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1 IntroductionLet G = (V;E) be an undirected graph. Each assignment of non-negative weights to the edges of Gnaturally de�nes a metric space (V; �),1 where for each pair of vertices x; y 2 V , �(x; y) = dG(x; y)is the shortest-path distance between them. We say that the metric � is supported on (or generatedby) G. Let (S; �) be another metric space. An embedding of G into (S; �) is a mapping � : V ! S.The distortion of � is the smallest value c � 1 such thatdG(x; y) � �(�(x); �(y)) � c dG(x; y) 8x; y 2 V:Thus the distortion measures the maximum factor by which any distance is stretched in the em-bedding. (This is a slightly restricted de�nition, in which we assume that no distances are shrunk.See Section 2 for a general de�nition.)In recent years, the idea of embedding a graph into a \nice" metric space with low distortion hasemerged as a useful ingredient in the design and analysis of algorithms in a variety of domains.\Nice" metric spaces are those with well-studied structural properties, such as Euclidean or `1space, or weighted trees and distributions over them. A very incomplete list of applications includesapproximation algorithms for graph and network problems, such as sparsest cut [26, 2], minimumbandwidth [17, 8], low-diameter decompositions [26], and optimal group Steiner trees [19, 10], andonline algorithms for metrical task systems and �le migration problems [4, 6]. These applications,together with its intrinsic mathematical interest, have made the study of low-distortion embeddingsa signi�cant �eld in its own right.Most of the embeddings considered in the literature, notably [9, 4, 26], have been for metricssupported on general graphs, and give results that bound the worst-case distortion over all graphs.However, when the input graph has some special structure, it is plausible that better embeddingscan be found. This is quite intuitive: it is clear that any metric is generated by the complete graphon its points, while only a very limited set of metrics can be generated by weighting the edgesof, say, a tree. Thus the complexity of a metric generated by a graph G intrinsically depends onthe topology of G. At present, very little is known about this interplay between the topologicaland metrical properties of the graph; the search for connections between the two is emerging asan intriguing and challenging area. This paper focuses in particular on the relationship betweenthe topology of graphs and their optimal (or near-optimal) embeddings into `1 (i.e., real space ofarbitrary dimension endowed with the `1 metric).Embeddings into `1 have been widely studied, and are of special importance due to their intimateconnection with the problem of �nding a sparsest cut in multicommodity 
ow networks, which inturn is a key ingredient in approximate solutions of many other problems in such areas as VLSIlayout, network routing and eÆcient simulations of one network by another (see, e.g., [7, 25, 23]).Although �nding the exact sparsest cut is a computationally hard problem, eÆcient approximationalgorithms for it can be obtained by embedding a natural metric associated with the optimalmulticommodity 
ow into `1; the approximation ratio depends essentially on the distortion.One motivation behind this paper is the intriguing conjecture that any metric supported on a planargraph (henceforth called a planar metric) can be embedded into `1 with constant distortion. More1More correctly, a semi-metric space, since we allow �(x; y) = 0 even when x 6= y.2



generally, we conjecture that this holds for any family of graphs which excludes a �xed minor.There is some evidence to suggest that planar metrics are better behaved than general metrics withrespect to `1-embeddability. In an interesting recent development, Rao [33] has given an O(plog n )-distortion embedding of n-point planar metrics into `1, while the lower bound for general metrics is
(log n). This result, and the decomposition lemma of [22] on which it is based, attest to the specialstructure of planar metrics. Further evidence for this is provided by Konjevod et al., who haveshown that any planar metric can be embedded with a distortion of O(log n) into a distributionover dominating tree metrics [24], while the best known upper bound for general metrics is stillO(log n log log n) [5].Despite this promise, current techniques are apparently inadequate to resolve the above conjecture.For embeddings into `1, a celebrated result of Bourgain [9] tells us that any metric supported onan n-vertex graph (i.e., any metric on n points) can be embedded into `1 with distortion O(log n);unfortunately, the embedding technique is not sensitive to the topology and incurs a 
(log n)-distortion even for the metric generated by the unit-weighted path Pn. Similarly, the method ofKonjevod et al. of �nding distributions over dominating trees is limited by a lower bound of 
(log n)for embedding the n� n grid [1, 24]. Lastly, Rao gives embeddings into `1 by �rst embedding into`2, an approach that is limited by a lower bound of 
(plog n ) for embedding even series-parallelgraphs into `2 [27].In this paper, we systematically explore how the topology of a graph a�ects the distortion in-curred by `1-embeddings of metrics supported on it. Using the intimate connection between `1-embeddability of metrics supported on a graph and multicommodity 
ow problems de�ned on it,one can show that graphs all of whose metrics are isometrically embeddable into `1 (i.e., embed-dable with distortion 1) are exactly the graphs which exclude K2;3 as a minor, which essentiallycorresponds to the class of outerplanar graphs. This fact, which rests on a theorem of Okamura andSeymour [29], is our starting point. As a natural next step, we consider the family of graphs whichhave K4 as an excluded minor. These are graphs with treewidth 2, and essentially correspond tothe familiar class of series-parallel graphs. Our �rst main result is an explicit `1-embedding of thesegraphs with small constant distortion. This is the �rst natural family known to have a constantdistortion strictly bigger than 1. In addition, our construction implies a simple polynomial timealgorithm for �nding a sparsest cut within a constant factor of optimal in series-parallel graphs. Ina similar vein, we also show that any family of graphs with bounded Euler characteristic can beembedded into `1 with constant distortion. The technique we use for these results is to explicitlyconstruct a set of cut metrics whose sum approximates the original graph metric very closely. Cutmetrics arise naturally in the study of `1-embeddability since any `1-embeddable metric2 can berepresented as a sum of cut metrics with non-negative coeÆcients, and vice versa [15].We then go on to study the approximation of a metric by a probability distribution over (domi-nating) tree metrics. Since tree metrics are `1-embeddable (and so are their non-negative combi-nations), this gives us an alternative to the cut metrics approach. Furthermore, embeddings basedon such metrics have proved particularly easy to work with, and possess additional properties thathave been exploited in devising approximation algorithms and online algorithms for many problems(see, e.g., [4, 6, 3, 19, 36, 10, 12]). It is natural to ask if we can obtain the above embeddabilityresults for outerplanar and series-parallel graphs using these more restricted metrics. The answers2We shall use the unquali�ed term \`1-embeddable" to mean \isometrically embeddable into `1".3



are mixed. On the one hand, we show that this is possible for outerplanar graphs, at a small cost:we give an explicit embedding for such graphs into a distribution over dominating tree metrics withdistortion 8 (compared to distortion 1 obtained using cuts). On the other hand, we prove a comple-mentary negative result by exhibiting a family of series-parallel graphs for which any distributionover dominating tree metrics must necessarily incur a distortion of 
(logn).Thus we see that the tree metrics approach breaks down at a surprisingly early stage (even forgraphs of treewidth 2), which suggests that such embeddings by themselves o�er little hope forexploring the �ner structure of `1-embeddings. However, our results also indicate that combiningdominating tree metrics with cut metrics is a potentially powerful technique. Indeed, the graphswhich give the lower bound for tree embeddings mentioned above can be shown to have extremelysimple `1-embeddings using cuts. Combining these cut metric embeddings with tree embeddings ina careful fashion leads us to an alternative constant distortion embedding for series-parallel graphs.The organization of the paper closely follows the above outline. After a short section containingsome de�nitions and notation, we brie
y illuminate the connection between 
ows and `1-embeddingsin Section 3. The embeddings of series-parallel graphs and graphs with small Euler number aredescribed in Section 4. Finally, in Section 5, we present our positive and negative results onembeddings into tree distributions, as well as the alternative embedding for series-parallel graphs.2 De�nitions and notationMetrics: Let X be a set. A function d : X �X ! R+ is called a semi-metric if it is symmetric,i.e., d(x; y) = d(y; x) for all x; y 2 X, and d(x; x) = 0 for all x 2 X, and also satis�es the triangleinequality, i.e., d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X. If, in addition, d(x; y) = 0 holdsonly when x = y, then d is a metric. In this paper, we shall only consider �nite semi-metrics.The number of points will usually be denoted by n. Without risk of confusion, the distinctionbetween metrics and semi-metrics may sometimes be blurred. For more details on many of themetric concepts used here, see the book of Deza and Laurent [15].Given two metric spaces, (V; �) and (W;�), and a map f : V !W , de�ne the following quantities:kfk = maxx;y2V �(f(x); f(y))�(x; y) ;kf�1k = maxx;y2V �(x; y)�(f(x); f(y)) :We say that f has contraction kf�1k, expansion kfk and distortion D(f) = kfk � kf�1k. We saythat (W;�) r-approximates (V; �) (or that the distortion between � and � is at most r) if thereexists a map f : V ! W with D(f) � r. Often we shall consider two distance functions � and �over the same vertex set V . In such cases, we shall assume that f is the identity map. Also, � willbe said to dominate � if for all x; y 2 V , �(x; y) � �(x; y).Let G = (V;E) be an undirected graph. A metric (V; �) is supported on (or generated by) G if it isthe shortest path metric of G w.r.t. some non-negative weighting of the edges E. Unless speci�ed4



otherwise, we shall assume that the edge-weights w(�) satisfy w(e) = �(e), where � is the shortest-path metric of G with weights w. Observe that if it is not the case, the edge e can be removedwithout a�ecting the metric; such an e will be called redundant.For a set S � V , the cut metric ÆS on V is de�ned by ÆS(x; y) = 1 if jS\fx; ygj = 1, and ÆS(x; y) = 0otherwise. An important observation is that the `1-embeddable metrics on V are precisely thosemetrics which can be written as a sum of cut metrics on V with non-negative coeÆcients [15]. Oneimplication of this is that if two metrics �1 and �2 on the same underlying set are `1-embeddable,then so is their sum �1 + �2.Finally, we use the following simple observation throughout the paper: if each block (i.e., bicon-nected component) Gi of a graph G can be embedded into `1 with distortion Di, then G can beembedded into `1 with distortion maxiDi. This immediately implies, in particular, that any metricsupported on a tree T can be embedded isometrically into `1. (For a more direct proof of thislatter fact, let (Se; �Se) be the cut obtained by deleting an edge e in T ; it can be veri�ed that� =Pe2T dT (e) � ÆSe is isometric to the tree metric dT [15, Prop.11.1.4].)Multicommodity 
ows: A multicommodity 
ow network (V;E; P ) is speci�ed by an undirectedgraph G = (V;E), where E is the set of edges along which 
ow can be routed, and a set P ofunordered pairs of vertices in V between which demands can be placed. In the unrestricted case,where P consists of all pairs of vertices, we shall omit explicit mention of P and refer to the networksimply as G = (V;E). Assigning non-negative capacities C to the graph edges E and demands Dto the pairs P gives us a particular instance (V;C;D) of the multicommodity 
ow problem. Forbackground, see the survey by Shmoys [35].The optimal solution to this problem is the maximum value � such that there is a multicommodity
ow f respecting the edge capacities that satis�es a �-fraction of each demand. We shall refer to� as MaxFlow(V;C;D). Its value (as well as an actual 
ow f which realizes it) can be found inpolynomial time by linear programming.A closely related problem is the sparsest cut problem, which entails �nding a partition (A;A) of Vthat minimizes the ratio �(A) = Capacity(A;A)Demand(A;A) = C � ÆAD � ÆA :(To make sense of the inner products, note that C;D and the cut metric ÆA can all be viewed aselements of the vector space R(n2).) We shall refer to � = minA �(A) as MinCut(V;C;D).In the sequel it will be convenient to use the following identities (see, e.g., [26] or [15, page 135] forthe proofs):MaxFlow(V;C;D) = minÆ2M(V ) C � ÆD � Æ ; MinCut(V;C;D) = minÆ2M1(V ) C � ÆD � Æ ; (2.1)where M(V ) is the set (in fact, a convex cone) of all metrics over V , and M1(V ) is the set (again,a convex cone) of all `1-embeddable metrics over V . As M1(V ) �M(V ) (the inclusion being strictfor V of size � 5), it is always the case that MaxFlow � MinCut.5



In contrast with the case when there is just one commodity, the MinCut is not equal to the MaxFlowin general. The ratio 
 � 1 between the MinCut and the MaxFlow is called the gap of the instance(V;C;D). From the computational point of view, computing the value of the MinCut (and hencealso the value of 
) is an NP-hard problem.Graphs and Minors: An outerplanar graph G is a planar graph with an embedding in the planeso that every vertex lies on the outer (unbounded) face. A series-parallel graph G = (V;E) withterminals s; t 2 V is either a single edge fs; tg, or a series combination or a parallel combinationof two series-parallel graphs G1 and G2 with terminals s1; t1 and s2; t2. The series combination ofG1 and G2 is formed by setting s = s1, t = t2 and identifying s2 = t1; the parallel combination isformed by identifying s = s1 = s2, t = t1 = t2.The graph G = (V;E) has an H-minor if there exists a sequence of edge-deletion and edge-contraction operations on G which results in a graph G0 that is isomorphic to H. Note that eachvertex of G0 corresponds to a (connected) set of vertices of G which were contracted to it. ForU � V , we say that G has an H-minor w.r.t. U if it has an H-minor G0 such that for every vertexof G0, the corresponding set of vertices of G contains a vertex from U . Finally, we say that G isH-free (w.r.t. U) if it has no H-minor (w.r.t. U).It is well known that K4-free graphs are those whose blocks are series-parallel graphs [16, p.185],and that K2;3-free graphs are those whose blocks are either outerplanar or isomorphic to K4 [16,p.81].Finally, the Euler number of an undirected connected graph G is de�ned as �(G) = jE(G)j �jV (G)j + 1. (Throughout this paper, the symbol �(G) denotes the Euler number and not thechromatic number.)3 Multicommodity 
ows, metrics and graphsMulticommodity 
ows have long been an object of study in combinatorial optimization (see [18]for a historical survey). The classical theory was concerned mainly with the following question:Under what conditions on the 
ow network (V;E; P ) is the MaxFlow equal to the MinCut for everysetting of capacities C and demands D? As it turns out, this question is equivalent to the followingquestion concerning the `1-embeddability of metrics: What are the conditions on (V;E; P ) suchthat, for every metric � supported on G = (V;E), there exists an `1-embeddable metric � on Vsuch that � dominates �, and � = � on P ? [34, Section 3]In light of this equivalence, the classical results about 
ows (in cases where the gap 
 = 1) haveconsequences for `1-embeddability and vice versa. For instance, a well-known theorem due toOkamura and Seymour [29] says that if G = (V;E) is a planar graph with outer face F , and Pconsists only of pairs of vertices in F , then the MaxFlow and MinCut are equal for all instantiationsof C and D. Taking G = (V;E) to be an outerplanar graph, letting P consist of all pairs in V andusing the above equivalence, we can infer that all metrics supported on outerplanar graphs can beisometrically embedded into `1. (See also [14] for a direct argument.)To state this and other such results succinctly, let us introduce some notation. For a metric �, let6



c1(�) be the minimum distortion between � and �, where � ranges over all `1 metrics, and let c1(G)be the maximum value of c1(�) for all metrics � supported on G. Hence, we have just seen thatc1(G) = 1 for every outerplanar graph G.In fact, this turns out to be almost a characterization of graphs G with c1(G) = 1. The fullpicture is that c1(G) = 1 i� G is K2;3-free. On the one hand, as mentioned earlier, each block ofa K2;3-free graph is either outerplanar or isomorphic to K4, and a graph is `1-embeddable i� eachof its blocks is. We have already seen that outerplanar graphs are `1-embeddable; it is also wellknown that the same holds for any metric on four points [15, Example 11.1.8]. Thus, for everyK2;3-free graph G, c1(G) = 1. Conversely, it is well known that the metric of the unit-weightedK2;3 is not `1-embeddable [15, Example 6.3.2]. Now if G has a K2;3-minor, consider the sequenceof edge contractions and deletions which turn G into K2;3. Assigning1 to each deleted edge, 0 toeach contracted edge, and 1 to the remaining edges, we obtain a semi-metric supported on G andcoinciding (as a metric space) with that of the unit-weighted K2;3. Thus, c1(G) � c1(K2;3) > 1.Hence we have the following characterization:Proposition 3.1 The class of graphs for which c1(G) = 1 is exactly the class of K2;3-free graphs.Much recent research on multicommodity 
ows has been directed towards the case where equalitydoes not hold, and to �nding good bounds on the ratio 
 between the MinCut and the MaxFlow.This study was pioneered in the paper of Leighton and Rao [25], and the results presented therewere extended in a long sequence of papers by several authors (see [35] for a detailed account). Thebest results known [26, 2] show that for any 
ow network (V;E; P ), the gap between the MaxFlowand the MinCut can never be more than O(log jP j), and hence O(log n). This bound is tight whenG = (V;E) is a constant-degree expander, all edge capacities are unity and there is unit demandbetween all pairs of vertices. Better results have been obtained for planar graphs, showing that insuch graphs the gap 
 never exceeds O(plogn ) [33], and in fact is bounded by a constant in thespecial case of uniform demands [22].An intimate relationship between the gap 
 and c1(G) holds even in the case where the MaxFlowis not equal to the MinCut, and provides a compelling motivation for studying the quantity c1(G).Theorem 3.2 For any graph G = (V;E), the worst possible gap 
 attained by a multicommodity
ow problem on G is exactly c1(G).Proof: The direction 
 � c1(G) was shown already in [26]. Indeed, by de�nition of c1, for everymetric � supported on G, there exists an `1-embeddable metric Æ which distorts � by at most c1(G).But then, by de�nition of distortion, C�ÆD�Æ � c1(G) C��D�� , and in view of (2.1) we are done.For the other, apparently new, direction 
 � c1(G), it will be convenient to use an equivalent dualde�nition of c1(�) for a metric � on V :c1(�) = max(C;D) D � �C � � ; (3.2)where the maximum is taken over all non-negative vectors C;D indexed by ordered pairs of verticesof V which satisfy the restriction D�ÆC�Æ � 1 for any `1-embeddable metric Æ on V . The proof ofthis equality follows from general facts about convex cones, and is deferred to the appendix.7



By this dual de�nition, there exists a metric � supported on G, and non-negative vectors C;D �R( jV j2 ), such that D��C�� = c1(G), while for any `1-embeddable metric Æ we have D�ÆC�Æ � 1 . Firstwe claim that, without loss of generality, one may assume that C vanishes outside E(G). Indeed,assume that for some pair of vertices fi; kg 62 E(G), the value C(i; k) is strictly positive. Since �is supported on G, there exist edges e1 = (j0; j1); e2 = (j1; j2); :::; eq = (jq�1; jq) in G such thatj0 = i; jq = k and �(j0; jq) = �(j0; j1) + :::+ �(jq�1; jq). De�ne a new vector C 0 byC 0(i; k) = 0;C 0(jr�1; jr) = C(jr�1; jr) + C(i; k) for each r = 1; 2; ::q, andC 0(u; v) = C(u; v) otherwise.Now, the pair C 0;D can replace the pair C;D in the above de�nition of c1(G). Clearly, for anymetric Æ on V we have C 0�Æ � C �Æ; in particular, for any `1-embeddable Æ we have (D � Æ)=(C 0 � Æ) �(D � Æ)=(C � Æ) � 1 , as required by (3.2). On the other hand, for �, the \worst" metric supportedon G, we have the equality C 0 � � = C � �, and thus (D � �)=(C 0 � �) = (D � �)=(C � �) = c1(G) .Repeating this updating procedure for all non-edges of G, we arrive at a vector C that vanishesoutside E(G).Employing such a pair C;D and bearing in mind the de�nitions of MinCut and MaxFlow given in(2.1), we conclude that
 � 
(V;C;D) = MinCut(V;C;D)MaxFlow(V;C;D) � minÆ2M1(V )(C � Æ)=(D � Æ)(C � �)=(D � �) � D � �C � � = c1(G) :Recall that by Proposition 3.1, the graphs for which c1(G) = 1 are exactly the K2;3-free graphs.It is no coincidence that this characterization involves excluded minors. Observe that the graph-theoretic function c1 is minor-monotone, i.e., if H is a minor of G than c1(G) � c1(H). Indeed,edge deletion corresponds to assigning the edge the value1, while edge contraction corresponds toassigning it the value 0. The principal consequence of this observation is that Fc, the family of allgraphs G with c1(G) � c, is minor-closed for any c. Hence, by a celebrated theorem of Robertsonand Seymour, any Fc can be characterized in terms of forbidden minors (see, e.g., [16, Cor.12.5.3]).Another consequence of monotonicity of c1(G) is that the set fc1(G)g � R where G ranges over all�nite graphs, contains no in�nite descending sequence. Indeed, assume that c1(G1) > c1(G2) >c1(G3) > ::: is an in�nite descending sequence. By a theorem of Robertson and Seymour, theremust exist Gi and Gj with j > i such that Gi is a minor of Gj (see, e.g., [16, Thm.12.5.2]),contradicting the monotonicity of c1. In particular, every point of fc1(G)g contains a unique \nextto the right" point. Currently, we only know that the smallest point of this set is 1, and the secondsmallest is c1(K2;3), which can be shown to be 4=3.An intriguing conjecture, and one of the main motivations behind this paper, is that for any non-trivial minor-closed family F of graphs, there exists a constant cF � 1 such that for all G 2 F ,c1(G) � cF .The results in the next section provide some evidence in support of this conjecture. We considerthe next natural minor-closed class of graphs containing K2;3, namely the class of series-parallel8



graphs, and show that they are `1-embeddable with constant distortion. In addition, we bound thedistortion c1(G) of a graph in terms of its Euler characteristic alone, and thus establish an in�nitesequence of natural minor-closed families with constant distortion, namely those with boundedEuler characteristic.4 Constant-distortion embeddings for some graph familiesIn this section, we shall present explicit constant-distortion embeddings into `1 of the natural minor-closed families of series-parallel graphs, and of graphs with bounded Euler characteristic. Theseare the �rst non-trivial results exhibiting (necessarily) non-isometric embeddings of graph familieswith constant distortion.4.1 Series-parallel graphsOur goal will be to show that any metric supported on a series-parallel graph is embeddable in`1 with constant distortion. In fact, our argument is presented for the slightly more general classof treewidth-2 graphs, i.e., graphs whose blocks are series-parallel graphs. Recall that this is aminor-closed family with K4 as the excluded minor. We have not attempted to achieve the bestpossible constant distortion, which we believe is rather less than the value of (just under) 14 shownhere.Theorem 4.1 Let G = (V;E) be a weighted graph with treewidth 2, and let � = �G be the metricinduced by the edge weights of G. Then there exists an `1-embeddable metric e� and a constantc < 14 such that for every u; v 2 V ,1c �(u; v) � e�(u; v) � �(u; v):Moreover, this embedding preserves the length of edges, i.e., for every (u; v) 2 E, e�(u; v) = �(u; v).Finally, e� can be computed in polynomial time.Before proving the theorem, let us brie
y discuss some properties of treewidth-2 graphs and themetrics generated by them. According to one of the many alternative de�nitions, treewidth-2graphs can be constructed using the following composition procedure. Start with a single edge e0,and repeatedly attach a single new vertex to the endpoints of an already existing edge (which wecall the parent edge of the vertex); �nally, after all the vertices have been attached, remove anarbitrary subset of the edges. We shall consider a weighted treewidth-2 graph G together withthe sequence of intermediate weighted graphs G2; G3; :::; Gn = G occurring during its composition,where G2 is the initial edge e0. Each new edge e = (u; v) will be endowed with weight �(u; v),where � is the metric induced by G. Observe that, w.l.o.g., we may assume that no edges areremoved in the second stage of the construction, since removing a non-essential edge e (one withweight �(e)) has no e�ect on �.The manner in which G was constructed implies that the metric �i induced by an intermediategraph Gi on V (Gi) � V (G) agrees with � restricted to these vertices, i.e., �i = �jV (Gi). A closer9



e0

e2

x1
3

x

s

tx2

x4

e1

e3 e4

Figure 4.1: Ancestor and related edges.look at the structure of G reveals more information about �. Let us de�ne the notions of ancestorand related edges of a vertex. The de�nition is recursive: the ancestor edges of x 2 V (G) includethe parent edge e = (s; t) of x, and the ancestor edges of s and t. The �rst edge e0 is an ancestoredge of both its endpoints, and thus of all x in V (G). A related edge of a vertex is an edge bothof whose endpoints lie either on ancestor edges of x, or coincide with x. In particular, all ancestoredges of x are also related edges of x.An example is shown in Figure 4.1, in which the vertices were added in the order x1; x2; x3; x4. Theparent edge of x4 is e3, its ancestor edges are fe0; e1; e3g, while f(t; x1); (x1; x3); (s; x4); (x3; x4)gare its related non-ancestor edges.Let e be an ancestor edge of x. De�ne Gx;e, a subgraph of G, as the union of all the related edges ofx which were introduced after e, plus edge e itself. (For example, in Figure 4.1 the graph Gx4;e1 isthe subgraph induced by the vertices fs; x1; x3; x4g.) The subgraph Gx;e has a particularly simplestructure: it is constructed by starting from e, marking it, and repeatedly attaching a single newvertex to the endpoints of the currently marked edge, upon which the marked edge is unmarkedand one of the newly added edges is marked. The order of composition of Gx;e is induced by thatof G. The graph Gx;e will simplify our later analysis; for the moment, observe that the distancebetween any pair of vertices in Gx;e is equal to their original distance in G.For a pair of vertices x; y, the last common ancestor edge f = (s; t) of x; y is the common ancestoredge of x and y which was added last in the composition of G. When neither x nor y lies on anancestor edge of the other, two possibilities may occur: either f separates x and y (i.e., every x-ypath passes through either s or t), or there exists a vertex q whose parent edge is f , such that (s; q)is an ancestor edge of x (but not of y) while (t; q) is an ancestor edge of y (but not of x).We are now ready to embark on the proof of the theorem.Proof of Theorem 4.1: We start with the inductive construction of the approximating metric e�.The construction follows the composition procedure for G, �rst de�ning e� on G2, then extending itto G3, G4, etc. in turn. In the base case, G2 is a single edge e0 = (a; b), and we set e�(a; b) = �(a; b).For the inductive step, we assume that e� is already de�ned on V (Gi�1). Assume also that Gi isobtained from Gi�1 by attaching a new vertex x to the endpoints of the edge (s; t). LetÆ = �(x; s) + �(x; t)� �(s; t)2 ; Ps = �(x; t)� �(x; s) + �(s; t)2�(s; t) ; Pt = �(x; s)� �(x; t) + �(s; t)2�(s; t) :10



Now, the value of e�(x; �), where � stands for any vertex of Gi�1, is de�ned ase�(x; �) = Æ + Ps e�(s; �) + Pt e�(t; �) : (4.3)The de�nition of e� immediately implies that it is computable in polynomial time.The argument that e� is `1-embeddable is inductive. The base case is that e� on G2 is trivially`1-embeddable. For the inductive step, observe that e� on Gi is a positive linear combination ofthree metrics: the cut metric Æfxg (with coeÆcient Æ), the metric e� on Gi�1 with x at distance 0from s (with coeÆcient Ps), and the metric e� on Gi�1 with x at distance 0 from t (with coeÆcientPt). The cut metric is `1-embeddable; e� on Gi�1 is `1-embeddable by the induction hypothesis, andidentifying the vertex x with either s or t does not a�ect this. Thus, by induction, the restriction ofe� to each Gi (and hence to Gn = G) is a sum of `1-embeddable metrics, and hence is `1-embeddable.The next fact to prove is that e� is dominated by �. Since � is the shortest path metric of G, theexpansion of e� is bounded by its expansion on the edges of G; thus it suÆces to prove the strongerstatement that every edge of G maintains its length under e�, i.e., for every e = (u; v); e�(u; v) =�(u; v). This stronger statement is again established by an inductive argument. The claim obviouslyholds for G2. Assume that the vertex x is attached to the edge (s; t) 2 E(Gi�1). By the inductiveassumption, the claim holds for Gi�1, and in particular for (s; t). Consider, e.g., the new edge(x; s); by (4.3), e�(x; s) = Æ + Pt e�(s; t) = Æ + Pt �(s; t) which, by de�nition of Æ and Pt, equals�(x; s).Bounding the contraction of e� will be the hardest part of the proof. In preparation for this, letus give an equivalent but more intuitive \backwards" description of e�. We envisage the process ofconstructing e� as starting from the �nal vertex, and collapsing the current \last" vertex onto oneof the endpoints of its parent edge. More precisely, if the edge (s; t) is the parent of x, we removethe cut metric corresponding to x (with weight Æ), and then collapse the vertex x onto either s or t,with probabilities Ps and Pt respectively. (Note that Ps and Pt sum to 1, and both are non-negativeby the triangle inequality.) Upon reaching G2, we simply remove the corresponding cut metric,thus collapsing the entire graph to a single point. The metric e� is just the expected sum of the(weighted) cut metrics removed in this process. In what follows, we shall make repeated use of thisview of e� as the expected result of a random process.The bound we will prove on the contraction of e� is stated in the following lemma.Lemma 4.2 Let x and x� be any two vertices of G. Then, for any � 2 (12 ; 1), we havee�(x; x�) � (1� �)(2� � 1)1 + � �(x; x�):Theorem 4.1 follows at once from this lemma: we simply choose � optimally to be p3 � 1, andconclude that the contraction (and hence the distortion) of e� is at most 13:92.We will split the proof of Lemma 4.2 into two cases:Case (i): x� lies on an ancestor edge of x.Case (ii): Neither x nor x� lies on an ancestor edge of the other.11
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Figure 4.2: Proof of Lemma 4.2, Case (i).Proof of Lemma 4.2, Case (i): In this case x� = s lies on an ancestor edge e = (s; t) of x.Consider the graph Gx;e as de�ned above, and let h(s1; t1); : : : ; (sk; tk) = (s; t)i be the sequenceof ancestor edges of x up to the edge on which s lies. (See Figure 4.2.) For convenience, set alsos0 = t0 = x. For 1 � i � k, de�neLi = �(si; ti); �i = �(si�1; si); �i = �(ti�1; ti):Note that for each i � 2, either ti�1 = ti with �i = 0, or si�1 = si with �i = 0.Denote by Ps (resp., Pt) the probability (under the random-process de�nition of e�) that, whenx collapses to the edge (s; t), it collapses onto s (resp., t). Let � be the expected sum of theweights of the cuts removed under all collapses of x up to and including this time. Then we havee�(x; s) = �+ Pte�(s; t), and therefore, by the edge preservation property of e�,e�(x; s) = � + Pt �(s; t) : (4.4)Note also that not only is the actual distance �(x; s) equal in G and in Gx;e, but the same holds forthe approximated distance e�(x; s): this is clear from (4.4) since the quantities � and Pt must beequal in G and in Gx;e. Thus in what follows we may restrict our attention to the subgraph Gx;e.Now let P is (resp., P it ) be the probability that, when x collapses to the edge (si; ti), it collapsesonto si (resp., ti), and let �i be the expected sum of the weights of the cuts removed under allcollapses of x up to and including this time. Assume also that ti = ti�1 while si; si�1 are distinct,as in Figure 4.2. (The other case is handled symmetrically.) The following claim establishes threeinequalities relating the value of e�(x; si) to the values of e�(x; si�1) and e�(x; ti�1).Claim 4.3 Let � 2 (12 ; 1). Then, in the above situation,(a) If P i�1s � �, then e�(x; si) � e�(x; si�1) + (2� � 1)�i.(b) If P i�1t � �, then e�(x; si) � e�(x; ti�1) + (2� � 1)Li.(c) Otherwise, if 1� � � P i�1s � �, then e�(x; si) + 2�1�� (�i ��i�1) � e�(x; si�1) + �i.
12



Proof: The proof is elementary but somewhat technical. Arguing as in the derivation of (4.4),we obtain e�(x; si�1) = �i�1 + P i�1t Li�1;e�(x; ti�1) = �i�1 + P i�1s Li�1: (4.5)Keeping in mind the edge preservation property of e�, and conditioning on whether x collapsed ontosi�1 or ti�1, we can express e�(x; si) ase�(x; si) = �i�1 + P i�1t Li + P i�1s �i: (4.6)Performing a formal manipulation, we gete�(x; si) = �i�1 + P i�1t (Li + �i) + (P i�1s � P i�1t )�i� �i�1 + P i�1t Li�1 + (P i�1s � P i�1t )�i = e�(x; si�1) + (P i�1s � P i�1t )�i;where we have used the triangle inequality Li�1 � Li + �i, and (4.5). This implies (a).Similarly,e�(x; si) = �i�1 + P i�1s (Li + �i) + (P i�1t � P i�1s )Li� �i�1 + P i�1s Li�1 + (P i�1t � P i�1s )Li = e�(x; ti�1) + (P i�1t � P i�1s )Li;implying (b).In order to show (c), consider the change in �. Let Æi�1 be the weight of the cut removed whilecollapsing si�1 to (si; ti). Then�i ��i�1 = P i�1s � Æi�1 = P i�1s � �i + Li�1 � Li2 :Substituting this expression for the value of (�i ��i�1), and using (4.6) and (4.5), we gete�(x; si) + 2P i�1tP i�1s (�i ��i�1) = [�i�1 + P i�1t Li + P i�1s �i] + �P i�1t (�i + Li�1 � Li)�= e�(x; si�1) + �i:We are now in a position to bound e�(x; s) from below in terms of �(x; s). For this purpose, wewill construct a path between x and s in Gx;e, and show that every edge on this path makes asubstantial contribution to e�(x; s). Since the length of the path is at least �(x; s), this will yieldthe desired lower bound.The path � from s = sk to x in Gx;e will be de�ned as follows. Assume we have already constructedsome initial segment of �, and have reached an endpoint of the edge (si; ti), but have not yet reachedthe edge (si�1; ti�1). Assume also, w.l.o.g., that si; ti are again situated as in Figure 4.2; the othercase is treated in a symmetrical manner. Then we must have reached si. Consider the value of P i�1tde�ned above. If P i�1t > �, we add to � the edge (si; ti�1) of length Li and continue; otherwise,13



we add to � the edge (si; si�1) of length �i and continue. Upon reaching (s1; t1), we add the edgeconnecting x to (s1; t1) to complete the path �.Clearly, � is a well-de�ned path from s = sk to x in Gx;e. Moreover, by our choice of � and thepreceding analysis (i.e., Claim 4.3), if � is hsk = �0 ! �1 ! �2 ! : : : ! �m = xi, then for everyedge (�j�1; �j) 2 � we havee�(x; �j)� e�(x; �j�1) + 2�1� � (��j ���j�1) � (2� � 1) � �(�j�1; �j);where, with a slight abuse of notation, ��j stands for �r where r is the smallest index such that�j 2 (sr; tr). (Observe that (��j ���j�1) � 0, so we may safely add this term for all j.)Summing up these expressions, we arrive ate�(x; sk) + 2�1� � �k � (2� � 1) � (the �-length of P )� (2� � 1)�(x; sk): (4.7)Since clearly e�(x; sk) � �k, this completes the proof of Case (i) of Lemma 4.2.Proof of Lemma 4.2, Case (ii): In this case, neither x nor x� lies on an ancestor edge of theother. Let (s; t) be the last common ancestor edge of x and x�. As mentioned before, there aretwo possibilities. The �rst is that (s; t) separates x and x�. The second is that there is a triangleT = (s; q; t) such that (s; q) is an ancestor edge of x but not of x�, (t; q) is an ancestor edge of x�but not of x, and both (s; q) and (t; q) separate x from x�.We start with the analysis of the �rst possibility. Let Ps (resp., Pt) denote the probability thatwhen x collapses to (s; t), it collapses onto s (resp., t); the probabilities P �s (resp., P �t ) are thecorresponding values for x�. Also, let � (resp., ��) be the expected value of the sum of the weightsof cut metrics removed in the process of collapsing x (resp., x�) to the edge (s; t). By the randomprocess de�nition of e�, the collapses of x and of x� proceed independently of each other; keepingin mind that e� is preserved on edges, we gete�(x; x�) = �+�� + (PsP �t + PtP �s )�(s; t): (4.8)Moreover, it can be easily veri�ed thatPsP �t + PtP �s � 12 min fPs + P �s ; Pt + P �t g : (4.9)Substituting this into (4.8), assuming w.l.o.g. that the minimum is attained at t, and using (4.4),we get e�(x; x�) � 12 ( e�(x; s) + �) + 12 ( e�(x�; s) + ��) : (4.10)However, adding the inequality (4.7) times the positive constant � = 1��1+� to the inequalitye�(x; s)�� � 0 times the positive constant (12 � �), gives12 ( e�(x; s) + �) � (1� �)(2� � 1)1 + � �(x; s) :14



An analogous bound holds for e�(x�; s). These two bounds, together with (4.10) and the triangleinequality �(x; x�) � �(x; s) + �(s; x�), imply the Lemma when the �rst possibility occurs.We now look at the second possibility, i.e., when there is the triangle T = (s; t; q). To compute thevalues of �(x�; x) and e�(x�; x) in the original graph G, it suÆces to look instead at the randomprocess restricted to the graph H obtained by taking the graphs Gx;(s;q) and Gx�;(t;q) and attachingthem to the triangle T = (s; q; t). (This follows by the same reasoning as in Case (i), when weargued that the values of �(x; s) and e�(x; s) in G could be computed by restricting our attentionto Gx;e.)The random process goes as follows: the graph H is �rst collapsed onto T , the vertex q is thencollapsed onto either s or t, and �nally the resulting fs; tg-cut is removed. Let us de�ne a newrandom process, which collapsesH onto T as before, but then collapses t onto (s; q) and removes theresulting fs; qg-cut. Our claim is that the value of e�(x; x�) is the same in both processes. Indeed,the two processes di�er only in the �nal step, and it is simple to check that, given a triangle, therandom process generates the same metric regardless of which vertex is collapsed onto its oppositeedge.Now, in this new order that we have introduced, the last common ancestor edge of x; x� is (s; q),and this edge separates x and x�. At this point, the argument for the �rst possibility applies, andthe claim follows.This completes the veri�cation of both cases in the proof of Lemma 4.2, and hence the proof ofTheorem 4.1.Having proved the main theorem of this section, let us state some corollaries and observations.Much of the complication in the proof arises from the need to account for both the cuts removedand the collapses made at each step. Let us consider for the moment the important special situationin which no cuts are removed, i.e., when the input series-parallel graph G has the property that forall x, for all ancestor edges (s; t) of x we have �(x; s)+�(x; t) = �(s; t). (Observe that this propertycan be restated in a simpler form: for all x, we have �(x; a) + �(x; b) = �(a; b), where a, b are theterminals of G. We shall point out an interesting application of these graphs in Section 5.4.)For such graphs a stronger version of Lemma 4.2 is true: namely, e�(x; x�) � 12�(x; x�). Moreover,the proof is much simpler than in the general setting. To see this, consider �rst Case (i) (whenx� = s lies on an ancestor edge of x); in this case we actually have that e�(x; s) = �(x; s), and thisfollows directly from the de�nition of e� using induction on the composition of G. Indeed, assumethat x is attached to (s1; t1), and the claim has already been established for s1; t1. By de�nition ofe�, e�(x; s) = �(x; s1)�(s1; t1) � e�(t1; s) + �(x; t1)�(s1; t1) � e�(s1; s) :By the inductive hypothesis,e�(t1; s) = �(t1; s) = �(t1; s1) + �(s1; s) ; e�(s1; s) = �(s1; s) :Combining the equations, we get e�(x; s) = �(x; s) as claimed. Case (ii) of Lemma 4.2 can now bestrengthened to e�(x; x�) � 12�(x; x�). This follows from (4.10), keeping in mind that � = �� = 0and using the stronger version of Case (i) given above. Thus, we can conclude:15



Lemma 4.4 For the special series-parallel graphs described above, 12� � e� � �.Returning now to the gap 
 in multicommodity 
ow instances, Theorems 3.2 and 4.1 imply:Corollary 4.5 Let G = (V;E) be a graph with no K4-minor. Then, for every assignment of edgecapacities C and demands D in G, the gap 
 = MinCut=MaxFlow is less than 14.With the aid of a little graph-theoretic machinery, this corollary can be generalized as follows. Theproof is somewhat orthogonal to our main development, and can be found in a separate paper [28].Theorem 4.6 Let G = (V;E) be a graph, and let the set of demand pairs be a subset of pairsfrom U , for some U � V . If G contains no K4-minor w.r.t. U , then for every assignment of edgecapacities C and demands D in G, the gap 
 = MinCut=MaxFlow is less than 28.4.1.1 Approximating the sparsest cut in series-parallel graphsThe iterative procedure used in the above proof can be exploited to �nd a near-optimal sparsest cutin series-parallel graphs in polynomial time. Previously, this result was known only for the specialcase of uniform demands [32, 30, 22]. Observe that Corollary 4.5 alone does not immediately implythe existence of a polynomial time procedure for �nding a good cut.Theorem 4.7 There is a polynomial time 14-approximation algorithm for the Sparsest Cut problemon series-parallel graphs.Proof Sketch: To approximate the MinCut in a series-parallel graph, we �rst solve the corre-sponding multicommodity 
ow problem, and �nd the metric � minimizing C��D�� (see the discussionfollowing Theorem 3.2). By Theorem 4.1, we can �nd in polynomial time an `1-metric e� that14-approximates �. Recall the manner in which e� is built (see equation (4.3) and the descriptionfollowing it): at each step, it is a positive linear combination of three `1-metrics e�1; e�2 and e�3.Consequently, at least one of these metrics must yield a value C�e�iD�e�i which is at most C�e�D�e� . Choosingthis minimizing metric and continuing with the corresponding subgraph, we will eventually reacha point where the remaining metric is a cut metric. This cut achieves the desired approximationratio.4.2 Embedding graphs with few edgesRecall that for a graph G = (V;E), the Euler characteristic �(G) is de�ned as jEj � jV j+ 1. It iseasy to see that, for each c 2 Z+, the family of graphs Fc = fG j�(G) � c g is minor-closed. Thefollowing theorem shows that graphs with low �(G) can be embedded with low distortion into `1:Theorem 4.8 A metric supported on an arbitrary graph G can be embedded into `1 with distortionO(log�(G)), where �(G) is the Euler characteristic of G.16



Proof: The embedding will be similar in 
avor to that of Theorem 4.1, though much simpler. Asbefore, we assume that G is 2-connected; if not, we can apply the argument to each of its blocks.We also assume that G is not a cycle, since the cycle metric embeds isometrically into `1, as canbe deduced from Proposition 3.1 (or for a direct proof see [26, Prop.5.10]).De�ne an isolated path to be a maximal path in G, each of whose internal vertices has degree 2.Hence each of its endpoints has degree at least 3. Call an isolated path B tight if its length is equalto the distance between its endpoints. We �rst decompose dG, the shortest-path metric of G, intotwo simpler metrics: e�, which is the shortest-path metric of a graph G0 with the same vertices andedges as G but which has only tight isolated paths, and e�0, which is a sum of cut metrics.For this, let us consider a weighted cycle C, assuming that the weight of any edge is just itsshortest-path length. Let e = (u; v) be an edge on C. Since C is `1-embeddable, the metric dC canbe written as a positive linear combination of cut metrics. Let d0 be the sum of all those cuts thatseparate u and v, and d1 be the sum over the remaining cuts; clearly, dC = d0 + d1. Observe thatthe sum of d0-lengths of all the edges in E(C)� feg is necessarily exactly equal to the length of e,or, in other words, the length of the path P = C � feg under d0 is equal to the length of e; notealso that d0(e) = dC(e). Concerning d1, observe that no cut metric ÆS in d1 separates u and v, sowe may assume w.l.o.g. that the corresponding set S satis�es S � V (C)� fu; vg.All this leads to a decomposition of G into G0 plus an `1 metric. Suppose G has isolated paths thatare not tight. To the endpoints u and v of each isolated path B, add an edge e = (u; v) of lengthd(u; v); this forms a cycle with B. The shortest path metric of each such cycle can be decomposedinto d0 and d1 as above. Each of the cut metrics in d1 naturally extends to the whole of G, andhence d1, being their weighted sum, also extends to an `1-embeddable metric on G. Call this e�0.By the preceding discussion, dG = dG0 + e�0, where G0 has the same vertices and edges as G, but allisolated paths in G0 are now tight (as in d0). This is the desired decomposition.Since this phase involved no distortion, it suÆces for the proof of the theorem to show that anygraph G with tight isolated paths can be embedded into `1 with distortion O(log�(G)). We willdenote the length of an isolated path B by d(B).Let eG be a minor (multigraph) of G obtained by the following random procedure: for each isolatedpath B with endpoints uB and vB , choose a value rB uniformly and independently from the interval[0; d(B)], and collapse all vertices in B at distance less than rB from vB to this endpoint, and allthe other vertices in B to uB. The length of the newly created edge (uB ; vB) 2 E( eG) is de�nedas d(B) = dG(uB ; vB), so that the distance between uB and vB remains unchanged. Clearly, theminimum degree of eG is now at least 3. De�ne e�(�; �) = E �d eG(�; �)�; being a convex combination ofmetrics, e� is a metric as well. We claim that e� closely approximates d:Claim 4.9 For any two vertices x; y of G, the expected distance e� between x and y in eG satis�es14 d(x; y) � e�(x; y) � d(x; y):Proof: Let us start with two simple observations. Firstly, if neither x nor y is an internal vertex ofan isolated path, the distance between them remains the same, i.e., e�(x; y) = d(x; y). Furthermore,a simple calculation (involving the probability that x and y are collapsed to di�erent endpoints of17



B) shows that the same is true for any x and y belonging to the same isolated path B. Thus e�preserves the lengths of all the edges of G, and since d is the shortest-path distance in G, we inferthat e� is dominated by d.Consider now the case when the vertices x; y lie on di�erent isolated paths B and B0. Let s; t bethe endpoints of B, and q; r the endpoints of B0. De�ne Ps and Pt to be the probabilities that x iscontracted to s and t respectively. Pq and Pr are de�ned similarly, with respect to y. Clearly,Ps = d(x; t)d(s; t) ; and Pt = d(x; s)d(s; t) :The expressions for Pq and Pr are analogous. By the de�nition of e�,e�(x; y) = PsPq � d(s; q) + PsPr � d(s; r) + PtPq � d(t; q) + PtPr � d(t; r)= Ps � [Pqd(s; q) + Prd(s; r)] + Pt � [Pqd(t; q) + Prd(t; r)] : (4.11)A scaled version of (4.9) together with the triangle inequality implies thatPqd(s; q) + Prd(s; r) � 12 min fPq [d(s; q) + d(s; r)] + d(s; r) ; Pr [d(s; q) + d(s; r)] + d(s; q)g� 12 min fPqd(q; r) + d(s; r) ; Prd(q; r) + d(s; q)g= 12 min fd(y; r) + d(s; r) ; d(y; q) + d(s; q)g= 12 d(s; y):Similarly, Pqd(t; q) + Prd(t; r) � 12d(t; y). Substituting these inequalities into (4.11), and using thescaled version of (4.9) again, we conclude thatd(x; y) � 12 fPsd(s; y) + Ptd(t; y)g � 12 � 12 d(x; y) :This completes the proof of the claim.Thus d is 4-approximated by e�. To conclude the proof of the theorem, we show that e� can beembedded into `1 with small distortion. Note that e� is a convex combination of semimetrics, all ofwhich are supported on G0, the graph obtained from G by replacing each isolated path by an edge.The distortion of embedding e� into `1 is no more than that of dG0 , so it suÆces to bound the latter.But G0 has very few vertices. On the one hand, it has minimum degree � 3; on the other hand,it is a minor of G, and since taking minors cannot increase the Euler number, �(G) � �(G0). Letn0 = jV (G0)j, andm0 = jE(G0)j. By a degree argument, m0 � 32n0, implying �(G) � �(G0) � 12n0+1.Consequently, G0 has at most 2�(G) � 2 vertices, and hence dG0 can be embedded into `1 (e.g.,using Bourgain's technique [9]) with distortion O(log�(G)).5 Embeddings via tree metricsThe algorithms for `1-embeddings described in the previous section were based on constructing anapproximating set of cut metrics. A di�erent approach for embedding a metric (V; �) into `1 is18



to specify a probability distribution over trees containing V , such that the expected tree distancebetween any two vertices x and y in V approximates �(x; y) well. Since trees can be embeddedisometrically into `1, this also gives an `1-embedding. Of particular interest are embeddings intodistributions over dominating trees, in which the distance function in each tree dominates �. Find-ing low-distortion embeddings of this kind has consequences for the design of many approximationalgorithms (e.g., [4, 3, 19, 36, 10, 12]) and online algorithms (e.g., [4, 6]). Formally:De�nition 5.1 A metric dG supported on a graph G is �-probabilistically approximated by adistribution D over (dominating) trees if(1) each tree T in the distribution D has V (G) � V (T );(2) for all x; y 2 V and T in the distribution, dT dominates dG, i.e., dG(x; y) � dT (x; y);(3) for all x; y 2 V , the expected distance ED[dT (x; y)] � � � dG(x; y).In this paper we will use only spanning subtrees of G, and thus (1) and (2) will automatically besatis�ed. Since the expansion is always maximal on the edges of G, condition (3) can be replacedby the more convenient(30) for all edges e = (x; y) 2 E(G), the expected distance ED[dT (x; y)] � � � dG(x; y).We shall also refer to this approximation as an embedding of dG with distortion � into a treedistribution D.Distributions over trees were �rst studied by Karp, who showed that distances in the unweightedcycle Cn can be 2(1 � 1n)-probabilistically approximated by a distribution over its subtrees [21].The distribution is very simple: each possible spanning tree of G is output with probability 1=n.This is in sharp contrast to the deterministic case, where it can be shown that any tree (notnecessarily a subtree) approximating the cycle has 
(n) distortion [31]. This line of enquiry wasfurther developed in several papers [1, 4, 5, 24, 11], where distributions over arbitrary dominatingtrees were considered. The state-of-the-art results show that any graph with n vertices can beembedded into tree distributions with distortion O(log n log logn) [5]. In the special case wherethe graph excludes a Ks;s-minor, a distortion of O(s3 log n) can be achieved [24]. In line with ourgeneral approach, we now study the embeddability of outerplanar and series-parallel graphs intotree distributions.5.1 Tree embeddings for outerplanar graphsThe �rst result of this section shows that any metric supported on a K2;3-free graph can be embed-ded into a tree distribution with distortion at most 8. Of course, we already know by Proposition 3.1that such metrics are isometrically embeddable into `1. However, that result says nothing about thestronger requirement that the embedding be a distribution over dominating trees. Both the mainresult of this section and the method used play an essential part in later, more diÆcult constructions(see, e.g., Section 5.4, and the recent [13]).As usual, it suÆces to embed only the biconnected components of the K2;3-free graph, which areeither K4 or outerplanar. It is easy to verify that approximating any metric on n points by itsminimum-weight spanning tree incurs a distortion of at most (n� 1), so any 4-point metric can be19



embedded into a tree with distortion 3. Thus, it suÆces to bound the distortion for 2-connectedouterplanar graphs. As always, we assume w.l.o.g. that the length of any edge is equal to thedistance between its endpoints.We start with a composition procedure for outerplanar graphs which will form the basis for the em-bedding. Given such a graph G, one can de�ne a sequence of outerplanar graphs G0; G1; : : : ; Gt =G, where G0 is a path or a cycle, and the graph Gi is obtained by attaching a path Pi either to asingle vertex ui on the outer face of Gi�1, or to the endpoints of an edge ei = (ui; vi) lying on theouter face of Gi�1. In the latter case, since the length of any edge is equal to the distance betweenits endpoints in G, the path Pi is at least as long as ei. This implies that the shortest-path metricof the graph Gi coincides with the metric induced by dG on V (Gi). Clearly, the composition of Gis completely speci�ed by G0 and the sequence of paths fPig.Given an outerplanar graph G with a speci�ed composition procedure, the path Pi is called slackif either Pi is attached to a single vertex, or Pi is attached to an edge ei and the length of Pi isat least twice the length of ei. A composition is called slack if all the paths Pi in it are slack. Weshall �rst provide an embedding procedure for an outerplanar graph G assuming that G has a slackcomposition, and then show how to extend this to all outerplanar graphs.Lemma 5.2 Given an outerplanar graph G and a slack composition for it, G can be embedded intoa tree distribution D with distortion at most 4.Proof: The embedding is inductive and follows the composition. At stage i, we shall constructa random spanning tree Ti of Gi from a random spanning tree Ti�1 of Gi�1, while maintainingproperty (30) for Ti with � = 4; i.e., with E [dTi(x; y)] � 4dGi(x; y) for all edges (x; y) 2 Gi.In the base case, if G0 is a path, we do nothing. If it is a cycle, we randomly pick an edge e of G0with probability proportional to its length, and delete it to get a random subtree of G0. Let thelength of e be l, and the length of G0 be L. The expected distance between the endpoints of e inT0 is � lL� � (L� l) +�L� lL � � l � 2l; (5.12)satisfying property (30).At stage i, we look at Pi. If it is attached to a single vertex ui, we attach it to Ti�1 at ui to get Ti.Clearly, property (30) continues to hold for Ti. On the other hand, if Pi is attached to an edge ei,we randomly pick an edge e from Pi (again with probability proportional to the length of e) andset Ti = Ti�1[ (Pi�feg). It is clear that Ti is a spanning tree of Gi. Let us show that property (30)is maintained. By the induction hypothesis, this is true for edges (x; y) of Gi�1, sinceE [dTi(x; y)] = E [dTi�1(x; y)] � 4dGi�1(x; y) = 4dGi(x; y):Consider an edge e = (x; y) 2 Pi; denote its length by l, and the length of Pi by Li. Furthermore,assuming that Pi is attached at the edge (ui; vi), denote dGi�1(ui; vi) by d. The expected distancebetween x and y in Ti is at most� lLi� � (4d + Li � l) +�Li � lLi � � l = � lLi� � (4d+ 2(Li � l)) � l�4� dLi�+ 2� :20



Since the composition is slack, we have d=Li � 1=2, and hence the expression above is at most 4l,as required.While it might be the case that an outerplanar graph G does not have a slack composition, we nowshow that G can always be converted into a graph H which does have a slack composition, at thecost of a small distortion.Lemma 5.3 Given an outerplanar graph G = (V;E), there is an outerplanar graph H = (V;E0)(in fact, a subgraph of G) with a slack composition such that dG � dH � 12dG.Proof: The graph H will be a subgraph of G, with edge lengths no longer than in G and noshorter than half those in G. Let hG0 = P0; P1; : : : ; Pti be the composition de�ning G. Our goal isto produce a slack composition hH0 = Q0; Q1; : : : ; Qt0i for H, thereby de�ning H in the process.The composition sequence for H is initially set to be the same as that for G; we then consider thelowest unmarked path Qi, and while processing and marking the path Qi, we modify possibly boththe preceding (marked) and forthcoming (unmarked) paths. We maintain the following invariantsduring this process: H is always a connected spanning subgraph of G; at each stage, the distancesmay only decrease; �nally, the edge lengths never decrease by more than a factor of 2 from theiroriginal values.To begin, Q0 is marked. For each i > 0, if the path Qi is attached to a single vertex, we mark itand go on. Otherwise, Qi is attached to some edge ei = (ui; vi) lying on some Qk with 0 � k < i.If Qi is slack at this point, we again mark it and continue. So assume that the current length ofQi is less than twice the current length of the edge ei = (ui; vi). We then do the following:1. Modify Qi: Decrease the lengths of all the edges inQi by a factor of 1 � length(Qi)=length(ei) <2, so that the current length of Qi becomes exactly the current length of ei. Remove Qi from thesequence for H. Note that the lengths of edges in Qi are halved in the worst case. They will neverbe changed again (except that the edges may possibly be removed later).2. Modify Qk: Recall that Qi was attached to the ends of ei lying on some previously markedpath Qk with k < i. Since now length(ei) = length(Qi), replace ei in Qk by the entire rescaledpath Qi to get Q0k. This does not change any current distances in the graph.3. Modify Qj, j > i: Observe that shrinking the path Qi may have resulted in some edgesbeing longer than the current distance between their endpoints in the forthcoming (but not thepreceding) paths. To overcome this problem, consider any such edge e 2 Qj. If there is a path Qj0 ,with j0 > j, that is attached to the endpoints of e (and there can be only one such path), replacee in Qj with Qj0 and remove Qj0 from the sequence. If there is no such Qj0 , deleting e splits Qjinto two paths, each attached to a single point, and we replace the old Qj in the composition withthese two new paths. Again, note that this does not alter any current distances. We do not markany paths in this modi�cation.The main properties of the above procedure are as follows. At each time step, we have connectedspanning subgraphs of G. The edges surviving upon termination were modi�ed at most once, andtheir lengths were decreased at that time by at most a factor of 2. No edge-length (and hence no21



distance between any pair of vertices) is ever increased. The �nal sequence is slack. The processterminates when we have marked all the paths, i.e., in at most jEj steps.Let H be the graph speci�ed by the resulting slack sequence. It is a connected spanning subgraph ofG, with edge lengths at least half those in G. This immediately implies the lower bound dH � 12dG.The upper bound dH � dG follows from the fact that none of the steps above caused distances toincrease.Now the overall procedure for embedding an outerplanar graph G is as follows. First, we obtainthe graph H with a slack composition as in Lemma 5.3, incurring a distortion of at most 2. Thegraph H (with the edge lengths doubled in order to dominate G) is then embedded into a treedistribution with distortion at most 4 using Lemma 5.2, giving a total distortion of at most 8.Furthermore, note that all the trees in the distribution are dominating subtrees of H with doublededge lengths, and thus also dominating subtrees of G. For each such tree T , restoring the length ofan edge e 2 T to dG(e) can only decrease the distortion without changing the domination property.Hence we get the main result of this section:Theorem 5.4 For any metric dG supported on a K2;3-free graph G, there is an embedding of dGinto a tree distribution D with distortion at most 8. Moreover, the embedding uses only subtreesof G with their original edge lengths.5.2 Tree embeddings for graphs with few edgesTheorem 5.5 Any graph G with Euler characteristic �(G) can be embedded into a dominating treedistribution with distortion O(log�(G) log log�(G)).Proof: The proof is very similar to that of Theorem 4.8. Recall that an isolated path in G isa path with endpoints of degree � 3, and all internal nodes of degree 2. For every isolated pathB = hv1; v2; : : : ; vki in G, we add to G a new edge eB between the endpoints of B, of lengthdG(v1; vk), thus leaving the original metric una�ected. Now, for each such B, independently ofother isolated paths, choose an edge e in B with probability proportional to the length of e, anddelete it. We get a distribution over graphs G0, where each G0 consists of the same \core" (includingall the newly added edges), and the \hairs" (the remnants of the isolated paths).Each G0 dominates G, and the expected expansion of any edge in B introduced by the above stepis at most 2 (by an analysis very similar to (5.12)), implying that the distortion incurred by thisdistribution over G0-metrics is at most 2.Finally, we have to embed each G0 into a dominating tree distribution. It suÆces to embed thecore, since each hair is already a tree and can simply be attached to the random tree approxi-mating the core. As in the proof of Theorem 4.8, we conclude that the number of vertices in thecore is O(�(G)), and hence it can be embedded it into a distribution over trees with distortionO(log�(G) log log�(G)) by the general result of [5]. This completes the proof.22



5.3 Lower bounds for series-parallel graphsIn view of the results of the previous sections, Theorems 5.4 and 5.5 may inspire hope that embed-dings into tree distributions with constant distortion exist for other minor-closed families, such asseries-parallel graphs. Our next result shows that this is not so; we prove a lower bound of 
(log n)on the distortion for embedding series-parallel graphs into dominating tree distributions. This re-sult extends those of Alon et al. [1] and Konjevod et al. [24], who gave a technically more involvedlower bound for the n-vertex grid, and shows that approximating graph metrics by distributionsover tree metrics already breaks down for families of graphs that are much simpler than grids.Theorem 5.6 There exists an in�nite family of series-parallel graphs fGkg such that any �-approximation of the shortest-path metric of Gk by a distribution over dominating trees has � =
(log jV (Gk)j).The proof makes use of the following fact from [31]:Theorem 5.7 ([31]) The distortion of any embedding of the unit-weighted cycle Cn into an (ar-bitrary) tree is at least n=3� 1.Proof of Theorem 5.6: The graphs Gk are de�ned recursively. G0 is a single unit-weightededge between terminals s0 and t0. Inductively, Hi+1 consists of two copies of Gi in series, and Gi+1consist of two copies of Hi+1 in parallel between terminals si+1 and ti+1 (see Figure 5.3). Thegraph Gk has n = 4k edges and �(n) vertices. Observe that for any Gi with terminals si and ti,both the distance between the terminals and the size of a minimum si-ti cut are 2i.Following a standard framework for establishing lower bounds for probabilistic constructions (see,e.g., [37, 1, 24]), it suÆces to come up with a distribution D over the edges of Gk, such that anytree T with V (Gk) � V (T ) and dT � dGk has a large expected expansion, i.e., E e2D[dT (ue; ve)] �
(log jV (Gk)j), where ue; ve denote the endpoints of edge e. More concretely, it suÆces to showthat for any tree metric dT � dGk on V (G) we haveXe2E(Gk) dT (ue; ve) = 
(k) � Xe2E(Gk) dGk(ue; ve) = 
(k) � 4k ;since then the same must also hold for any distribution over dominating tree metrics, implying anexpansion of 
(k) = 
(log jV (Gk)j).Let T be a tree containing the vertices of Gk which dominates distances in Gk. For each i 2 [1; ::; k],assign color i to all edges of Gk which su�er an expansion of at least 2i+1=3 � 1 in T . As a result,each edge in Gk has at least one color assigned to it, while some edges have multiple colors. LetSi � E(Gk) be the set of all edges that are assigned color i.How large is Sk? Observe that any cycle which goes around the graph Gk (i.e., a simple cycle whichincludes the terminals sk and tk) has length 2k+1, and therefore, by Theorem 5.7, contains an edgecolored k. Thus Sk hits all such cycles, and consequently it must separate the terminals of at leastone of the four copies of Gk�1 that form Gk. Hence jSkj � 2k�1.23
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Figure 5.3: The graph G3How large is Sk�1? Consider the four copies of Gk�1 forming Gk. Arguing as before, we concludethat each of these copies must contain at least 2k�2 edges of color k� 1. Hence, the size of Sk�1 isat least 4 � 2k�2. Arguing in the same vein for each i, we get that jSij � 4k�i2i�1 = 22k�1�i.For each e 2 E(Gk), let Ce be the set of colors assigned to e. The expansion of e is at leastmaxi2Ce �2i+1=3� 1� � 12 Xi2Ce �2i+1=3� 1� :Therefore,Xe2E(Gk) dT (ue; ve) � 12Xe Xi2Ce �2i+1=3� 1� = 12 kXi=1 jfe j i 2 Cegj � �2i+1=3� 1� == 12 kXi=1 jSij � �2i+1=3� 1� � 12 kXi=1 22k�i�1 � �2i+1=3 � 1� > �k6 � 14� 4k :Remark 5.8 After the preliminary version of this paper appeared, we were informed by Yair Bartalthat Theorem 5.6 for the same family of graphs can also be inferred | albeit much less directly| from the result of Imase and Waxman [20] combined with the general framework of Bartal [4].To see this, note that the Steiner tree problem is trivially 1-competitive on trees, and hence an�-probabilistic approximation of Gk by trees implies an �-competitive ratio on the graphs Gk [4,Theorem 4]. However, [20] establishes an 
(k) lower bound for the competitive ratio for the Steinerproblem on Gk, and hence � = 
(k).5.4 An alternative embedding for series-parallel graphsIn light of the lower bound of the previous section, we cannot hope to embed general series-parallel graphs into tree distributions with constant distortion. However, by adding an extraingredient (speci�cally, a cut-metric embedding of certain special series-parallel graphs which wecall \bundles") to the tree metric technology, we will be able to come up with an alternative24



embedding of series-parallel graphs into `1 with constant distortion which is quite di�erent fromthat of Section 4.1.The new embedding proceeds along the same lines as the embedding of outerplanar graphs inSection 5.1. Given a series-parallel graph G, it �rst performs preprocessing and random edgedeletion steps similar to those in Lemmas 5.3 and 5.2 to get a special tree-like series-parallel graphwhich we call a \tree of bundles" (i.e., a graph whose 2-connected components are bundles). Thisincurs a distortion of at most 8. The bundles are then embedded using the cut-metric techniquewith distortion 2, yielding an embedding with total distortion at most 16 for general series-parallelgraphs. Although it has a marginally worse performance guarantee (at least in terms of the constantbounds we have established here), this second algorithm is conceptually simpler, and arguablymore instructive than that of Theorem 4.1. Since much of the construction is similar to that forouterplanar graphs given in Section 5.1, we shall omit the recurring details and emphasize thedi�erences.As in Section 4.1, the construction is based on the composition procedure for G. The compositionsallowed here are slightly less restrictive than before, in that we add paths of arbitrary lengthsbetween the ends of some existing edge at each stage, rather than a single vertex (i.e., a path oflength 2). Hence the composition consists of a sequence of graphs Gi, where G0 = P0 is a path,and Gi is obtained by attaching a path Pi to already existing edge ei = (ui; vi). We require thatthe length of Pi be no less than the length of ei = (ui; vi), and that the lengths of all edges areequal to the actual distance between their endpoints in G. We shall further relax the compositionby permitting Pi to be attached to just a single vertex; such a path will be called free.Call a (non-free) path slack if its length Li is at least twice di, the length of the edge ei = (ui; vi).Similarly, a path is called taut if Li = di. (Note that it is possible for a path to be neither taut norslack.) We say a composition is slack-taut if each (non-free) path is either slack or taut. The �rstobservation is that we can de�ne a preprocessing step similar to that in Lemma 5.3 for series-parallelgraphs, which outputs a series-parallel graph with a slack-taut composition.Lemma 5.9 Given a 2-connected series-parallel graph G = (V;E), there is a series-parallel graphH = (V;E0) with a slack-taut composition such that dG � dH � 12dG.The construction of H and the proof of its correctness are very similar to those of Lemma 5.3. Onesmall di�erence is that whenever we reduced the length of Pi in the sequence de�ning an outerplanargraph, we could always remove the edge (ui; vi) to which Pi was attached. For series-parallel graphs,many paths can be attached to the same edge, so we cannot remove it. However, since the reducedpath Pi is taut, leaving ei in place satis�es the slack-tautness condition. Another small di�erence isthat now we cannot remove a (forthcoming) edge which has become longer than the actual distancebetween its endpoints: this could contradict the technical requirement that paths must be attachedto edges. To overcome this diÆculty, we do not actually remove such an edge, but only mark it as\to be removed" and never touch it again until the end; then it is removed.Before stating the next lemma, let us formally de�ne a bundle as a series-parallel graph such thatall simple paths between its terminals are of the same length. Note that a bundle has a well-de�nedlength, which is the distance between its terminals. Figure 5.4 shows an example of a bundle withterminals s and t. 25



2
4

2

ts

3Figure 5.4: A bundle: all non-labeled edges have unit length.Consider the slack-taut composition of H in Lemma 5.9. Observe that if Pj is a taut path attachedto a preceding path Pi, and Pi is part of a bundle, then Pj also becomes a part of the same bundle.In this way we obtain the maximal bundles of the graph H. Note that if a maximal bundle B0is attached to two vertices on some other maximal bundle B (and in particular, B0 cannot beconsidered a sub-bundle of B), then B0 must be at least twice as long as the distance between itsterminals. This view allows us to de�ne another slack composition for H, in which we attach slack(maximal) bundles at each step (instead of adding slack paths).Lemma 5.10 Given a series-parallel graph H and a slack-taut composition for it, H can be em-bedded into a distribution over special subgraphs with distortion at most 4. The special subgraphsin this distribution have the property that all their maximal 2-connected components are bundles.The proof is similar to that of Lemma 5.2. Consider the slack composition, where a slack bundleis attached at each step. This is analogous to the slack composition for outerplanar graphs, andwe shall use it in a similar way. Speci�cally, when adding a bundle of length L, we choose avalue r 2 [0; L] uniformly at random and cut all the edges that cross a point at distance r froma �xed terminal of the bundle. The analysis of edge expansion is identical to that in the proof ofLemma 5.2. Since by cutting a bundle we create smaller bundles and some free paths, we obtain a\tree of bundles" at the end of the procedure.The �nal step of the embedding has no outerplanar analog. Notice that bundles are precisely thespecial series-parallel graphs discussed in Lemma 4.4. Thus they can be embedded into `1 withdistortion at most 2 using the cut-metric technique.Combining Lemmas 4.4, 5.9, and 5.10, we arrive at the main result of this section:Theorem 5.11 The procedure described in this section produces an embedding of series-parallelgraphs into `1 with distortion at most 16.AcknowledgmentsWe are grateful to Gil Kalai, Alexander Karzanov, Mike Saks and David Zuckerman for insightfuldiscussions. Many thanks to the referees for their detailed and helpful comments.References[1] Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West. A graph-theoretic game andits applications to the k-server problem. SIAM Journal on Computing, 24(1):78{100, 1995.26
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coincides with the set of non-negative combinations of cut metrics on V , they form a closed convexcone in R( jV j2 ), called the cut cone (see, e.g., [15] for more details). Denote the cut cone on V byM1(V ).Note that if v� is the vector corresponding to a metric (V; �), then H(v�;M1(V )) = c1(�). There-fore, applying Claim A.1 to K =M1(V ) and v = v�, we obtain (3.2).Proof of Claim A.1: One direction of the claim is easy: for any u 2 K and D;C as above,D � vC � v � maxi uivi � maxj vjuj � D � uC � u � H(v; u) :Taking the \closest" u 2 K to v, we conclude that �(v;K) � H(v;K).For the other direction, let BÆ(v) � Rk be the set of all positive vectors x 2 Rk such that H(v; x) �Æ. Clearly, BÆ(v) = fx 2 Rk j 8r;q2[1::k] Æ � vrxq � vqxr � 0g :Observe that BÆ(v) is a closed convex cone containing v. By de�nition, H(v;K) is the smallest Æsuch that BÆ(v) \K 6= ;. For this critical Æ, we claim that there exists a vector l 2 Rk such that1. l � BÆ(v) � 0;2. l �K � 0;3. l is a non-negative combination of vectors �rq 2 Rk , r; q 2 [1::k]; r 6= q, where �rq has �vqin the r-th coordinate, Ævr in the q-th coordinate, and 0 in all other coordinates.Indeed, the dual cone B�Æ = fy 2 Rk j 8x2BÆ hx; yi � 0gis the convex hull of vectors f�rqg, and thus the normal vector to any supporting hyperplane ofBÆ(v) separating it from K has the required properties.Let l+ and l� be two non-negative vectors in Rk with l+� l� = l, formed by taking the positive andthe negative coordinates of l respectively. By the �rst two properties of l, for any u 2 K, l+�ul��u � 1,while l+�vl��v � 1. In the rest of the argument, l+ will play the role of D, while l� will play the roleof C.Given an arbitrary form (Pi dixi) = (Pi cixi) de�ned over non-negative x 2 Rk with non-negativecoeÆcients di and ci, let us de�ne a new form�Pi dixiPi cixi�# = Pi(di �min(di; ci))xiPi(ci �min(di; ci))xi :Observe that if the value of the original form is � 1, then the value of the new form exceeds thatof the old one. Using this observation and the fact that l =P�rq�rq for some non-negative �rq's,we can infer that�(v;K) � l+ � vl� � v =  Prq �rq�+rq � vPrq �rq��rq � v!# � Prq �rq�+rq � vPrq �rq��rq � v = Æ = H(v;K) ;30



which establishes the claim.
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