Randomized Consensus in Wireless Environments: A Case Where More is Better

Bruno Vavala, Nuno Neves, Henrique Moniz, Paulo Verissimo
LaSIGE, University of Lisbon - Portugal
{vavala, nuno, hmoniz, pjv}@di.fc.ul.pt

Abstract—In many emerging wireless scenarios, consensus
among nodes represents an important task that must be
accomplished in a timely and dependable manner. However,
the sharing of the radio medium and the typical communica-
tion failures of such environments may seriously hinder this
operation. In the paper, we perform a practical evaluation of
an existing randomized consensus protocol that is resilient
to message collisions and omissions. Then, we provide and
analyze an extension to the protocol that adds an extra
message exchange phase. In spite of the added time complexity,
the experiments confirm that our extension and some other
implementation heuristics non-trivially boost the speed to reach
consensus. Furthermore, we show that the speed-up holds also
under particularly bad network conditions. As a consequence,
our contribution turns out to be a viable and energy-efficient
alternative for critical applications.

I. INTRODUCTION

Consensus is a generic abstraction for activity coordina-
tion in distributed environments, where nodes propose some
local value and then they all reach the same result. In several
emerging wireless scenario, the nodes’ capability of per-
forming coordination tasks is of significant growing interest
due to its disparate practical applications. Car platooning in
vehicular networks and computing with swarms of agents
are just few examples. The first is aimed at grouping cars
and making them agree on a common speed, in order to
improve highway throughput. The second instead enables
to take advantage of the collective behaviour of a self-
coordinated set of agents. Its usage spreads from the control
of unmanned vehicles to sensor monitoring and actuation.
In these settings, since the presence of faults can neither be
disregarded nor prevented, it becomes necessary to tolerate
them using appropriate protocols.

Fault-tolerant consensus protocols have been matter of
research for decades. Proposals have been made for a range
of timing models, from synchronous to asynchronous. The
asynchronous model allows for the most generic imple-
mentations as it avoids any sort of timing assumptions,
increasing the resilience to unplanned delays (e.g., because
of node or network overloads). However, it is bound by an
impossibility result that prevents the deterministic solution
of consensus in presence of one faulty node (FLP result) [1].
In any case, even increasing the assumed synchrony is not a
panacea, if the communication among nodes is not reliable.
Under the dynamic omission failure model, a majority of
nodes cannot deterministically reach consensus if n — 1

omission faults can occur per communication step, in a
synchronous system with n nodes (SW result) [2]. Due to
this restrictive result, this model has not been used often,
even though it captures well the kind of failures that are
observed in wireless ad hoc networks. For instance, dynamic
and transient faults caused by environmental conditions, and
the temporary disconnection of a node.

Over the years, several extensions to the asynchronous
model have been proposed to evade the FLP result: ran-
domization is one of these [3]. Only recently, has this same
technique been successfully applied to circumvent the SW
impossibility result [4]. Randomization however has always
been considered a significant theoretical achievement, but
much less a practical one. According to many theoretical
studies, randomized consensus protocols are inefficient be-
cause of their expected high time and message complexities.

In this paper, we argue and provide evidence that it is
possible to build randomized protocols smartly, so that they
represent a feasible and practical alternative in wireless
environments. Firstly, we analyze the performance of the
randomized protocol [4], which has been built for the
dynamic omissions failure model. Currently, there is a lack
of experience on the implementation and evaluation of
protocols for this model. The selected protocol has some
nice characteristics, such as ensuring safery despite of an
unrestricted number of omission faults, and liveness when
the number of such faults is less than some bound. Secondly,
we propose an extension to the protocol, in particular
the addition of an extra message exchange phase (a third
phase). Results show that even though our new solution
slightly worsens the best case scenario, it allows significant
improvements in all the other cases, even in presence of
bad network conditions. The reached speed-up translates not
only into lower latencies, but also into less broadcasts, less
network usage, thereby enabling our extended protocol to
be practical for both time and energy critical environments.

II. SYSTEM MODEL

The system is composed by a set of n processes with iden-
tities P = {po, p1,- - -, Pn—1}- It is completely asynchronous
in the sense that there is no upper bound on the delays to
deliver a message and on the relative speeds of processes.
Since our aim is to provide a protocol for wireless networks,
the communication medium is shared among processes and
every transmission turns out to be a message broadcast. It

is assumed that processes are within range of each other.
We consider the dynamic communication failure model [2],
which captures well the nature of communication problems
that may occur, such as dynamic and transient message
omissions. It does not make any assumption about the fault
patterns, it only presupposes that such faults last for a finite
period of time. What may happen is that a process omits a
message broadcast or fails to receive a message. The first
case might be due to a process that crashes or is temporarily
disconnected, and the second case can be related to collisions
or environmental noise.

III. THE CONSENSUS PROBLEM

The k-consensus problem considers a set of n processes
where each process p; proposes a binary value v; € {0, 1},
and at least k > % of them have to decide on a common
value proposed by one of the processes. The remaining n—k
processes do not necessarily have to decide, but if they do,
they are not allowed to decide on a different value. Our prob-
lem formulation is designed to accommodate a randomized
solution and is formally defined by the properties:

« Validity: If all processes propose the same value v, then
any process that decides, decides v.

o Agreement: No two processes decide differently.

o Termination: At least k processes eventually decide
with probability 1.

IV. THE RANDOMIZED CONSENSUS PROTOCOL

The paper studies two versions of a consensus protocol
(see Algorithm). The first corresponds to the protocol of [4],
whose authors proved the correctness but did not provide an
experimental evaluation. This protocol was originally built
for a synchronous environment, but with the right receive
primitive it can also be used in an asynchronous setting.
The second version is an extension that incorporates a third
phase (darker box in Algorithm). We do not provide here
its correctness proof due to lack of space, but a simple
comparison between the two algorithms shows that it can
be easily adapted from the former.

A. Overall Execution

Computation proceeds in asynchronous rounds. In each
one of these, a process performs a message broadcast of its
status (line 6), and after that, it invokes smart-receive() to
get some messages (line 7). Then, based on the collected
messages, it may perform some local computation (lines
9-36). In our context, smart-receive() can have different
implementations that do not compromise correctness and
will be pointed out later.

The status of a process p; defines the current configuration
and it is composed by a set of internal variables: the phase
number ¢; > 0 (initially set to 0); the proposal v; € {0,1}
(initially set to the proposal provided as parameter); the
decision status status; (initially is undecided).

Input: Initial binary proposal value proposal; € {0,1}
Output: Binary decision value decision; € {0,1}

1 ¢; 05
2 w; < proposal;;
3 status; <+ undecided,
4V,
5 while true do
6 broadcast(m; := (i, ¢;, v;, status;));
7 M < SMART-RECEIVE(timeout);
8 Vi—=ViuM;
9 if 3 (%, ¢, v, status) € V; : ¢ > ¢; then
10 ¢i — ¢
11 Vi — U,
12 status; < status;
13 end
14 lf'{m€{<*7¢h*7*>}g‘/l}| > % then
if ¢»; mod 3 = 0O then
vi —, oy {m € {{x ¢i,v, %)} C Vi}l;
else
15
16 if ¢; mod 3 = 1 then
17 if 3ve{0,1}: [{m € {(x,¢;,v,%)} CVi}| > §
then
18 | v —v;
19 else
20 | v — L
21 end
22 else
23 ifa’UE{O,l}:|{m€{<*,¢i,v,*>}gvi}|>%
then
24 ‘ status; «— decided;
25 end
26 if3ve{0,1}:|{m € {{x,di,v,*)} CV;} >1
then
27 | v — v
28 else
29 ‘ v; «— coing ();
30 end
31 end
32 $i = di+ L
33 end
34 if status; = decided then
35 | decision; — vg;
36 end
37 end

Algorithm: The 3-Phase Consensus Protocol.

In the protocol execution, there is a difference between the
concepts of round and phase. A round corresponds to a full
iteration of the while loop, starting from line 5 and ending in
line 37. A phase is implemented as a process’ local variable
(¢;), whose value increases monotonically as enough good
messages are received, namely when a process is able to
update its status (line 32). Processes do not necessarily have
the same phase while they execute consensus concurrently.
A process may be temporarily outside the communication
range of the others, thereby being unable to make progress
and increase the phase number (but continues to execute the
loop). However, due to the transitory nature of such situation,

as soon as it is able to receive messages, possibly carrying a
phase higher than its, it can catch up immediately with the
other processes by updating the status (lines 9-13).

After broadcasting the status, the process blocks in smart-
receive to obtain some messages (line 7). This function
returns a set M of messages, all of which are stored in
a vector V; (line 8), if not yet received (this is implied by
the union which avoids storing duplicates). More than 5 of
these are needed to pass successfully through the first if and
make progress (line 14). Indeed, after the first if, no matter
what happens next, the process updates its status at least by
increasing the phase (line 32).

Now let us assume that enough messages have been
received. The process executes instructions in the black
box (the extra phase) because the current phase number is
¢; = 0. This preliminary phase was added to help processes
converge rapidly to a decision. Basically, a process sets the
local proposal value to a (weak) majority of the proposals
carried in the messages (if there is a tie, the process selects
value 0). We will show that if processes start with divergent
proposals (some of them with O and others with 1), this
additional step makes most (possibly all) of them choose
equal values before moving to the next phase (line 32).

After receiving enough messages, the process executes the
second phase (lines 16-22) because ¢; = 1. Here, if more
than 5 messages carry the same proposal value v, then the
process updates the local proposal to this majority value
(line 18). Otherwise, the process chooses the default value
L ¢ {0,1} (line 20). One should note that this procedure
ensures that if any other process py, sets v, € {0, 1}, then vy
will be equal to v; because of the strong majority imposed
by 5 (line 17). Before moving to the next round, the process
increases the phase number (line 32).

In the third phase, ¢; mod 3 = 2, the process tries to
make a decision (lines 22-31). If it receives more than 3
messages with the same value (different from L), then it is
allowed to decide on that value (line 24, 27 and then lines
34-36). Moreover, there is the guarantee that if any other
process decides, it will do it for the same value because of
the imposed strong majority of 7. If all messages carry as
proposal 1, meaning that no process has a preference for
a decision value, then the process sets the proposal to an
unbiased coin that returns 0 or 1 with equal probabilities
(line 29). Eventually, after some rounds, with probability 1
enough processes will get the same coin value that will allow
the protocol to make a decision.

B. Receive Operation

A process p; blocks in the smart-receive() operation to
collect messages in order to make progress in the protocol
execution (either by entering the if in line 9 or 14). However,
as there may be omission failures, the process does not
know how many messages may arrive in a given round,
and therefore a timeout mechanism must be implemented

inside the smart-receive(). When the timeout expires, even
if not enough messages have been delivered, the operation is
required to return (the reader should note that the use of this
timeout does not violate our asynchronous assumption, as it
is local and could be implemented with a simple counter).
This allows the process to initiate a new round, where the
status message is retransmitted (line 6), and then p; can wait
for the reception of a few more messages (line 7). Since this
procedure is carried out by all processes, eventually p; will
get sufficient messages to advance.

Consequently, a pondered implementation of this opera-
tion is fundamental to achieve good performance because
it defines the instants when progress can be made and how
often messages are broadcast. We adopted and evaluated two
strategies in our current implementation.

In the first strategy, the operation waits for the arrival
of [§ + 1] different messages with the same phase of the
process (or for the timeout to expire). As soon as this amount
is received, the function immediately returns. Other mes-
sages received with that phase (in the next rounds) will be
considered old and discarded. To simplify the calculations,
we always set the timeout to 10ms. We call this option
Immediate Progress (ip).

In the second strategy, the operation waits for all messages
that may arrive in a timeout period, possibly much more than
5. After the timeout expires, the operation returns this whole
set of messages. Here the timeout value is more critical as
we want to wait for a set of messages, such that [5 + 1] <
M| < n, but without wasting too much time if messages
get lost. In our experimental environment, it was found that
timeout = n x 1.25 ms provides good results. It is a matter
of future research to devise a mechanism to adapt the timeout
to the current network conditions. We call this option No
Immediate Progress (no-ip).

C. Protocol Termination

It is worth to notice that the protocol guarantees termi-
nation, in the sense that consensus is eventually reached,
but it does not stop the execution. Here the problem is that
when a process decides, it must keep on broadcasting its
status to let the others decide. Furthermore, even if it learns
that everyone has decided, the process cannot be allowed
to terminate because someone may have not received its
decision status and would never terminate.

One solution to this problem is to use a centralized node
that is informed when any process decides, and then tells
everyone that they should terminate when enough processes
have finished. This approach has several limitations, such
as how to address the failure of the centralized node. In
our implementation, we resorted to a pragmatic solution
that is based on giving sufficient time after decision for the
processes to terminate. In more detail: a process continues
to broadcast up to a certain time after decision (1 second);
then, the process is allowed only to receive messages, to

empty its network buffer; if no message is received for some
interval (2 seconds), then the process terminates. Clearly
it is not a perfect solution, but it worked very well in
our experimental setting. Additionally, it did not impact
the evaluations because the utilized metric was the latency
(defined in the next section).

V. PERFORMANCE EVALUATION

In this section we evaluate the two versions of the
protocol, stressing how little modifications may produce so
different and perhaps unexpected results.

A. Testbed and Implementation

The experiments were carried out in the Emulab
testbed [5]. All the nodes, located few meters away from
each other, were equipped with a 600 MHz Pentium III
processor, 256 MB of RAM, and the 802.11g D-Link DWL-
AGS530 WLAN interface card. The nodes run Fedora Core
4 Linux, with the 2.6.18.6 kernel version.

The protocol versions were implemented in C, and they
used UDP for lower level communication to take advantage
of the broadcast medium. During the evaluations, we ob-
served some omission failures, which in part were due to
collisions caused by our own traffic (the testbed is shared
with other researchers, and therefore, their experiments also
created collisions). Nevertheless, in order to evaluate the
protocols in presence of omissions, we decided to develop
a layer to emulate network losses. Such layer represents
our adversary. The adversary is able to delete a complete
message broadcast and to prevent specific processes from
successfully receiving a message. The decision of which
messages should be discarded is made randomly. The user
can specify different percentages of messages to be removed
at the source and at the destination.

The main metric we use to compare the different ap-
proaches is latency. The latency at process p; is defined
as the interval between the moment the protocol starts and
the instant when the local decision is reached. The latency
of an experiment is the average value of the latencies of
all processes. In the graphs, we present average values of
several experiments to have a good confidence on the results.

B. Experimental Results

1) Uniform proposal distribution: We evaluate the best
scenario in which all processes start with the same (uni-
form) proposal value. As by the consensus specification (see
Section III), this value is the only one that can be decided.
The two protocol versions reach a decision after 2 phases
in the original version, and after 3 phases in our version. In
the experiments, we observed that processes always receive
enough messages to make progress in every round, allowing
termination to be reached in these minimum number of
phases (and with the minimum number of rounds). Fig. I
shows clearly the increase in delay that the new phase

2ph-ip-u —+—
3ph-ip-u ==

Latency (ms)

4 7 10 13 16
Processes

Figure 1: Latency with uniform proposal values.
adds. The slopes of the lines reflect the difference between
executions that require respectively 2n and 3n broadcasts.
2) Divergent proposal distribution: In the rest of the
experiments, we will always consider a divergent initial
proposal distribution among processes (half of them propose
0 while the others propose 1). Before highlighting the dif-
ference in execution speeds between the protocol versions,
we supply some results related to the introduction of the no
immediate progress (no-ip) concept in the smart-receive()
operation. Fig. 2 shows that the concept is important in
enhancing performance (smaller latency is better).

250 - 65 -
2ph-ip —— 60 3ph-ip —+—
2ph-no-ip - 3ph-no-ip -~

Latency (ms)

X 235
100 $30
[e 5
20 -
P 15 e -~
o 10
7 10 13 16 4 7 10 13 16

Processes Processes

Figure 2: Evaluation of the smart-receive() strategies.

In a context where initial proposals differ from each
other, even though the ip strategy allows a process to make
progress as soon as possible, this will (very probably) lead
to nowhere. In order to make progress towards a decision, a
process needs more than 5 messages with the same value to
avoid default values (line 20) and random choices (line 29).
Therefore, with ip, the process needs to be lucky with the
order of the messages it receives to converge to a decision.
On the other hand, with no-ip, waiting for more messages
allows one to exploit the power of random choice to bias
the proposals toward a particular value.

Let us clarify this issue with an example in a fault-
free scenario. Suppose that n is even, n > 4 and pro-
cesses have divergent proposals. Since there is no strong
majority, all of them will be compelled to toss a coin
(with or without immediate progress) after running the first
phases (line 29). Now, let V[i], 0 < i < n — 1 be
a vector with the new proposals and consider the event
&= {31, VIi] equals 37— 1 — V[i]}. After one coin
tossing we have that P(=€) > P(E), hence: (1) proposals
tend to be equally distributed between the values, but (2) the
chances to get a strong majority overtake the others (more
and more as n increases). Therefore, with no-ip processes
will probably progress toward consensus because of (2),
while with ip it would be very difficult for processes to
notice a strong majority (among only | + 1] messages
received) in the first phase because of (1).

3) The addition of the third phase: The addition of an
extra phase has potentially several drawbacks. Namely, it

increases the network usage because consensus can only
be reached in phases that are multiple of 3 rather than 2.
The results in Fig. 3 show instead that the 3-phase protocol
overwhelms the 2-phase one in both strategies.

250 oo 120
3pheip -~

2ph-no-ip —+—
100 3ph-no-ip >

7 10 13 16 4 7 10 13 16
Processes Processes

Figure 3: The impact of the third phase.

Actually, the third phase represents a smart algorithm
design that at first might escape our (theoretical) analysis.
Without this phase, a process needs to receive more than 3
messages with the same value to set its proposal (line 18)
and eventually decide (line 24). However, according to all
possible configurations, it is unlikely that such strong major-
ity occurs, even more with a divergent proposal distribution.
This situation forces a lot of processes to set default (line 20)
and random values (line 29), preventing them from deciding
and making them start all over again. The problem here is
that messages end up being discarded too easily and with
little consideration, without exploring as much as possible
the information being transmitted.

This is what the third phase does — it uses better the
data carried in the messages, to allow progress towards
a decision much sooner. In the original protocol, the first
prepare phase was intended to make the processes set the
same value (lines 16-22), while the second decision phase
was to let them learn and decide on this value (lines 22-31).
Our third phase is executed just before these two (resulting
in an extra pre-prepare phase), and it relaxes the need of a
strong majority. Altough more than 3 messages are always
needed to make progress, here there is no other requirement:
a process sets its proposal to the majority value received
(and in case of a tie selects value 0). Clearly, it is not
true that the processes will always set their proposal to the
same value, since this depends on the ordering of message
arrival. Nevertheless, since processes share the same wireless
medium, reordering is expected to be small and all processes
should receive approximately the same set of messages.
Hence, if there is a value that is predominant in the set, this
enables lots of processes (if not all of them, in expectation)
to pre-set that value. Therefore, this has a positive influence
on the subsequent phases, improving convergence. Indeed,
our experiments show that most of the times consensus is
reached after 3 phases, and rarely in more than 6.

4) Performance under failure scenarios: The three-phase
version outperforms the original protocol in presence of an
adversary that creates various sorts of omission failures.
Such adversary may make a process discard an entire broad-
cast (causing n receive events to be lost), with probability
P?, or may cause a single message omission at a specific re-

ceiver, with probability P". The probabilities that were used
in the experiments are: P;, = 0.1 and P}, = 0.3, abbreviated
as adversary adv-1-3; and Pg = 0.3 and Pg = 0.6, abbrevi-
ated as adversary adv-3-6. According to these probability,
defining the event £ := {message reaches destination},
Pol€] = (1 —P5)(1 —PL) = 0.63 and Pgl€] = (1 —
P5)(1 — Pz) = 0.28. Adding up to these failures, we
should not forget that there is already some packet loss due
to wireless links and the (unreliable) UDP protocol. The
experiments show that these omissions are almost null with
a few processes but they can increase up to 30% of the traffic
with 16 nodes. The results with such severe conditions are
visible in Fig. 4 and Fig. 5.

140 2ph-ip-adv-1-3 —+— 160
120 3ph-ip-adv-1-8 -3

2ph-ip-adv-3-6 —+—
150 3ph-ip-adv-3-6 -~

2 130

Latency (ms)
@
o

E 100

4 7 10 13 16 4 7 10 13 16
Processes Processes

Figure 4: Immediate Progress in presence of an adversary.

In the figures it is visible a curious latency trend, where
often it decreases when the number of nodes is raised from 4
to 7 and from 10 to 13. This is due to the majority threshold
of [§ + 1J. While the number of processes is always
increased by 3 units, the majority threshold increases less
regularly. More specifically, it increases in 1 unit in those
previous cases, and in 2 units in the others. Furthermore, the
ratio between majority and number of processes turns out to
decrease in those cases and to increase in the others.

It is also possible to notice that the 4 nodes configuration
in the 2ph-ip-adv-3-6 experiment has particularly high la-
tency. This setting is very sensitive to packet dropping, and
therefore, nodes need to perform more broadcasts, most of
which are duplicates (retransmissions of their status).

It is noteworthy to consider something unexpected —
the adversary adv-1-3 can make the 2-phase protocol with
immediate progress go faster (compare Fig. 3 with Fig. 4).
This is not (only) due to the entire broadcasts that are
discarded, thereby reducing wireless medium contention,
and therefore improving message delivery. According to the
test data retrieved in those cases: less phases and less broad-
casts are needed to reach consensus; less status information
is sent and received for every phase; more phase jumps
occur due to the arrival of messages with higher phase;
few processes reach decision by themselves. Therefore, what
happens is that, in every phase, fewer processes are able
to make progress and, as soon as they update their status
and broadcast it, other processes that were left behind can
immediately catch up with them, learning by copying their
status (lines 9-13). It is this copy that boosts the decision
procedure because processes use it as a sort of pre-prepare
phase, avoiding setting default and random values.

In any case, though more onerous in theory, our phase

1o 2ph-no-ip-adv-1-3 —+— 220
100 3ph-no-ip-adv-1-3 - 200
920

2 180

< < 160

>

2ph-no-ip-adv-3-6 —+—
3ph-no-ip-adv-3-6 -

80
70
9
60 S 140
50 i
— 120
40
30 — 100 ’
20 & 80 =
4 7 10 13 16 4 7 10 13 16
Processes Processes

Latency (ms)

Figure 5: No Immediate Progress in presence of an adversary.

extension enables the processes to complete the task even
more quickly in all the cases and, above all, provides results
much more stable, less subject to relevant changes due to
the lower number of coin flips induced.

VI. RELATED WORK

Consensus plays a pivotal role in distributed computing,
particularly when a system needs to cope with accidental
faults (e.g., node crashes). The use of randomization in
this context arose due to the necessity to circumvent the
well know FLP impossibility result [1]. The first seminal
works that used this technique were due to Ben-Or [6]
and Rabin [7]. Both of them provided protocols to deal
with arbitrary node faults, and they run in an expected
exponential number of rounds. Later, Bracha [8] published
an optimal protocol to cope with fail-stop processes based on
a local coin paradigm. Cachin et al. [9] presented the ABBA
protocol for Byzantine agreement, resorting to a shared coin
paradigm and asymmetric cryptography operations. A more
detailed survey on this class of protocols is available in [3].

To the best of our knowledge, research in randomized
protocols has been mostly theoretical, probably because of
their exponential complexity. Moniz et al. [10] made a
detailed performance comparison between ABBA (for the
shared coin class) and Bracha (for the local coin class)
protocols. According to their results, the local coin proto-
col outperformed the shared coin protocol when there is
high availability of network bandwidth, which is typical
in a LAN. When the bandwidth starts to lower and the
communication delays increase, as in WANSs, the cost of
cryptographic operations becomes less important and shared
coin protocols can take advantage of their constant expected
running time. The same authors also did an evaluation of a
speed agreement algorithm in the context of car platooning,
using a stack of intrusion-tolerant protocols [11].

In this paper, we study a different type of randomized
protocol [4], which was designed to work under the dynamic
omissions failure model (and also to circumvent the SW
impossibility result [2]). We also propose a set extensions,
including a third phase. Contrarily to intuition, since the
extra phase increases the overall time complexity, the new
version of the protocol much more efficient in practice.

VII. CONCLUSIONS

The paper provides evidence of the practicality of ran-
domized consensus protocols. Even though such protocols
have a high theoretical complexity, the experiments show

that performance can be significant even with high failure
rates. This is particularly true in realistic scenarios where a
small number of process is being used and if algorithms are
carefully engineered to be as efficient as possible. A protocol
previously present in the literature, which aimed at solving
consensus in wireless environments, has been analyzed and
extended. We show how these extensions can exploit the
available information in order to increase performance. The
result is a protocol that is much faster in terms of latency,
more thrifty in terms of messages and hence of network
usage, properties that make if effective for time and energy
constrained environments. In the future we plan to carry out
extensive comparisons with other consensus protocols under
the unreliable network communication model.

ACKNOWLEDGMENTS

This work was partially supported by the FCT through
the Multiannual and the CMU-Portugal Programmes, and
the project PTDC/EIA-EIA/100894/2008 (DIVERSE).

REFERENCES

[1] M.J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” Journal of
the ACM, vol. 32, no. 2, pp. 374-382, 1985.

[2] N. Santoro and P. Widmeyer, “Time is not a healer,” in Proc.
of the 6th STACS Symposium, 1989, pp. 304-313.

[3] J. Aspnes, “Randomized protocols for asynchronous consen-
sus,” Distrib. Comput., vol. 16, no. 2-3, pp. 165-175, 2003.

[4] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo,
“Randomization can be a healer: Consensus with dynamic
omission failures,” in Proc. of the 23rd DISC Symposium,
2009, pp. 63-77.

[5] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An
integrated experimental environment for distributed systems
and networks,” in Proc. of the OSDI Symposium, 2002, pp.
255-270.

[6] M. Ben-Or, “Another advantage of free choice: Completely
asynchronous agreement protocols,” in Proc. of the 2nd ACM
PODC Symposium, 1983, pp. 27-30.

[71 M. O. Rabin, “Randomized Byzantine generals,” in Proc. of
the 24th Annual IEEE FOCS Symposium, 1983, pp. 403—409.

[8] G. Bracha, “An asynchronous |(n—1)/3]-resilient consensus
protocol,” in Proc. of the 3rd ACM PODC Symposium, 1984,
pp. 154-162.

[9] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in
Constantinople: Practical asynchronous Byzantine agreement
using cryptography,” Journal of Cryptology, vol. 18, no. 3,
pp. 219-246, 2005.

[10] H. Moniz, N. Neves, M. Correia, and P. Verissimo, “Ex-
perimental comparison of local and shared coin randomized
consensus protocols,” in Proc. of the 25th IEEE SRDS Sym-
posium, 2006, pp. 235-244.

[11] H. Moniz, N. E. Neves, M. Correia, A. Casimiro, and
P. Verissimo, “Intrusion tolerance in wireless environments:

An experimental evaluation,” in Proc. of the 13th PRDC
Symposium. 1EEE Computer Society, 2007, pp. 357-364.

