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Abstract

Scarcity of labelled data often hampers the learning of Hidden Markov Models
in applications such as speech, text, and video processing. Although current active
learning algorithms can select examples to be labelled, it is not clear how to select
examples to be completely annotated.

This work presents a novel information gain solution to the problem. The algo-
rithm can either select the best sequence from a set of sequences, or extract the best
subsequence from an unsegmented stream of data. By using dynamic programming,
the computation can be performed in time linear in the number of timesteps. These
results apply to any time series model having the Markov property.
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1 Introduction

Active learning algorithms are used to reduce the number of labeled examples neces-
sary for a given level of performance. The canonical active learning task consists of a
model, an unlabelled dataset, and a labeller (such as a human expert.) The active learn-
ing algorithm greedily selects an “informative” example from the unlabelled dataset to
present to the labeller. Then the newly-labelled example is added to the dataset, the
model is relearned, and the process repeated.

The simplest approach to active learning is Uncertainty Sampling in which the
most uncertain example is selected for labelling (Lewis & Catlett, 1994). Although
this approach is intuitive and easy to implement, it is sensitive to noise. A more sound
set of methods selects examples that are expected to most reduce the version space, the
Query by Committee (QBC) methods (Seung et al., 1992). The Information Gain (1G)
approach is similar to QBC, but directly attempts to minimize the entropy of the model
posterior (Mackay, 1992; Anderson & Moore, 2005; Ji et al., 2006). Another option is
to select examples that are expected to reduce classification error on a test set, the error
reduction approach (Roy & McCallum, 2001).

With HMMs, there are several possible active learning tasks, the most common are
listed here. Assume that one has a large set of unlabelled sentences:

1. Select a Sequence for Classification. E.g., choose a sentence to have labelled as
either English or Not-English. Previous work includes (Ji et al., 2006; Tur et al.,
2003)

2. Select a Token for Annotation. E.g., choose a single word to get the Part-of-
Speech (POS) label of. Previous work includes (Scheffer et al., 2001; Anderson
& Moore, 2005)

3. Select a Sequence for Annotation. E.g., choose one sentence to have every word
POS labelled. Previous work includes (Dagan & Engelson, 1995)

4. Extract a Subsequence for Annotation. E.g., choose any contiguous subset of
words to have POS labelled.

Information gain solutions to Tasks 1 and 2 were put forth in (Ji et al., 2006) and
(Anderson & Moore, 2005) respectively. The present work provides information gain
solutions to Tasks 3 and 4. Note that other possibilities for the “sentences” and “words”
of the tasks could be genes and nucleotides or video clips and frames.

Section 2 contains an overview of the role of information gain in active learning.
Section 4 reviews the information gain approach to the token-selection task. Section 5
introduces new measures for information gain of a sequence. Sections 6 and 7 explain
how to efficiently extract the optimal subsequence using dynamic programming.

2 Active Learning with Information Gain

We have a set of observations y1.7 = {y1,¥2, ..., y7 } Which has a one-to-one corre-
spondence with a hidden set of true classes x1.7 = {x1, 22, ...,x7}. Each example



can be either observed or unobserved. There is a set of labels ;.7 = {l3,la, ..., I7}. If
the ith label is observed, then [; = x;, otherwise, [; = *. The set of observations and
labels we will denote by D = {y1.1, 1.7}

The random variables X;.r = {X;, Xo,..., X7} will be used to represent the
learner’s distribution over the labels. We also have a model that can estimate P(X;|y;, 6),
where 6 € O are the model parameters. We also have a learning procedure that deter-
mines a posterior over models, P(©|D) or hereafter Pp(O).

For information gain, we wish to minimize the entropy of Pp(©) by carefully
choosing an X; to obtain the label of (Mackay, 1992). What is the expected reduction
in H(O) if we were to be told the label of X;? By definition it is the mutual information

IG(©; X;) = H(®) — H(O|X;) 1)

where entropy is defined in the standard way as H(©) = > .o Pp(f)log Pp(f) and
conditional entropy is the expected value of H(O) given that we know the value of X;.

The only difficulty here is that the space ©® may be continuous or otherwise too
difficult to sum over. In QBC and other active learning approaches, the model space
is approximated by sampling from Pp(©). This sample will be called a “committee”
and denoted by C, where C = {c1, ca, ..., ¢j¢|} and ¢; ~ Pp(O).

We will use the committee to approximate Equation 1, and then employ symmetry
of mutual information to show an equivalence

IG(C: X,) = H(C) — H(C|X,) @)
— H(X,) - H(X/[C) 3)

This simply states the powerful fact that the information gained about C by observing
X is the same as the information gained about X; by observing C. The index of the
best example is thus

i* = argmax IG(C; X;)
i€1.T

= argmax H(X;) — H(X;|C) 4
i€l..T

Note that Equation 3 has a straightforward interpretation. The total information
of any kind to be had from the label X, is exactly H(X;). However, some of that
information is irrelevant to Pp(C), namely, the entropy that does not originate from
uncertainty about the true model/classifier. The term —H (X;|C) removes this irrelevant
information from the objective function.

As a bonus, Equation 3 sheds some light on the relationship between information
gain, uncertainty sampling, and query by committee. Taking entropy as one’s uncer-
tainty measure, uncertainty sampling will choose the label with the maximum H (X).
This score function is equivalent to Equation 3 without the second term. However, in
domains of noiseless data and deterministic classification, H (X;|C) is always zero, so
their behavior will be equivalent.

In addition, if one also measures QBC “disagreement” over the label of X; by
H(X;) (equivalently described as the KL-Divergence from average beliefs (McCallum



& Nigam, 1998)), then its behavior in noiseless domains will also be identical to un-
certainty sampling. Thus, the special case of noise-free examples and deterministic
classifiers represents a convergence point for the three main active learning algorithms:
uncertainty sampling, query by committee, and information gain.

3 HMM Active Learning

If the data is sequential and an HMM is the model used, active learning will take a
slightly different form. The main difference being that the data can no longer be consid-
ered to be independent, and that the indices of the observations and labels now indicate
an ordering of the data. We will switch from the term “examples” to “timesteps”. All
previous notation still applies, supplemented by the following definition of an HMM.

3.1 Hidden Markov Models (HMMs)

For ease of presentation, we will retrict discussion to discrete-output HMMs, but the re-
sults apply in the continuous case. A discrete-output HMM is defined by a state space,
X, an observation space )/, and a parameter 6, which is a tuple of three parameters
describing the transition probabilities, the observation probabilites, and the initial state
probabilities.

X : state space, a set of n states {1,...,n}.

Y : observation space, a set of m symbols {1,...,m}.

P(Xyy1 = j| X = 1) transition probabilities for i,j € X

P(Y = j|X = 1i) output probabilities fori € X and j € )

P(X, = 1) initial state probabilities for i € X

The active learning algorithms presented in this work require only two standard
HMM algorithms which are found in nearly all HMM implementations: EM model
learning and Forward-Backward inference (Rabiner, 1990).

EM model learning for HMMs produces the maximum-likelihood model from la-
belled (or partially-labelled) data. The Forward-Backward algorithm performs infer-
ence given data D and HMM parameters. In O(mn?®T), it produces several useful
probabilities such as Pp(X;) and Pp(X|X;—1) fort € 1..T.

3.2 The HMM Committee

Recall that the methods from Section 2 require sampling from Pp(©). How does one
sample an HMM? As mentioned, the EM model learning algorithm only provides a
single maximum likelihood model.

One intuitive, yet incorrect, method for generating a committee would be to do
multiple EM learning runs from different starting points and use the different local-
maximum HMMs to form the committee. Unfortunately, local maxima in model space
have little to do with the posterior. If search gets trapped in a terrible local maximum
for half of the restarts, assigning it equal posterior probability makes no sense.

In this work, we have assumed that each of the HMM’s n + m + 1 multinomials
was drawn from a separate independent Dirichlet distribution. The parameters of the



Dirichlets are determined from the number of “virtual” counts (of particular state-state
transitions and state-observation events) as determined during the EM run. Given these
Dirichlets, one can then simply sample from them to draw the multinomials for the
HMM sample. Another approach to computing and sampling from Pp(©) for HMMs
uses Variational Bayes (Ji et al., 2006; MacKay, 1997).

4 Selecting a Timestep to Label
What is the information gain of one label in a sequence? In other words, if we have a

sequence of observations yy.7 without labels, what is the expected reduction in H(C)
if we were told the label, X;? Our best choice is still

t* = argmax IG(C; X}) 5)
tel.T

= argmax H(X;) — H(X;|C) (6)
tel.T

Computing the terms of which is straightforward once the Forward-Backward algo-
rithm provides Pp(X¢|c) and Pp(X;|X;—1,¢).

H(X;) =Y Pp(X; = i)log Pp(X; = i) (7

i

The probability Pp(X; = 4) is actually marginalized over the committee members.

(X, = i) ZPD P(X, = ilc) 8)
cEC
P(X (&)
~ Ze(:j

The probability Pp(c) is the probability of the cth committee member, which is ﬁ

since the committee members have already been sampled from Pp(©). The second
term of Equation 6 is found by

H(x,C) = mZZPD X, = ile)log Pp(X, = il 10)
ceC 1

The overall sequence of events for determining the most informative timestep to obtain
the label of is thus:

1. Run the Forward-Backward algorithm on the data once for each committee mem-
ber, yielding Pp(X¢|c) and Pp(X;) for each timestep.

2. Compute the information gain H(X;) — H(X;|C) for each timestep.

3. Select the timestep with the maximum information gain.



5 Selecting a Sequence to Annotate

What is the information gain of a sequence of labels? In other words, we have a popu-
lation of R observation sequences, the rth sequence of which is yY)T Assume without
loss of generality that all sequences are of length 7. We can select one sequence for
our labeller to completely annotate. So at each iteration of active learning we receive
T labels.

The sequence which, when labelled, is expected to most reduce H (C) will be

r* = argmax IG(C; Xg'%) (11)
rel..R

= argmax H (X)) — H(X{}[C) (12)
rel..R

So what is the entropy of a sequence of variables? We must compute the probability of
every possible configuration, but the size of the space of possible labellings, |X;.7|, is
m?. This is prohibitively large. So, let us rewrite the equation according to the chain
rule of entropy

H(Xy.7r) =H(X1) + H(X2|X1) + H(X35| X1, X2) + ...
+ H(X7| X1, X2, X3,..., X7_1) (13)

which doesn’t solve the problem, but does allow us to apply the independencies of an
HMM. In other words, since X, is conditionally independent of X;_5 given X;_1, we
can say the following

H(Xy.r) =H(X1)+ H(X2|X1) + H(X3|X2) + H(X 7| X7r_1) (14)

Now we can rewrite the mutual information between a sequence of hidden labels and
C as

IG(C; Xy.1) =H(X1) — H(X1[C)

T
+ ) H(Xi| Xio1) = H(Xi|Xi-1,C) (15)
i=2
The first and second terms we have already seen, and the rest are easily derived from
the Forward-Backward probabilities Pp(X;, X;_1) (see appendix.) Equivalently,

T
IG(C; X1.r) =IG(C; X1) + > IG(C; Xi|X,_1) (16)

=2

So IG(C; X1.7) can be computed rather cheaply. The total cost to evaluate every se-
quence in our dataset is O(R|C|mn?T), equivalent to running inference on each se-
quence |C| times.

It is clear from (15) that longer sequences will have an advantage. This behavior is
understandable, since they will of course tend to contain more information. However,
annotating longer sequences also requires more resources. One obvious solution is to
assign a cost-per-label, ~, and penalize sequences according to their length. This term
will play an important role in Section 7.



6 Selecting a Length-k Subsequence to Annotate

Suppose one is given a single long sequence of unlabelled observations of length 7',
and we are allowed to select any subsequence of length k& << T to be labelled. This
is similar to the previous task, but instead of evaluating R separate sequences, we must
now evaluate each possible length-k subsequence. Note that the token selection task
from Section 4 is a special case of this task in which k& = 1.

We will again use the information gain criterion to find the most informative sub-
sequence of length k. The best interval, {¢*,t* + k — 1} will start at ¢*

t* = argmax IG(C;Xytyr—1) a7
tel. T—k+1

It will come as no surprise that this can be computed efficiently. First, once again
compute H(X;), H(X¢|X;—1), H(X¢|C), and H(X;|X;_1,C) for each timestep ¢ €
1..T. (see appendix.)

I(;(C7 Xt:t+k—l) :H(Xt) — H(thc)
t+k—1
+ Z H(X;|X;-1) — H(X;|X;-1,C) (18)
=41

Finding ¢* then only requires evaluating Equation 18 for the intervals [1, k], [2, k + 1],
.oy [T'— k,T). Each successive score can be computed efficiently from the previous
score via a small number of additions and subtractions. The update equation is omitted
but can be easily obtained by inspection of Equation 18. Once again, the computational
cost is O(|C|mn>T'), which is independent of k.

7 Selecting an Any-Length Subsequence to Annotate

Suppose one is given a long sequence of unlabelled observations of length 7', and are
allowed to select any subsequence to be completely annotated. Of course, the most
informative subsequence will always be the entire sequence, so one must specify a
cost-per-label, v, which will specify the minimum bits per label that must be expected
from the best sequence.
With the inclusion of the cost term, the optimal interval is thus
{t",w*} = argmax IG(C;Xyw)—7 (w—1) (19)
tel.. T,wet.. T

The naive approach to solving (19) would evaluate every possible interval, which is
quadratic in 7. Fortunately, a dynamic programming solution exists. Define

= H(X;) — H(X,|C) — 20)
Br = H(Xy|Xe—1) — H(X|Xy-1,C) — v 21
so that the problem can be written as

w
{t"w} = argmax _ay+ Y G @2
tel.. T,wet.. T i=t+1



The algorithm for finding {¢t*, w*} scans through the sequence once while maintaining
an internal state which contains the best interval seen so far and the beginning of the
best interval that ends at the current timestep. The cost is once again O(|C|mn?T), no
more expensive than |C| Forward-Backward iterations.

Define:
a(t) : start of best interval in 1...¢
b(t) : end of best interval in 1...¢
c(t) : start of best interval which ends at ¢
“ (1) - b(t
score* (t) : () + Zi(:()l(t)ﬂ Bi
t
seore(t) : vty + ;o)1 i

Initialization:
t=1
a(l) =b(1) = c(1)

=1
score*(1) = score(1) =

0

Loop:
t—t+1

if (score(t — 1) + B¢ > )
then
c(t)=t
score(t) = oy
else
c(t) =c(t—1)
score(t) = score(t — 1) + 3;

if (score(t) > score*(t))

then

a(t) = c(t)

b(t) =t

score* (t) = score(t)
else

a(t) =a(t —1)

b(t) =b(t —1)

score*(t) = score*(t — 1)
Termination:
ift==1T)
then

return a(7T"), b(T)



Practical implementations of this algorithm would probably include a maximum-
size parameter that limited the size of the subsequence that could be returned to be
labelled.

8 Related Work

Dagan and Engelson (Dagan & Engelson, 1995) applied the QBC algorithm to select-
ing sentences to annotate with Part-of-Speech (POS) labels, the goal being to learn an
HMM POS labeller. Sampling from the model posterior was achieved by assuming
each parameter of each multinomial was an independent univariate truncated Normal
distribution. The variance of these distributions were subsequently adjusted by a tem-
perature parameter.

Disagreement between committee members in (Dagan & Engelson, 1995) was
measured by “vote entropy” per timestep, which used each members most likely clas-
sification for a particular timestep. The average vote entropy was used to weight the
probability of selecting a sequence. The vote entropy used was quite different from the
entropy used in this work; it was based on classification disagreement, not the entropy
of the label’s actual posterior.

The selection of texts for complete annotation was also pursued in (Thompson
et al., 1999), where the two tasks were semantic parsing and information extraction.
The models were rule-based, not HMMs, and the active learning method used was
uncertainty sampling.

9 Conclusions

This work described a novel active learning algorithm that selects maximally infor-
mative sequences for the purpose of actively learning HMMs. Several variants of the
task were described, from selecting from a pre-segmented population of unlabelled se-
quences, to determining the optimal subsequence automatically from a single stream of
data. All of the algorithms are equally inexpensive; they are linear in the total number
of timesteps.

10 APPENDIX

During HMM inference, the vectors v and the matrices & summarize several useful
sets of probabilities (Rabiner, 1990).

Yeli] = Pp(X¢ = 1) (23)
&l j] = Pp(Xe =1, X1 =) 24

The quantities in Equations 23 and 24 are obtained in time O(mn?T') from the Forward-
Backward algorithm. The computation of the entropies of a single hidden state in a



sequence of hidden states is found as follows

H(Xy) =) Pp(X; = i)log Pp(X; =) (25)
= ili]log 3] (26)
where 4.[i] is the state posterior Pp(X; = i) marginalized over all models in the
committee
kil = il 27)
ceC

and ¢ [i] is the state posterior given model ¢, or Pp(X; = i|c). The conditional entropy
of a label given C is

H(X,|C) = MZE}%&_nmyu&_q) (28)
ceC 1
|ZZ% log 5] (29)
ceC 1

and the conditional entropy of a state at time ¢ given the previous state is

nsgxe) =3 ey St

When the previous conditional entropy is also conditioned on C,

H(X¢[X¢-1,C) 31D
MZZ%&lw)amHﬂ@ (32)
ceC 1
_ ZZ% i Z §t i, [%]] (33)
[c] &2 il 8 el
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