Tera-scale Data Crunching
with a Small TCB

avala Nuno Neves Peter Steenkiste

UL#CMU UL CMU
j Ciéncias Carnegie
C ULisboa Mellon

University

47th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'17)




Goal

delivering security guarantees for

large-scale data processing
on untrusted hosts with a small TCB




security guarantees

trusted
HW based data
integrity




1TB

large-scale data processing



small

code

small

interface

small TCB
No HW

devices




Some use cases

public cloud 1R

)
i X

ot

service provider




Some use cases

public cloud il
service provider ° i

computational
genomics

per genome



...more generally...



M O d e | trusted

hardware

i : : module

P

<)



Model

Q 2. outsource
large state

h 1. provide state authentication data E_E-E_%
< S

0 10




3. send
request>

O

Model

P

2. outsource
large state

1. provide state authentication data E_E-E_%
<

S

11



3. send
request>

O

4. execute
command

P

2. outsource
large state

1. provide state authentication data E_E-E_%
<

12



3. send
request>

\4

5. receive

4. execute
command

P

authenticated

reply

2. outsource
large state

1. provide state authentication data E_E-E_%
<

O

13



Outline

* Goal

e Previous Work

* Our solution: key ideas and
overview

e Evaluation




Outline

 Previous Work



Haven
(OSDI'14)

— designed for Intel SGX

— large TCB (due to libOS)

— 10s of new interface calls

libOS

+ works with
enclave

unmodified applications

PICOProcess

VHD

16



VC3

(IEEE S&P'15)

map & reduce
functions

job execution
protocol

enclave

process

— designed for Intel SGX
— specific for Hadoop

+ small TCB
+ data confidentiality

+ can run unmodified
Hadoop applications

17



A Niche in the State of the Art

small| Large | Interface App cm‘sﬁf‘n
TCB | State calls Specific a.!::h g
Haven | No | Yes | tens No SGX
(¥§% Yes ng:é%?;: R,W Yes SGX
XMHF-
TrustVisor | Yes | NO |wuimniechs) No  [TPM/TXT
(S&P'13,10) tens)




Outline

* Our solution: key ideas and
overview



untrusted env.

trusted env.

Scenario: two execution environments




app’s execution flow untrusted env.

trusted env.

the service code is running




app’s execution flow untrusted env.

l

access data in
block b;

l

trusted env.

the service code accesses data in memory




app’s execution flow untrusted env.

l

access data in
block b;

l

keep going

trusted env.

when data is available, there are no interruptions




app’s execution flow

l

access data in
block b;

l

keep going

trusted env.

untrusted env.

handle
page fault

l

load data

otherwise, the service is interrupted and
data memory pages are loaded




app’s execution flow

l

access data in
block b;

l

keep going

trusted env.

untrusted env.

handle
page fault

l

load data

|

validate data

data is validated inside trusted environment,
independently from service execution




app’s execution flow

l

access data in

untrusted env.

resume

block b;

l

keep going

trusted env.

handle
page fault

l

load data

|

validate data

service is resumed and
only if data is valid, service can make progress




...In practice...



untrusted \

| Trusted address Untrusted address | |
Space space | | }L‘

| : other
state service SMM untrusted
I handler Code (State map manager) services

SGX/TPM

I
|
|
I
|
|
|
|
/

28



Arc:h|tec:tu re

A Y untrusted \
I
I
| other |‘_}
on TrustVisor, Supervisor is trusted
. on SGX, Supervisor is untrusted

SGX/TPM

8\ | I I | I I I I




[ aSteT in B steps

q

e Offline data protection at the source
® State registration
® Data processing

| azy loading from memory & disk

oL . TP




e Offline data protection at the
source




Data protec:tlon

ulmm ﬁ
o[ [elo[o[{[1 1 [1[o] 1 o]o]0]

Hierarchical
Incremental as
data is created

Made fOI’I 540 bytes/block

Incremental validation ﬁ’i

as data is loaded e2%

Fast verification '5 220 L [

Single hash tree is = 0 ,,,,,,,,,,,, ‘ ‘
unsuitable L S

State size (bytes)
32



State Hierarchy

directory || [ diwectory |

master
chunks .--
qunks || [k ] [ ok |

blocks -nln
I .

files HlEEEEEEEEEEEEEEEEEEEEEEEEEEEn

HlEEEEEEEEEEEEEEEEEEEEEEEEEEE.
33




State Hierarchy

- components are

loaded separately
directory

- unneeded components
not loaded in memory

- state root (1 hash)

allows state validation masterchunk

¥ '
HENEEE ENENE NENENE INEENE ERENND ENEEEN
HNEEEEEEEEEEEEEEEEEEEEEEEEEEEE
HNEEEEEEEEEEEEEEEEEEEEEEEEEEEE

34



e State registration




Trusted address space U”””S;‘;g feddress

state service SMM
handler code (State map manager)

When the trusted execution environment is
created, only the code is available inside

Supervisor




Trusted address space U”””S;‘;g feddress

state service SMM
handler code (State map manager)

?

grab root
from disk

Supervisor 9

37



Trusted address space U””“S;f)g feddress

state service SMM
handler code (State map manager)

*

grab root
from disk

- registration is
the first
execution

- state handler
installs root

- root is trusted

register state




Trusted address space

Untrusted address
space
II state Iservice II state III SMM I
handler code root T —

- state root is available
before service code runs

Supervisor




e Data processing




Trusted address space U””“S;f)g feddress

state service | state
SMM
I handler I code I root I I

pages available pages NOT available

- service code has view of entire state
- state not readily available: inefficient loading it upfront

9

41



Trusted address space U””“S;f)g feddress

state service | state
SMM
I handler I code I root I I

page hit on access

- Service code execution begins
- Service accesses data in memory
- Data retrieval is fast it data is already available

Supervisor

42



Trusted address space Untrusted address
space
state I service Istate I SMM I
handler code root

page miss on access

- Service code may access data

on missing pages

Supervisor 9

43



Trusted address space U””“S;f)g feddress

I state Iservice Istate I SMM I
handler code root

page - A page fault is triggered
- Execution is interrupted,
fault! g EELR .
seamlessly waiting to continue

v

?

44



e Lazy loading from memory & disk




Trusted address space U””“S;‘;g feddress

I state Iservice Istate
handler code root

“*page fault!

Supervisor




Trusted address space

I state Iservice Istate
handler code root

“*page fault!

- Let SMM handle missing data
- SMM loads data from disk

page address

Supervisor

Untrusted address
space

grab
from

state component

disk




Trusted address space U””“S;f)g feddress

I state I service Istate data SMMI data
handler code root
“*page fault!

- in TrustVisor, validate in place
- in SGX, copy, validate, copy
validate data

oF
Supervisor
48




Trusted address space

Untrusted address
space
I state I service Istate Idata SMMI data
handler code root

“*page fault!

- If Supervisor is trusted,
invalid data => no resume
(e.g.: TrustVisor)

data|is valid .
- If Supervisor is untrusted

invalid data => no accept,
so no access (e.g.: SGX)

Supervisor

49



state
handler

Supervisor 9

Trusted address space

I service Istatell iz
code root

Untrusted address
space

SMMI data

~_

page hit on access

fault solved,
data accessible on resume,

continue...
resume

50



- HW-based attestation of code identity,
including input request, state root,
output reply, nonce

- Client checks validity of attestation

and intended identities/hashes




Outline

 Evaluation



KSLoC

(lines of

code x 1000)

TCB size

LaStGT
Haven ) o SQLite
ypervisor] library (example)

53



Comparison

XMHF-TrustVisor vs. LaSt®T

load&hash

12 tdata upfront

10
3 8 LaStS" entry/exit & — _
S 6 block validation LaSt®" chunk
2 loading

2 TrustVisor

| | - Last-GT |
0% 128 256 384 512
MB MB MB MB MB

LaStC" is Incremental, Faster & Scalable

54



SQLite on LaSte!

- First large-scale

experiment on

20 seconds 0
hypervisor 15}
P ol
| ]
o U 1 1 1 L o ] !
; Data VO Can be MlB MZB N?B M8B |\1/|6B |\3/’|2|3 Sﬁé }VIZE? %45|§ ?\4152 GlB GZB O'i'ZBS
optimized
through state .
. seconds
hierarchy 34|
3.2
0.4}
0.2}
- SGX expected R i e 2 .
to Improve MB MB MB GB GB B

substantially

55



Conclusions

 Security for large-scale data processing can
be guaranteed with a small TCB

* Virtual memory-based data handling
=> zero interface

* No change to source code
=> easy integration

« One design can fit diverse HW & SW




|IEEE/IFIP DSN’17 Bruno Vavala, UL / CMU, bvavala@cs.cmu.edu

ad maiora.

Secure Tera-scale Data Crunching with a Small TCB

Peter Steenkiste?
2CSD, Carnegie Mellon University, U.S.

Bruno Vavalal2, Nuno Neves!,

1 cA . . .
LaSIGE, Faculdade de Ciéncias, Universidade de Lisboa, Portugal

Abstract—Outsourcing services to third-party providers comes
with a high security cost—to fully trust the providers. Us-
ing trusted hardware can help, but current trusted execution
environments do not adequately support services that process
very large scale datasets. We present LAST®T, a system that
bridges this gap by supporting the execution of self-contained
services over a large state, with a small and generic trusted
computing base (TCB). LAST®T uses widely deployed trusted
hardware to guarantee integrity and verifiability of the execution
on a remote platform, and it securely supplies data to the
service through simple techniques based on virtual memory. As
a result, LAST®" is general and applicable to many scenarios
such as computational genomics and databases, as we show
in our experimental evaluation based on an implementation of
LASTC®"T on a secure hypervisor. We also describe a possible
implementation on Intel SGX.

support the execution of either small pieces of code and data
[10], or large code bases [11], or specific software like database
engines [12] or MapReduce applications [13]. Recent work
[14] has shown how to support unmodified services. However,
since “’the interface between modern applications and operating
systems is so complex” [30], it relies on a considerable TCB
that includes a library OS. In addition, the above systems are
specific for TPMs [10], [15], secure coprocessors [12], or Intel
SGX [13]. Hence, porting them to alternative architectures
(e.g., the upcoming AMD Secure Memory Encryption and
Secure Encrypted Virtualization [36], [37]) requires significant
effort. Clearly, it is desirable to design a generic system ‘“not
relying on idiosyncratic features of the hardware” [16].

We present LASTST, a system that can handle a LArge
State on a Generic Trusted comnonent with a small TCB.




(blank)

58



“Never trust a computer
you can’t throw out the window.”

Steve Wozniak

59




“No computer system can be absolutely secure.”

(excerpt from)

Intel’s Legal Desclaimer

60



