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Abstract Erroneous examples – step-by-step problem solutions with one or more
errors for students to find and fix – hold great potential to help students learn. In this
study, which is a replication of a prior study (Adams et al. 2014), but with a much larger
population (390 vs. 208), middle school students learned about decimals either by
working with interactive, web-based erroneous examples or with more traditional
supported problems to solve. The erroneous examples group was interactively
prompted to find, explain, and fix errors in decimal problems, while the problem-
solving group was prompted to solve the same decimal problems and explain their
solutions. Both groups were given correctness feedback on their work by the web-
based program. Although the two groups did not differ on an immediate post-test, the
erroneous examples group performed significantly better on a delayed test, given a
week after the initial post-test (d=.33, for gain scores), replicating the pattern of the
prior study. Interestingly, the problem solving group reported liking the intervention
more than the erroneous examples group (d=.21 for liking rating in a questionnaire)
and found the user interface easier to interact with (d=.37), suggesting that what
students like does not always lead to the best learning outcomes. This result is
consistent with that of desirable difficulty studies, in which a more cognitively chal-
lenging learning task results in deeper and longer-lasting learning.
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Introduction

A somewhat unusual but potentially productive instructional technique is learning from
erroneous examples, problem examples with step-by-step solutions that have one or
more errors, and for which students are prompted to find and fix the error(s).
Interestingly, such examples have been controversial in education (Tsamir and Tirosh
2003). This is likely due to behaviorist theory (Skinner 1938), and more specifically
stimulus–response theory (Guthrie 1952; Hull 1952), that proposes that exposing
students to errors will make them more prone to make the errors themselves. Yet, some
theorists propose that erroneous examples provide unique learning opportunities,
particularly in mathematics, where students might improve their understanding and
problem solving skills, as well as develop reflection and critical thinking skills, by
grappling with errors in example solutions (Borasi 1996). According to this theory,
directly confronting students with errors and prompting reflection may lead to the
eradication of the errors, similar to what has been shown in learning research on
misconceptions (Bransford et al. 1999). Yet, the argument for the potential instructional
value of erroneous examples appears to have swayed few educational practitioners,
with medical training being one of the few areas that has embraced learning from errors
(e.g., Gunderman and Burdick 2007). Surgeons routinely use BMorbidity and
Mortality^ (M&M) rounds, discussions of what went wrong in actual surgical proce-
dures, as an instructional opportunity for other surgeons and residents and to avoid
these errors in the future (Dr. Janet Durick, personal correspondence). Also, a variety of
medical websites use erroneous examples as a key instructional technique (WHO 2014;
The Doctor’s Company 2013; National Health Care 2013). There are other examples of
students learning from errors, such as students being asked to debug buggy computer
code (Swigger and Wallace 1988) or find and correct errors in writing (Shoebottom
2015; CollegeBoard 2015). Nevertheless, learning from erroneous examples is far from
a routine method of learning in most educational contexts.

Our goal in this study was to explore whether middle-school math students could
learn better from erroneous examples than from the more traditional instructional
approach of problem solving. Furthermore, our goal was to conduct the study with
the support of educational technology, providing students with web-based, interactive
erroneous examples in which they received feedback on the correctness of their work
and were interactively prompted to find, explain,1 and fix the errors. In comparison,
students who did more traditional problem solving also worked with web-based
instructional materials and were also supported with correctness feedback on their
work.

1 The self-explanations in this study were selected from a menu rather than generated by the learner. Since the
literature reports studies with both approaches, it is important to make clear the type used in this study. There is
some evidence that selecting from a menu is more effective than generating explanations when students work
in a fast-paced, computer-based learning environment (Johnson and Mayer 2010; Mayer and Johnson 2010).
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Our hypothesis, which we refer to as the erroneous examples hypothesis, is that
students learn and understand mathematics at a deeper level when they are prompted to
engage in the active cognitive processes of identifying, explaining, and fixing errors in
the erroneous solutions of others. Further, we propose that students might find errone-
ous examples less desirable and more challenging to work with, even if such materials
could help them learn and understand mathematics at a deeper level. Erroneous
examples include an element of problem solving, through prompting students to find
and fix the errors, and this is likely to tax working memory and increase cognitive load,
as has been seen with conventional problem solving (Sweller et al. 1998). In addition to
the problem solving aspect of erroneous examples, students are confronted with a
deceptive and incorrect solution, which is something they are expected to find partic-
ularly challenging, due to their unfamiliarity with this type of example. For these
reasons, we conjecture that students will like learning from erroneous examples less
than conventional problem solving. Finally, we propose that exposing students to
erroneous examples of decimals might make them more aware of their own decimal
misconceptions, an important step toward addressing and ameliorating the
misconceptions.

Prior Research on Learning from Erroneous Examples

A plethora of research has shown the advantages of learning from correct worked
examples (Catrambone 1998; Kalyuga et al. 2001; McLaren et al. 2008; Paas and van
Merriënboer 1994; Renkl 2014; Renkl and Atkinson 2010; Schwonke et al. 2009;
Sweller and Cooper 1985; Zhu and Simon 1987). The theory behind the worked
examples effect is that human working memory, which has a limited capacity, is taxed
by strictly solving problems, which requires focused thinking, such as setting subgoals
(Catrambone 1998). As mentioned above, problem solving has been shown to consume
cognitive resources that could be better used for learning. Worked examples free
cognitive resources for learning, in particular, for the induction of new knowledge by
generative processing (Sweller et al. 2011).

In contrast, the case for erroneous examples is that they may stimulate generative
processing and active learning through the prompting of students to determine what is
wrong with a given problem solution and how to fix the error(s). It also appears that
erroneous examples may help students become better at evaluating and justifying
problem solutions, which, in turn, may help them learn material at a deeper level, with
more lasting effects.

Surprisingly, there has not been much empirical research on the learning
benefits of erroneous examples, particularly in the context of learning with
educational technology. One of the first researchers to experiment with erroneous
examples as a possible instructional technique was Siegler (2002). He investi-
gated whether presenting third and fourth grade students with both correct and
erroneous examples of mathematical equality, and asking them to self-explain
those examples, was more beneficial than asking them to self-explain correct
examples only or to self-explain their own solutions. He found that students who
studied and self-explained both correct and erroneous examples led to the best
learning outcomes of the three groups. Groβe and Renkl (2007) studied whether
explaining both correct and incorrect examples made a difference to university
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students as they learned mathematical probability. Their studies showed learning
benefits for erroneous examples for learners with higher prior knowledge on far
transfer learning. When errors were highlighted, low prior knowledge individuals
did significantly better, while high prior knowledge students did not show any
benefit, presumably because they were already able to identify errors on their
own. Durkin and Rittle-Johnson (2012) tested whether comparing incorrect and
correct decimals worked examples (the Bincorrect^ condition) promotes greater
learning than comparing two correct decimals examples (the Bcorrect^ condition).
They found that the Bincorrect^ condition helped students learn more procedural
knowledge and key concepts, and also lessened their misconceptions. Unlike
Groβe and Renkl, they did not find this effect to be exclusive to higher prior
knowledge students.

A recurrent theme of empirical research on both correct worked examples and
erroneous examples is the prompting of self-explanation to encourage students to
process examples at a deeper level as they study them. Both the Siegler (2002) and
Groβe and Renkl (2007) studies led to an erroneous example effect when students were
not only prompted to study the erroneous examples but also to self explain those
examples. It is thought that self-explanation triggers generative processing, which, in
turn, supports learning. Chi et al. (1989) were the first to explore this phenomenon, the
now well known and instructionally robust self-explanation effect (Chi 2000; Renkl
2002), finding that good problem solvers are more likely to self-explain when studying
worked examples of physics problems. Explicitly prompting for self-explanation has
also been found to be valuable for learning (Chi et al. 1994; Hausmann and Chi 2002;
King 1994) and for better performance on transfer items (Atkinson et al. 2003;
Hausmann and Chi 2002; Wylie and Chi 2014). Given the robustness of these findings
and this line of research, our use of erroneous examples also involves prompting for
self-explanation.

While the earlier described studies on erroneous examples were paper based, there
have been a few studies in which students learned by interacting with erroneous
examples supported by educational technology. For instance, Tsovaltzi et al. (2012)
presented erroneous examples of fractions to students using an interactive intelligent
tutoring system with feedback. They found that 6th grade students improved their
metacognitive skills when presented with erroneous examples with interactive help, as
compared to a problem solving condition and an erroneous examples condition with no
help. Older students – 9th and 10th graders – did not benefit metacognitively but did
improve their problem solving skills and conceptual understanding by using erroneous
examples with help.

A study by Booth et al. (2013) with a computer-based algebra cognitive tutor found
that prompting students to explain both correct and erroneous examples significantly
increased posttest performance compared to students who only explained correct
solutions. In addition, students who received only erroneous examples showed higher
encoding of conceptual features compared to students who received only correct
examples. The authors concluded that combining incorrect examples with correct
examples can increase conceptual understanding of algebra. Huang et al (2008),
experimenting with a software tutor focused on decimals and fractions, found that
having students address cognitive conflicts associated with their own errors significant-
ly increased learning compared to students who studied by working with review sheets
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only. After committing an error, students in the tutor group were not confronted with
their mistake directly but were presented with a cognitive conflict screen related to the
misconception. The cognitive conflict screen was designed to help students recognize
the error in their thinking and was followed by an instruction screen to clarify
misconceptions. Students in the tutor group scored significantly higher on an immedi-
ate and a delayed posttest than the review sheets group. The results also showed that the
tutor was significantly more effective for students with the lowest scores on the pretests.

Adams et al. (2014) compared an interactive erroneous examples condition to a
supported (i.e., correctness feedback) problem solving condition. In this study, sixth-
grade students learned about decimals using the web-based instructional technology
described in the current paper. With 100+ students per condition, a delayed erroneous
example effect was found. Although there were no significant differences on an
immediate posttest, students who worked with the erroneous examples did significantly
better on a delayed posttest than the problem solving students. There was no interaction
between prior knowledge and condition, showing that erroneous examples were
beneficial to both high and low prior knowledge students, contrary to the findings of
the Große and Renkl (2007) study, in which only high prior knowledge students
benefited from erroneous examples, or the Huang et al (2008) study, in which low
prior knowledge students benefitted more from erroneous examples than high prior
knowledge students.2 The current study is a replication of the Adams et al. (2014)
study, with a larger population of students. Given the previous pattern of results in
which the erroneous examples treatment resulted in improved performance on a
delayed test but not on an immediate test, our goal was to determine whether the
pattern from the earlier study would be replicated in a larger-scale study.

A key distinction between the present study and past studies of erroneous examples
is the exploration into the relationship between liking and learning. An implicit
assumption of many educators, and even learning scientists, is the notion that students
should like what and how they are learning. This is certainly a key reason behind the
recent surge to investigate educational games (cf. Gee 2003; Aleven et al 2010; Lomas
et al 2013). The current study investigates this important issue of whether liking is
necessary or important to learning.

Background on Decimal Learning and Common Decimal Misconceptions

It is well documented that students often have difficulty understanding decimals, a
fundamental and gateway topic in mathematics (Glasgow et al. 2000; National
Mathematics Advisory Panel 2008; Rittle-Johnson et al. 2001). Many of the decimal
misconceptions young learners have can persist to adulthood (Putt 1995; Stacey et al.
2001; Widjaja et al. 2011). Isotani et al. (2010) conducted an extensive review of the
math education literature, covering 32 published papers and extending as far back as
1928 (e.g., Brueckner 1928; Glasgow et al. 2000; Graeber and Tirosh 1988; Hiebert
1992; Irwin 2001; Resnick et al. 1989; Sackur-Grisvard and Léonard 1985; Stacey et al.

2 From Huang et al (2008) it is unclear whether low prior knowledge students received more instruction than
higher prior knowledge students due to producing more errors during instructions. In other words, low prior
knowledge students may have had more opportunities to encounter cognitive conflict instruction and thus, for
this reason, had more opportunity to benefit from it.
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2001) and compiled and analyzed a taxonomy of 17 common and persistent decimal
misconceptions.

For instance, a very common decimal misconception is a student thinking that
longer decimals are larger (Stacey et al. 2001). This happens when students
confuse decimal numbers with whole numbers, which they learn before deci-
mals. With this misconception a student might order decimal numbers from
smallest to largest as follows: 0.9, 0.65, 0.731, 0.2347. Another common
misconception is Bnegative thinking^ where students think that a decimal
between 0 and 1, e.g., 0.2, is actually smaller than 0 (Irwin 2001; Widjaja
et al. 2011). This misconception seems to arise from a misunderstanding of the
role of the decimal point. Misconceptions such as these two are surprisingly
resilient to remediation and cause problems for many adults (Putt 1995; Stacey
et al. 2001).

Furthermore, these misconceptions interfere with a conceptual understanding of
decimals that leads to difficulty in later tackling mathematical problems involving
decimals (Hiebert and Wearne 1985). For example, when asked to add or subtract
two decimals, students often do not know how to align the numbers properly, probably
due to relying on learned procedures without a solid conceptual understanding of the
role of the decimal point.

The study presented in this paper focuses on four of the misconceptions that prior
research has shown are most common and contributory to other misconceptions (Stacey
2005; Sackur-Grisvard and Léonard 1985; Resnick et al. 1989). Isotani et al. (2010)
gave these misconceptions short and memorable names, as follows: Megz (Blonger
decimals are larger^, e.g., 0.59>0.8), Segz (Bshorter decimals are larger^, e.g., 0.1>
0.68), Negz (Bdecimals between 0 and 1 are viewed as less than 0^), and Pegz (Bthe
numbers on either side of a decimal are separate and independent numbers^, e.g.,
12.8+4.5=16.13). The instructional approach of the web-based materials, both erro-
neous examples and problem solving, is to have every item target at least one of these
four misconceptions.

Relationship to AI in Education Research

All of the erroneous examples and problem solving materials used in this study were
implemented and rendered interactive using the Cognitive Tutor Authoring Tools
(CTAT: Aleven et al. 2009), a well-known intelligent tutoring authoring tool within
the Artificial Intelligence in Education (AIED) community. While not all of the
technical capabilities of CTAT were used in this project, the fundamental representa-
tional construct of CTAT, behavior graphs, was used to model how students can solve
the erroneous examples and decimal problems. Behavior graphs are a graphical
representation provided by CTAT that model all possible correct solution paths to
given problems, as well as typical errors made by students along those solution paths.
Decimal misconceptions were modeled and represented as errors within the CTAT
behavior graphs.

Some of the more advanced features of CTAT, such as allowing student responses to be
provided in varying orders (i.e., unordered behavior graphs) and using variables to reference
various elements in the behavior graph, were not used due to the relative simplicity of the
decimal problems. On the other hand, erroneous examples necessitated extensions to the
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CTATsoftware, in particular, in developing components to guide the user interface through
the specific steps of identifying, explaining, and fixing errors in the erroneous examples, as
described in the BIntervention Design^ section later in this paper.3

The research reported here is related to the search for the right combination of
intelligent tutors, examples (correct and incorrect with interactive features), and prob-
lem solving for optimal learning. A thread of research within AIED has shown, in
general, that alternating interactive examples and intelligently tutored problems can
sometimes increase learning benefits and usually reduces learning time (Anthony 2008;
McLaren et al. 2008; Salden et al. 2010; Schwonke et al. 2009). All of the examples in
these earlier studies, like those of the present study, involved interactive examples, for
instance providing feedback on the correctness of work, prompting students to self-
explain their answer steps, and supporting students in finishing partially completed
examples. The examples of older, pure educational psychology studies (e.g., Siegler
2002; Sweller and Cooper 1985; Zhu and Simon 1987) were paper based, static, and,
therefore, without interactive features. Thus, another important strand of active AIED
research, for which the present study is representative, is exploring the best way to
optimize learning by imbuing both correct and erroneous examples with interactive,
computer-based features.

Method

Participants and Design

The original set of participants included 463 sixth grade middle-school students from
Pittsburgh-area schools. Seventy participants were removed due to having missed either
the immediate or the delayed posttest.4 Two additional participants were removed from
the sample due to having negative gain scores 3 standard deviations from the mean
between the pretest and immediate posttest. Finally, one student repeated the interven-
tion; thus, their second data set was removed from the analysis. This left a total of 390
participants in the final sample (197 females, 193 males). The students’ ages ranged
from 10 to 13 (M=11.57, SD=.61). There was a significant difference between
participants who dropped out and those who stayed in the study F(1456)=23.33,
p<.001. However, there was no significant interaction between condition and partici-
pants who dropped out F(1456)=.04, p=.85, therefore, one group did not lose a larger
number of higher or lower prior knowledge participants. The study took place at two
Pittsburgh-area schools over two school years, with two test runs in the spring of 2012,
one at each school, and two in the fall of 2012, again one at each school, but with a
different population of students.

3 While CTATwas a useful tool in the development of the study materials, a limited description of the software
is provided here, since a deep understanding of CTAT is not essential to understanding the study design.
4 Virtually all of the deleted students were removed due to illness or otherwise missing class time, conditions
outside of the experimenters’ control and not necessarily indicative of specific learner characteristics, e.g.,
weak learners. Furthermore, there was not a significant difference on the pretest between the deleted students
assigned to each of the two conditions t (68)=−.63, p=.53, indicating that the missing students from each
condition were not significantly different from one another in terms of prior knowledge.
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Materials, Apparatus, and Procedure

The materials, apparatus, and procedure used in this study were identical to our
previously published study (Adams et al. 2014). All of the materials, including the
three decimal assessment tests, a demographic questionnaire, an evaluation question-
naire, and two different versions of an online lesson on decimals (erroneous examples
and problem-solving), were implemented using the aforementioned CTAT authoring
tool (Aleven et al. 2009).

Assessment Tests

For the pretest, immediate posttest, and delayed posttest three isomorphic versions of a 46-
item decimal assessment test were created (called, henceforth, Tests A, B. and C). The
three tests includedmatched test items (i.e., an equal number of questions, appearing in the
same test item position in each test) although the cover stories and values of the test items
varied across tests. Each test had a grand total of 50 possible points, due to some test items
having multiple components. Every test item was designed to probe for a specific
misconception. Test items included a variety of decimal problems:

& Adding decimal numbers together (e.g., 11.90+0.2=_______);
& Ordering decimals according to magnitude (e.g.,. (BPut the following list of deci-

mals in order of size, smallest to largest: 0.899, 0.89, 0.8, 0.8997^);
& Answering multiple-choice questions (i.e., BIf a decimal number starts with a 0 before

the decimal point, would it be less than 0? Yes, No, It Depends, Don’t Know^);
& Placing decimals on a number line (i.e., BPlace 0.6 on a number line between −1

and 1^);
& Providing the next decimal number in a sequence (B.201, 0.401, 0.601, 0.801,

____); and
& Choosing the largest or smallest decimal from a list (e.g., BChoose the largest of the

following three numbers: 0.22, 0.31, 0.9)

In addition to looking at overall accuracy, we were also interested in the students’
meta-cognitive awareness of their decimal knowledge. If students become more aware
of their misconceptions, they are theoretically better prepared to address and amelio-
rate those misconceptions. Thus, for 15 of the test items students were asked to rate
their confidence on a 5-point Likert scale ranging from BNot at all sure^ (1) to BVery
sure^ (5). The rationale for this data collection was that students with high awareness
would be more likely to give high confidence ratings for correct answers and low
confidence ratings for incorrect answers. These judgments were collected across the
three testing sessions (pretest, posttest, delayed posttest) to examine whether erroneous
examples or problem solving would increase the students’ awareness of their own
misconceptions.

Questionnaires

The demographic questionnaire solicited basic information about age, gender, and
grade level. In addition students were asked a series of questions relating to their prior
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experience with decimals, experience working with computers, and questions relating
to math self-efficacy. Upon completion of the intervention students were given an
evaluation questionnaire to rate how they felt about their lesson. The questionnaire
included 10 items, which were later combined into 4 categories: BLesson Enjoyment^
(How well students liked the lesson - 2 items): BEase of Interface Use^ (How easy it
was for the student to interact with the tutor and its interface - 4 items); BFeelings of
Math Efficacy^ (Whether the student had positive feelings about mathematics after
using these materials - 2 items); and BPerceived Material Difficulty^ (Whether the
student perceived that the lesson was difficult - 2 items). Responses were given using a
5-point Likert scale ranging from BStrongly agree^ (1) to BStrongly disagree^ (5).

Intervention Design

The two versions of the lesson, erroneous examples and problem solving, each
comprised 36 total items, as illustrated in Table 1.

The two interventions were arranged into 12 groups of three items, with each group
targeting one of the four misconception types discussed previously (i.e., Megz, Segz,
Pegz, Negz). Within each group of three items there were two intervention-specific
items (i.e., two erroneous example items or two problem solving items) with the final
item of each group being a supported problem to solve to allow practice of the just
exercised problem type. For the first two items in each group – either erroneous
example or problem solving items – students were prompted for self-explanation
(i.e., they selected possible explanations from a menu) and received correctness
feedback on all of their steps. The third item in each group – the problem to solve –
prompted students to solve a problem targeted at the specific misconception with
feedback provided, but without prompted self-explanation. Figure 1 contains a step-
by-step comparison of the items in the two conditions.

Figure 2 illustrates what happens in the actual interfaces students used to tackle each
of the steps for erroneous examples. In the sample erroneous example of Fig. 2, a
fictional student is asked to order three decimal numbers from smallest to largest and
commits the Segz misconception (Bshorter decimals are larger^) by putting the deci-
mals in order from shortest to longest. To tackle erroneous example items, students first
read and reviewed the error made by the fictional student (top left panel). After pressing
a BNext^ button – something the student does after tackling the subtask in each of the
panels of Fig. 2 – students are asked to identify what the fictional student has done
wrong from a list of 3 to 4 options, one of which is the misconception exhibited by that
student (in this case, the final option BHe thinks that a decimal is smaller if it has more
digits^). In the left middle panel students are then asked to correct the mistake. This
involves, for instance, correcting an incorrect sequence of decimals (as in this case),
moving a decimal to the correct position on a number line, or correctly adding two
decimals. In the right middle panel participants next explain why their new answer is
correct or confirm the correct solution (i.e., the BConfirms Correct Solution^ step of
Fig. 1). Finally, in the bottom left panel the students are prompted to give advice on
how to solve the problem correctly. This is the step where the student is effectively
explaining the solution (i.e., BExplains Correct Solution^ in Fig. 1). The prompted
explanation here, and for most of the erroneous examples and problems to solve, is for
an explanation of the procedure used to solve the problem. For every panel that requires
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Table 1 This table shows the sequence of materials for the two versions of the lesson, erroneous examples
and problem solving

Erroneous examples (ErrEx) Problem solving (PS)

Group 1: Longer decimals
are larger (Megz)

1. ErrEx (Megz1) 1. PS (Megz1)

2. ErrEx (Megz2) 2. PS (Megz2)

3. Practice Problem (Megz1) 3. Practice Problem (Megz1)

Group 2: Shorter decimals
are larger (Segz)

4. ErrEx (Segz1) 4. PS (Segz1)

5. ErrEx (Segz2) 5. PS (Segz2)

6. Practice Problem (Segz1) 6. Practice Problem (Segz1)

Group 3: independent #s left & right
of decimal (Segz)

7. ErrEx (Pegz1) 7. PS (Pegz1)

8. ErrEx (Pegz2) 8. PS (Pegz2)

9. Practice Problem (Pegz1) 9. Practice Problem (Pegz1)

Group 4: decimals between 0 and 1
are < 0 (Negz)

10. ErrEx (Negz1) 10. PS (Negz1)

11. ErrEx (Negz2) 11. PS (Negz2)

12. Practice Problem (Negz1) 12. Practice Problem (Negz1)

Group 5: Longer decimals
are larger (Megz)

13. ErrEx (Megz3) 13. PS (Megz3)

14. ErrEx (Megz4) 14. PS (Megz4)

15. Practice Problem (Megz2) 15. Practice Problem (Megz2)

Group 6: Shorter decimals
are larger (Segz)

16. ErrEx (Segz3) 16. PS (Segz3)

17. ErrEx (Segz4) 17. PS (Segz4)

18. Practice Problem (Segz2) 18. Practice Problem (Segz2)

Group 7: independent #s left & right
of decimal (Segz)

19. ErrEx (Pegz3) 19. PS (Pegz3)

20. ErrEx (Pegz4) 20. PS (Pegz4)

21. Practice Problem (Pegz2) 21. Practice Problem (Pegz2)

Group 8: decimals between 0 and 1
are < 0 (Negz)

22. ErrEx (Negz3) 22. PS (Negz3)

23. ErrEx (Negz4) 23. PS (Negz4)

24. Practice Problem (Negz2) 24. Practice Problem (Negz2)

Group 9: Longer decimals are
larger (Megz)

25. ErrEx (Megz5) 25. PS (Megz5)

26. ErrEx (Megz6) 26. PS (Megz6)

27. Practice Problem (Megz3) 27. Practice Problem (Megz3)

Group 10: Shorter decimals are
larger (Segz)

28. ErrEx (Segz5) 28. PS (Segz5)

29. ErrEx (Segz6) 29. PS (Segz6)

30. Practice Problem (Segz3) 30. Practice Problem (Segz3)

Group 11: independent #s left & right
of decimal (Segz)

31. ErrEx (Pegz5) 31. PS (Pegz5)

32. ErrEx (Pegz6) 32. PS (Pegz6)

33. Practice Problem (Pegz3) 33. Practice Problem (Pegz3)

Group 12: decimals between 0 and 1
are < 0 (Negz)

34. ErrEx (Negz5) 34. PS (Negz5)

35. ErrEx (Negz6) 35. PS (Negz6)

36. Practice Problem (Negz3) 36. Practice Problem (Negz3)

Items are organized into 12 groups of three items each, with each group targeting one of the four miscon-
ception types. The ErrEx and PS items in the same row are the same problem, but presented differently
according to condition. The third item in every group, the practice problem, is the same across conditions
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students to make a selection, feedback is provided, with the answer turning green for
correct answers, or red for incorrect answers. Students also receive text feedback from a
message window in the bottom right corner of the intervention screen. Messages include
encouragement for students to try incorrect steps again (e.g., BCan you try that again?
That answer is not correct^) or Bsuccess^ feedback to continue on to the next step or
problem after correctly solving a step (e.g., BYou’ve got it. Well done.^, as in Fig. 2).

Figure 3 illustrates what happens in the actual interface students use to tackle a
problem solving item. Figure 3 shows the isomorphic problem-solving item of Fig. 2.
For the problem-solving condition of Fig. 3, the items contain the same numbers and
problem requirements (e.g., order the three decimals 1.932, 1.9, 1.63 from smallest to
largest) as the corresponding erroneous example items except students are prompted to
solve the problem on their own, rather than review the erroneous solution of a fictitious
student. The explanation prompts, which are multiple-choice questions, include one

Fig. 2 Example of an Erroneous Example item focused on the Segz misconception (Bshorter decimals are
larger^)

Steps for Erroneous Example (ErrEx) Items 

Steps for Problem Solving (PS) Items 

Fig. 1 Comparison between the sequences of steps in the two experimental conditions
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correct explanation and misconception distracters. Students in this group also receive
feedback from a message window in the bottom right panel as well as green/red
feedback on their solution and multiple-choice explanation questions.

Procedure

The study was conducted in each school’s computer lab, and replaced the students’
regular math class. The grades students received on the tests were used as part of the
students’ grades in their regular math class. Students worked on either Apple or PC
computers, depending on what each school’s computer room provided, with full
Internet connectivity.

The students were randomly assigned to either the erroneous examples group (188)
or the problem-solving group (202).5 Within each group, students were also randomly
assigned to receive one of the six possible pretest/posttest/delayed-posttest orderings
(ABC, ACB, BAC, BCA, CAB, CBA). The study took place over five 43-min sessions
(the first four sessions on consecutive days), in which students took the pretest and
filled out the demographic questionnaire during the first session, received the interven-
tion during the second and third sessions, completed the evaluation questionnaire
during the third session, took the immediate posttest during the fourth session, and
took the delayed-posttest during the fifth session which took place 1 week after the
immediate posttest. The students did not work on decimal-related homework or

Fig. 3 Example of a Problem Solving item focused on the Segz misconception (Bshorter decimals are larger^)

5 An adaptive erroneous examples version of the intervention was also piloted during the two Fall 2012 runs.
However, not enough data was collected from the adaptive erroneous examples group to draw clear
comparisons with the erroneous examples and problem solving conditions.
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assignments during the intervening time between the immediate and delayed posttest.
In each session, if students finished early, which occurred somewhat frequently since
more class time was reserved for the study than was needed by the average student,
they received non-decimal math homework to work on. All of the 390 students
analyzed and reported in the results completed the 36 items on the intervention.

Results

Are the Groups Equivalent on Prior Knowledge and Basic Demographic
Characteristics?

The first row of Table 2 shows the mean (and standard deviation) of the erroneous example
group (ErrEx) and problem-solving group (PS) on the pretest. An ANOVA showed there
were no significant differences between the ErrEx and PS groups on the pretest, F(1,
389)=.92, p=.34. While there was a significant difference in pretest performance between
the students tested in the spring versus the fall, F(1388) =16.44, p<.001, a chi-squared
analysis looking at condition and testing time showed there were no significant differences
between the two conditions in terms of percentage of data collected in the spring versus the
fall between the two conditions, X2 (1, N=390)=.19, p=.66. Therefore, neither condition
was biased in terms of having more students from a particular testing time. In addition there
was an equal distribution across the two conditions of participants from the two schools, X2

(1, N=390)=.43, p=.51 as well as an equal distribution of male and female participants
across the two conditions, X2(1, N=390)=.36, p=.556

Looking at reported experience and self-efficacy with decimals, all of the scores
from the demographic survey that dealt with decimals were added together and
then averaged to determine familiarity with decimals. There were no significant
differences between the groups in terms of self-perceived competence with deci-
mals, t(388)=.04, p=.98. Due to participants being randomly assigned to a test
order for the three different versions of the test (i.e., A, B, and C), ANOVAS were
used to examine whether test version significantly affected performance. The
analysis showed that there were no significant differences between the three
versions of the pretest (p=.85), immediate posttest (p=.50), or delayed posttest
(p=.12). Due to the lack of difference all subsequent analyses were collapsed
across this factor.

Do the Groups Differ on Learning Outcomes?

Means and standard deviations for the immediate and delayed posttest can be found in
the second row of Table 2. Gain scores were calculated by subtracting each student’s

6 There were 255 students at School A and 135 students at School B. Based on an ANOVA, students at School
A (M=30.56, SD=10.54) scored significant higher on the pretest than did students from School B (M=25.73,
SD=11.88), F(1, 386)=17.52,MSE=2024.19 p<.001; and there was no significant interaction between school
and treatment group, F(1, 386)=1.52, MSE=175.14, p=.22. In addition, students from school A (M=10.60,
SD=4.01) rated their competence with decimals significantly higher compared to students from school B (M=
11.71, SD=4.43), F(1,386)=6.14, p=.01; and there was no significant interaction between school and
treatment group for decimal self-efficacy.
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pretest total scores from the immediate and delayed posttest scores. Looking at gain
scores between the pretest and immediate posttest, an ANCOVAwith pretest score as a
covariate, revealed that there was a marginally significant effect with ErrEx showing
higher gains between the pretest and immediate posttest compared to the PS condition,
F(1387)=3.72, MSE=150.03, p=.055, d=.22 For the gains scores between the pretest
and delayed posttest, an ANCOVA with pretest score as a covariate showed that
students in the ErrEx group had significantly higher gains than students in the PS
condition, F(1387)=10.15,MSE=402.09, p=.002, d=.33. The superior performance of
the ErrEx group on the delayed test is the major empirical finding of this study7.

Are there Group Differences in Learning Outcome Greater for Students with Low
or High Prior Knowledge?

An additional analysis was conducted to determine whether the intervention had
differential effects for students with low versus high prior knowledge. First, we
classified students based on a median split on pretest score, with 200 students classified
as low prior knowledge (i.e., pretest score from 7 to 28 points) and 190 students
classified as high prior knowledge (i.e., pretest score from 29 to 49 points). In general,
low prior knowledge participants had significantly higher gains compared to the high
prior knowledge students between the pretest and the immediate posttest, F(1386)=
33.59, MSE=1396.40, p<.001, d=.59, and between the pretest and delayed posttest,
F(1386)=54.17, MSE=2211.29, p<.001, d=.74. However, there was no significant
interaction between condition and prior knowledge level for gains between either the
pretest to the immediate posttest (F(1386)=.36, MSE=145.69, p=.55) or pretest to the
delayed posttest F (1386)=.67, MSE=27.44, p=.41). This suggests that both of the

Table 2 Mean and Standard Deviation on Pretest, Immediate Test, and Delayed Test for the Two Groups

Condition

Erroneous
Examples

Problem
Solving

N=188 N=202

Pretest 28.35 (10.64) 29.39 (11.31)

Immediate Posttest 33.61 (10.67) 33.20 (11.04)

Delayed Posttest 35.70 (10.13) 34.46 (10.78)

Pretest-Immediate Posttest Gain Score 5.26 (7.08) 3.81 (6.34)

Pretest-Delayed Posttest Gain Score 7.35 (7.07) 5.07 (6.56)

7 Looking at the results from school A, there was no significant difference in gains scores between the pretest
and immediate posttest between PS group (M=3.79, SD=6.53) and the ErrEx group (M=5.67, SD=7.52)
F(1252)=2.44, p=.12, d=.27. Between the pretest and the delayed posttest, participants in the ErrEx group
(M=7.75, SD=7.35) had significantly higher gain scores than the PS group (M=5.09, SD=6.79), F(1252)=
6.26, p=.01, d=.38. When looking at the results for school B, there was no significant difference between the
PS group (M=3.84, SD=6.02) and the ErrEx group (M=4.42, SD=6.05) for gains between the pretest and the
immediate posttest, F(1133)=.31, p=.58, d=.10. In contrast to School A, there was no significant difference
between the PS group (M=5.03, SD=6.16) and the ErrEx group (M=6.53, SD=6.44) of School B for gains
between the pretest and the delayed posttest, F(1, 133)=1.92, p=.17, d=.2.
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interventions were beneficial for low prior knowledge students, with no significant
difference between the interventions.

High prior knowledge students had, of course, less room for growth due to having
higher scores on the pretest. Separate analyses were conducted on both the low and high
prior knowledge participants to determine whether the benefit for erroneous examples on
the delayed posttest was significant for both groups. For low prior knowledge individuals
an ANCOVA, with pretest as a covariate, was conducted looking at gains between the
pretest and immediate posttest and pretest and delayed posttest. Low prior knowledge
participants in the ErrEx and PS conditions did not show significant differences in gains
between the pretest and immediate posttest, F(1197)=2.47,MSE=150.84, p=.12, d=.23.;
however, the ErrEx condition had significantly higher gains between the pretest and the
delayed posttest, F(1197)=6.06, MSE=367.21, p=.02, d=.35. High prior knowledge
individuals showed the same pattern with no significant difference for gains between
the pretest and the immediate posttest, F(1187)=1.00,MSE=18.39.59, p=.32, d=.21, and
ErrEx participants having significantly higher gains compared to the PS student between
the pretest and the delayed posttest, F(1187)=4.28,MSE=70.60, p=.04, d=.37. Therefore
although high prior knowledge students had lower gains overall, the higher prior knowl-
edge students in the ErrEx condition still had larger gains than the higher prior knowledge
students in the PS condition between the pretest and delayed posttest.

Along with separating participants into high and low prior knowledge groups,
performance on the pretest was also used as a continuous variable in a stepwise
regression analysis to determine if there was any significant interaction between the
intervention condition and the student’s prior knowledge level on immediate and
delayed posttest performance. Step 1 for both analyses examined the effects of the
pretest as well as condition on test performance, while Step 2 examined whether the
interaction between the two variables could account for any additional variance in test
performance. For Step 1, prior knowledge and condition accounted for a 65.9 % of the
variance for immediate posttest performance, F (2387)=373.93, p<.001. Performance
on the pretest had a significant effect on the immediate posttest, as reveal by the
standardized partial regression coefficients, β=.81, t=27.34, p<.001, however, condi-
tion had only a marginally significant effect on the immediate posttest, β=.06, t=
1.93.88, p=.055. The coefficient for the interaction term entered at Step 2 showed no
significant interaction between pretest performance and condition on immediate post-
test performance, β=−.04, t=−.65, p=.52. On the delayed posttest, pretest performance
and condition account for 64.1 % of the variance in test performance, F (2387)=
345.51, p<.001. Both pretest, β=.80, t=26.22, p<.001, and condition, β=.10, t =3
.19, p=.002, significantly affected performance on the delayed posttest performance,
mirroring earlier analyses. There was no significant interaction between condition and
pretest performance on delayed posttest performance as indicated by the interaction
coefficient on Step 2, β=−.04, t=−0.92, p=.36.

Combined with the median split analysis, these analyses suggest that erroneous
examples were not more or less effective for students with high or low prior knowledge.

Do the Groups Differ on Their Awareness of Misconceptions?

An additional goal of the erroneous example treatment was to improve students’
metacognitive skills, particularly their awareness of their own decimal knowledge
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and misconceptions. To explore this question, the strength of students’ misconception
awareness was calculated through self-assessed confidence in correctness of test
responses. It should be noted that confidence ratings are only a rough metric that do
not fully capture the students’ awareness of misconceptions. For instance, a student
being aware of having made a computational error is not the same as being aware of a
misconception. On the other hand, awareness of many other errors would arguably be
the same as awareness of misconceptions.

One of the items was dropped from the analysis across the 3 tests due to a data
logging issue. This left a total of 17 test items per test that the students were asked to
give a confidence rating on after answering the question. Due to an error in logging
some of the confidence data, six participants were removed from the confidence
calibration analysis. To examine how confident the students were of their answers on
the pretest, immediate posttest, and delayed posttest the mean confidence level for each
student was calculated using the data from the 5-point Likert confidence scales. A
repeated measures ANOVA was conducted with testing session as a within subjects
factor and condition as a between subjects factor. There was no significant main effect
for condition, F(1, 381)=.10, MSE=.14, p=.76. There was a significant main effect of
testing session, F(2, 762)=75.04, MSE=7.89, p<.001. Post-hoc Bonferroni pairwise
comparison between the testing sessions showed the participants significantly increased
in confidence across the three sessions with an overall average increase in confidence
of .28 points (SE=.03) on a five point scale. There was no significant interaction
between test and condition, F(2, 762)=1.14, MSE=.12, p=.32, therefore there was no
significant difference in terms of increase in confidence across the three tests between
the ErrEx and PS conditions.

Students’ responses were then categorized by confidence level and accuracy, which led
to four response categories: high confidence error, low confidence error, high confidence
correct, and low confidence correct. Students’ responses were categorized as being low
confidence if they were a 1 or 2 on the 5-point scale and high confidence if they were a 3, 4,
or 5 on the 5-point scale. There were no significant differences between conditions for any
of the responses on the pretest. For each of the four response types categories an ANCOVA
was conducted, with pretest rate of the respective response type as a covariate, to examine
whether there were significant differences between the two conditions for any of the
response types on the immediate or delayed posttest. There were no significant differences
in response type percentage on the immediate posttest for any of the response types. For the
delayed posttest, the only significant difference was for high confidence correct answers, F
(1, 380)=5.07, MSE=.15, p=.03. Students in the ErrEx condition were more likely to
make high confidence correct responses (M=66.27 %, SD=24.20 %) than students in the
PS condition (M=63.45 %, SD=26.33 %). While it appears that erroneous examples did
not raise students’ awareness of their misconceptions, as we hypothesized, the finding that
students in the ErrEx condition weremore likely tomake high confidence correct responses
on the delayed posttest indicates that erroneous examples helped strengthen students’meta-
cognitive awareness of their decimal knowledge somewhat more than problem solving.

Do the Groups Differ on Their Satisfaction with the Online Lesson?

For the evaluation survey, four categories, each of which entailed multiple questions as
described previously, were created to assess different aspects of the lesson: BLesson
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Enjoyment^, BEase of Interface Use^, BFeelings of Math Efficacy^ and BPerceived
Material Difficulty .̂ The PS condition students were significantly more likely to report
that they liked the lesson compared to the ErrEx students F(1, 388)=4.29,MSE=23.49,
p=.04, d =. 21. Although there were no significant differences between the conditions
in terms of perceived lesson difficulty, F(1, 388)=1.69, MSE=4.96, p=.19, d=−.13,
participants in the PS condition found it significantly easier to interact with the tutor
interface, F(1, 388)=12.94, MSE=124.97, p<.001, d=.37 There were no significant
differences between the two conditions in terms of reporting that the lesson led to more
positive feelings about math, F(1, 388)=2.08, MSE=9.66, p=.15, d=.15. The higher
satisfaction ratings of the PS group on two key measures is another major finding of
this study8

Do the Groups Differ on Time on Task?

We also wanted to see how much time students in the two groups spent doing the
lesson. The erroneous examples students may have performed better on the delayed
posttest, but did the extra steps and additional time in the instructional phase contribute
to this benefit? On average, students in the ErrEx condition took 71.43 (SD =21.98)
minutes to complete the lesson while students in the PS condition took 51.09 (SD=
20.40) minutes. An independent samples t-test revealed this difference to be significant;
participants in the ErrEx condition took significantly longer to complete the lesson,
t(388)=9.48, p<.001. In addition to t-tests, regression analyses for gains between
pretest and the immediate and delayed posttest were run with condition and time-on-
task entered at Step 1 and the interaction term entered at Step 2. Although there was a
non-significant effect of time-on-task on pretest-to-delayed-posttest gains, β=.10, t=
1.88, p=.06, there was no significant interaction between duration and condition on
delayed posttest performance, β=.02, t=.32, p=.75. There were no significant effects
or interactions with duration for pretest to immediate posttest gains. Overall, there is no
evidence that time on task contributed more to one group than the other.

Discussion

Empirical Findings

Overall, students liked the lesson significantly better when they only engaged in
traditional problem solving (d=.21 for liking rating) and the problem solving students
found the user interface easier to interact with (d=.37), yet students who learned with
erroneous examples showed higher learning gains as measured on a delayed posttest

8 Looking at differences between the two schools, there was only a significant difference for perceived
material difficulty, in which students from school B (M=5.24, SD=1.68) reported finding the instructional
materials more difficult than students from school B (M=5.75, SD=1.71), F(1, 386)=8.04, MSE=23.16,
p=.01, d=.29 There was only one marginally significant interaction between school and treatment group,
concerning the question about making students feel good about math, F(1, 386)=3.83, MSE=17.69, p=.05,
reflecting a pattern in which participants in the ErrEx group were less likely to report that the intervention
made them feel good about math at school B while there were no significant differences between the two
groups at school A.
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(d=.33). In other words, students liked the lesson better when they could engage in
problem solving, but they learned better when they were asked to tackle and learn with
erroneous examples, consistent with the admonishment that Bliking is not learning^.
This point was further supported by there being no significant correlations between
students liking ratings and pre-to-post learning gains, r (390)=−.05, p=.29, or liking
ratings and pre-to-delayed learning gains, r (390)=−.01, p=.80. In addition, a hierar-
chical regression analysis showed that there was no significant interaction between
liking and the two conditions in terms of increasing learning gains either for the
immediate, β=.08, t=1.08, p=.28, or delayed posttest, β=.04, t=.50, p=.62.

The results of this study replicate the pattern of findings in a previous study in which the
erroneous examples group outperformed the problem-solving group on a delayed posttest
but not an immediate posttest (Adams et al. 2014). In other words, these new results add
support to the emergent finding that erroneous examples lead to a delayed, but not
immediate, learning effect. This pattern of significant differences on delayed tests rather
than immediate tests is also consistent with research on other generative learning activities
such as self-testing (Dunlowsky et al. 2013; Fiorella and Mayer 2015).

Theoretical Implications

Asking learners to identify and self-explain errors in someone else’s worked-out
solutions to mathematics problems can prime deeper cognitive processing during
learning than simply asking a learner to solve the problems on his or her own. This
is the theoretical rationale for presenting erroneous examples. In addition, asking
students to analyze erroneous examples, with feedback, is intended to help learners
develop metacognitive skills, particularly, monitoring and evaluating steps in a
problem-solving plan that can persist over time.

A possible explanation for the longer-term retention of erroneous examples is that
erroneous example study, which involves elements of both example study and problem
solving (i.e., fixing the erroneous solutions and solving practice problems), may
provide and strengthen Bdon’t do X^ knowledge and/or more general declarative/
conceptual knowledge, in addition to supporting procedural knowledge. Put another
way, the erroneous example students may be developing multiple cognitive paths such
that Bdon’t do X^ (or conceptual knowledge) compensates for weakness in Bdo X^
procedural knowledge. This explanation is in line with Bob Siegler’s theory (Siegler
2002) in which students saw and explained both correct and incorrect examples and
that group performed better than the one that saw and explained correct examples only.
In essence, he theorized that the erroneous example / worked example treatment
strengthened both the Bdo X^ and Bdon’t do X^ knowledge of students.

Learning from erroneous examples can be seen as similar to a desirable difficulty
(Yue et al. 2013), in which making a learning task more difficult can result in deeper
and longer-lasting learning than making the learning task very straightforward. A
possible explanation for how erroneous examples are similar to desirable difficulties
comes from cognitive load theory (Moreno and Park 2010). In order to update long-
term memory and make it flexibly accessible, students must be prompted to engage in
deeper processing (also called generative or germane processing) of the instructional
material. Traditional instructional approaches, such as presenting students with consec-
utive problems on the same topic, may ease working memory and intrinsic processing,
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but may not promote the generative/germane processing that leads to long-term
memory benefits like erroneous examples do.

Practical Implications

Although the present results suggest the potential of erroneous examples to aid
learning, an important practical issue concerns the proper balance of direct instruction,
problem solving and erroneous examples. In the present study, students in the errone-
ous examples group received a combination of erroneous example and problem solving
items.

Another important practical issue concerns the role of feedback in erroneous
examples, because without feedback, students run the risk of learning the incorrect
way to solve problems. In the present study, students could not move forward until they
had corrected errors and produced a correct solution strategy.

We expected that, like the Groβe and Renkl study (2007), higher prior knowledge
students would benefit more from erroneous examples than lower prior knowledge
students in this study. However, we did not find a difference between high and low
prior knowledge students, indicating that students of any level could benefit from
erroneous examples. Perhaps our materials, unlike those of the Groβe and Renkl study,
were designed so that even lower prior knowledge students could easily follow, interact
with, and learn from the examples without incurring excessive cognitive load. The
Groβe and Renkl work was also different in that it focused on errors related to
confusing problem types instead of deeply entrenched misconceptions, which is what
our study focused on. In other words, erroneous examples may be more helpful for
students with low prior knowledge when they involve common misconceptions.

Limitations

This was a study conducted over five class periods that focused on just a single topic within
the U.S. middle-school mathematics curriculum. In addition, many of our decimal prob-
lems are single-step problems, unlike the more complex, multi-step problems in studies like
that of Große and Renkl (2007). More research is clearly needed to determine whether and
how erroneous examples can make a difference to learning across the mathematics
curriculum and in topics of varying difficulty and complexity.

Another possible limitation is that students were prompted to give procedural, rather
than conceptual, explanations to the incorrect and correct solutions. One might expect that
conceptual explanations would help students more effectively overcome their misconcep-
tions and lead to deeper learning. Conceptual explanations of decimal content and prob-
lems, expressed succinctly and simply enough for middle school students to understand,
were exceedingly difficult to write, so we used procedural explanations. Yet, interestingly,
even with procedural explanations, students in the erroneous examples condition learned
more deeply than those in the problem solving condition. Left for future research is
experimenting with the effect of conceptual self-explanations.

Finally, it could be argued that the two comparison groups, erroneous examples and
problem solving, differ on more than a single variable. The erroneous examples group
was prompted to self explain both the error that was observed and the correct way to
solve the problem. In the problem-solving group, on the other hand, students were
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prompted to self explain only the correct solution. It goes to the different nature of these
instructional material types that they differ on this aspect, yet the fact is the erroneous
examples condition received more self-explanation prompting than the problem-
solving condition. It is possible that that difference in the design contributed to the
delayed effect found in this study.

Conclusion

This paper has presented a study that provides evidence that erroneous examples may
lead to deeper and longer-lasting learning as compared to supported problem solving.
The study described here is a replication of an earlier study (Adams et al 2014), and the
results are in line with that study. Furthermore, the study provides strong support for the
notion that Bliking is not learning^, since students in the erroneous examples group
liked the materials less and found the user interface harder to work with than the
problem solving group, yet they learned the material more deeply.
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