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Theory of MAP adaptation

Standard Baum-Welch training produces a
maximum-likelihood estimate of model parameters λ:

λML = arg max
λ

P (O|λ)

MAP training produces the maximum a-posteriori
estimate:

λMAP = arg max
λ

P (O|λ)P (λ)

Reduces to ML estimate with a non-informative prior
P (λ).

For speaker adaptation, the prior P (λ) is derived from a
baseline or speaker-independent model.

MAP adaptation with SphinxTrain – p.2/12



MAP adaptation in practice

The simplest method is Bayesian updating of each
Gaussian mean, assuming the following (incorrect)
prior:

µ ∼ N(µSI , σ
2

SI)

This reduces to interpolation between SI parameters
and ML (forward-backward) estimates from the
adaptation data:

µ̂MAP =

∑T

t=1
γt(i, k)σ2

SI
µML + σ2

ML
µSI

∑T

t=1
γt(i, k)σ2

SI
+ σ2

ML

The posterior variance can also be computed, but it is
not useful.
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MAP adaptation in practice

With a more detailed prior, all HMM/GMM parameters
can be updated.

This is important for semi-continuous models since the
mixture weights can be modified.

Prior is a product of a Dirichlet distribution with
hyperparameters {η, ν} and a Gamma-Normal
distribution with hyperparameters {α, β, µ, τ}.

The τ hyperparameter controls the “speed” of
adaptation. Larger τ = less adaptation.

Estimation of these hyperparameters is tricky.
Generally, τ is estimated, then all other
hyperparameters derived from it and the SI model.
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MAP adaptation in practice

The τ can be fixed to a global value (e.g. 2.0) or it can
be estimated separately for each Gaussian:

τik =
p
∑T

t=1
γt(i, k)

∑T

t=1
γt(i, k)(µ̂ik − µik)T (wikΣik)(µ̂ik − µik)

νik is then estimated as wik

∑K

k=1
τik and the mixture

weights are re-estimated as:

ŵik =
νik − 1 +

∑T

t=1
γt(i, k)

∑K

k=1
νik − K +

∑K

k=1

∑T

t=1
γt(i, k)
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MAP with SphinxTrain

MAP interpolation and updating has been implemented
in SphinxTrain as the map_adapt tool.

It works similarly to the norm tool, except that it
produces a MAP re-estimation rather than an ML one.

1. Collect forward-backward statistics on adaptation
data using the baseline models and bw.

2. Run map_adapt the same way you would norm,
specifying the baseline model files and the output
MAP model files.

Works for continuous and semi-continuous models.

(SCHMM is broken in current version but I’ll fix it).
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Combining MAP and MLLR

In theory they are equivalent, if each Gaussian has its
own regression class.

In practice, this never happens, and their effects are
additive.

To combine them:
1. Compute an MLLR transformation with bw and

mllr_solve

2. Apply it to the baseline means with
mllr_transform

3. Re-run bw with the transformed means
4. Run map_adapt to produce a MAP re-estimation
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Unsupervised MAP

This doesn’t work. Don’t do it.

The lack of parameter tying in the standard MAP
algorithm means that the adaptation is not robust.

Incorrect transriptions of adaptation data result in the
wrong models being updated.

MLLR alone is a better choice for sparse or noisy
adaptation data.
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MAP results on RM1 (CDHMM)

1000 CD senones, 8 gaussians, Sphinx 3.x fast decoder
Speaker Baseline 100 200 400 MLLR+400 Relative

bef0_3 10.40% 8.43% 7.75% 7.75% 7.84% -24.62%

cmr0_2 8.78% 6.66% 6.40% 6.40% 4.66% -46.92%

das1_2 9.73% 7.04% 5.92% 4.75% 4.21% -56.73%

dms0_4 8.31% 5.66% 5.48% 5.01% 4.42% -46.81%

dtb0_3 9.43% 7.49% 6.63% 5.84% 5.10% -45.92%

ers0_7 8.19% 7.93% 7.96% 6.34% 5.92% -27.72%

hxs0_6 16.36% 11.14% 11.08% 7.52% 7.22% -55.87%

jws0_4 8.81% 6.90% 6.69% 6.40% 5.69% -35.41%

pgh0_1 7.84% 6.37% 6.54% 5.13% 5.04% -35.71%

rkm0_5 24.20% 17.83% 17.18% 13.82% 11.97% -50.54%

tab0_7 6.51% 5.57% 5.33% 4.27% 4.30% -33.95%
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MAP results on RM1 (SCHMM)

4000 CD senones, 256 gaussians, Sphinx 3.x slow decoder
Speaker Baseline MAP MLLR+MAP Relative

bef0_3 8.87% 8.37% 7.87% -11.27%

cmr0_2 7.10% 6.63% 6.42% -9.58%

das1_2 6.07% 5.31% 4.75% -21.75%

dms0_4 5.87% 5.25% 4.69% -20.10%

dtb0_3 7.87% 7.13% 6.93% -11.94%

ers0_7 7.10% 6.93% 6.60% -7.04%

hxs0_6 10.08% 8.81% 7.60% -24.60%

jws0_4 6.63% 5.92% 5.63% -15.08%

pgh0_1 7.93% 7.13% 6.54% -17.53%

rkm0_5 15.97% 14.09% 11.94% -25.23%

tab0_7 5.89% 5.04% 4.63% -21.39%

MAP adaptation with SphinxTrain – p.10/12



MAP on SRI CALO scenario meetings

CALOBIG models, 5000 CD senones, 16 gaussians,
Sphinx 3.x fast decoder

One meeting in a sequence of five was adapted with the
other four. Results were averaged for all five meetings.

Speaker Baseline MLLR MLLR+MAP Best relative WER

bill_deans 50.89% 47.37% 39.39% -22.60%

lpound 56.54% 51.34% 38.90% -31.20%

jpark 29.54% 27.71% 25.88% -12.40%
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