgoUML: Project home,” http://argouml.
tigris.org/, 2005.

[17] FreeMind Project, “FreeMind: free mind mapping soft-
ware,” http://freemind.sourceforge.net/, 2005.

[18] Gaim Project, “Gaim: A multi-protocol instant messag-
ing (IM) client,” http://gaim.sourceforge.net/, 2005.

[19] jEdit Project, “jEdit: Programmer’s text editor,” http:
//www.jedit.org/, 2005.

[20] Tigris.org, “Scarab: Project home,” http://scarab.tigris.
org/, 2005.


