
Secure
Tera-scale Data Crunching

with a Small TCB
Bruno Vavala Nuno Neves Peter Steenkiste

UL / CMU UL CMU

47th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’17)

delivering security guarantees for
generic and large-scale data
processing on untrusted hosts

delivering security guarantees for
large-scale data processing

on untrusted hosts with a small TCB

Goal

2

3

delivering security guarantees for
large-scale data processing

on untrusted hosts with a small TCBtrusted
HW based data

integrity

4

delivering security guarantees for
large-scale data processing

on untrusted hosts with a small TCB

1 TB

5

delivering security guarantees for
large-scale data processing

on untrusted hosts with a small TCB

small
code

small
interface

No HW
devices

Some use cases

6

public cloud
service provider

Some use cases

computational
genomics

7

public cloud
service provider

0.3TB
per genome

…more generally…

Model trusted
hardware
module

SV

P

9

Model

1. provide state authentication data

2. outsource
 large state

SV

P

10

Model
3. send  
 request

SV

P

1. provide state authentication data

2. outsource
 large state

11

Model
3. send  
 request

4. execute  
 command

SV

P

1. provide state authentication data

2. outsource
 large state

12

Model
3. send  
 request

5. receive  
 authenticated
 reply

SV

P

1. provide state authentication data

2. outsource
 large state

4. execute  
 command

13

Outline

• Goal
• Previous Work
• Our solution: key ideas and

overview
• Evaluation

Outline

• Goal
• Previous Work
• Our solution: key ideas and

overview
• Evalution

Haven
(OSDI’14)

picoprocess

host OS

enclave

service

libOS

interface

— designed for Intel SGX
— large TCB (due to libOS)
— 10s of new interface calls
+ works with  
 unmodified applications

VHD

16

VC3
(IEEE S&P’15)

process

host OS

enclave

map & reduce
functions

job execution
protocol

narrow interface

— designed for Intel SGX
— specific for Hadoop
+ small TCB
+ data confidentiality
+ can run unmodified 
 Hadoop applications

17

small
TCB

Large
State

Interface
calls

App
Specific

Trusted
Computing

arch.

Haven
(OSDI’14) No Yes tens No SGX

VC3
(S&P’15) Yes Yes

MapReduce
workloads

R,W Yes SGX

XMHF-
TrustVisor  

(S&P’13,’10)
Yes No none

(but Minibox has
tens)

No TPM / TXT

LaStGT Yes Yes zero! No TV&SGX

A Niche in the State of the Art

18

Outline

• Goal
• Previous Work
• Our solution: key ideas and

overview
• Evalution

untrusted env.

 trusted env.

20

Scenario: two execution environments

untrusted env.

 trusted env.

app’s execution flow

21

the service code is running

untrusted env.

 trusted env.

access data in
block bi

is bi in
memory?

app’s execution flow

22

the service code accesses data in memory

untrusted env.

 trusted env.

access data in
block bi

is bi in
memory?

app’s execution flow

keep going
yes

23

when data is available, there are no interruptions

untrusted env.

 trusted env.

access data in
block bi

is bi in
memory?

app’s execution flow

handle
page fault

load data

keep going
yes

no

24

otherwise, the service is interrupted and 
data memory pages are loaded

untrusted env.

 trusted env.

access data in
block bi

is bi in
memory?

app’s execution flow

handle
page fault

load data

validate data

keep going
yes

no

25

data is validated inside trusted environment, 
independently from service execution

untrusted env.

 trusted env.

access data in
block bi

is bi in
memory?

app’s execution flow

handle
page fault

load data

validate data

keep going
yes

no

resume

26

service is resumed and 
only if data is valid, service can make progress

…in practice…

trusted 

untrusted
Untrusted address

space

 HardwareSGX/TPM

Architecture

other
untrusted
services

Trusted address
space

state
handler

service
code

SMM
(State map manager)

OS
Supervisor

28

untrusted 

untrusted
Untrusted address

space

 HardwareSGX/TPM

Architecture

other
untrusted
services

Trusted address
space

state
handler

service
code

SMM
(State map manager)

OS
Supervisor

29

on TrustVisor, Supervisor is trusted
on SGX, Supervisor is untrusted

LaStGT in 5 steps

•Offline data protection at the source
•State registration
•Data processing
•Lazy loading from memory & disk
•Execution verification

4

•Offline data protection at the
source

•State registration
•Data processing
•Lazy loading from memory & disk
•Verification

1

0 1 0 0 0 1 1 1 1 0 1 0 0 0

Data protection
Hierarchical

- Incremental as  
data is created 
 
Made for:

- Incremental validation
as data is loaded

- Fast verification
- Single hash tree is

unsuitable
210

220

230

240

220 225 230 235 240 245 250

Tr
ee

 s
iz

e
(b

yt
es

)

State size (bytes)

bytes/block 210

215

220

225

230

0 1 0 0 0 1 1 1 1 0 1 0 0 0

32

State Hierarchy

files

blocks

chunk chunkchunks

masterchunk
master
chunks

directorydirectory

state rootroot

33

State Hierarchy

34

state root

directory

masterchunk

chunk chunkmasterchunk

chunk chunk

- components are
loaded separately

- unneeded components
not loaded in memory

- state root (1 hash)
allows state validation

•Offline data protection at the source
•State registration
•Data processing
•Lazy loading from memory & disk
•Verification

2

Untrusted address
space

Trusted address space

SMM
(State map manager)

OS
Supervisor

state
handler

service
code

When the trusted execution environment is
created, only the code is available inside

36

Untrusted address
space

Trusted address space

SMM
(State map manager)

OS
Supervisor

state
handler

service
code

grab root
from disk

37

Untrusted address
space

Trusted address space

SMM
(State map manager)

OS
Supervisor

state
handler

service
code

grab root
from diskregister state

- registration is
the first
execution

- state handler
installs root

- root is trusted

38

Untrusted address
space

Trusted address space

SMM
(State map manager)

OS
Supervisor

state
handler

service
code

state
root

39

- state root is available  
before service code runs  

•Offline data protection at the source
•State registration
•Data processing
•Lazy loading from memory & disk
•Verification

3

- service code has view of entire state
- state not readily available: inefficient loading it upfront

pages NOT availablepages available

OS
Supervisor

Untrusted address
space

Trusted address space

SMM

41

state
handler

service
code

state
root data

page hit on access

- Service code execution begins
- Service accesses data in memory
- Data retrieval is fast if data is already available

OS
Supervisor

Untrusted address
space

Trusted address space

SMM

42

state
handler

service
code

state
root data

page miss on access

OS
Supervisor

- Service code may access data  
on missing pages

Untrusted address
space

Trusted address space

SMM

43

state
handler

service
code

state
root data

- A page fault is triggered
- Execution is interrupted,

seamlessly waiting to continue

OS
Supervisor

page
fault!

Untrusted address
space

Trusted address space

SMM

44

state
handler

service
code

state
root data

•Offline data protection at the source
•State registration
•Data processing
•Lazy loading from memory & disk
•Verification

4

Untrusted address
space

Trusted address space

SMM

OS
Supervisor

page fault!

46

state
handler

service
code

state
root data

Untrusted address
space

Trusted address space

OS
Supervisor

page fault!

page address

grab state component
from disk- Let SMM handle missing data

- SMM loads data from disk

SMM

47

state
handler

service
code

state
root data

Untrusted address
space

Trusted address space

OS
Supervisor

page fault!

SMM data

validate data

- in TrustVisor, validate in place
- in SGX, copy, validate, copy

48

state
handler

service
code

state
root data

Untrusted address
space

Trusted address space

OS
Supervisor

page fault!

SMM data

data is valid

- If Supervisor is trusted, 
invalid data => no resume  
(e.g.: TrustVisor) 

- If Supervisor is untrusted 
invalid data => no accept, 
so no access (e.g.: SGX)

49

state
handler

service
code

state
root data

Untrusted address
space

Trusted address space

OS
Supervisor

SMM data

page hit on access

resume

fault solved,
data accessible on resume,
continue…

50

state
handler

service
code

state
root data

•Offline data protection at the source
•State registration
•Data processing
•Lazy loading from memory & disk
•Execution verification

5
- HW-based attestation of code identity,  

including input request, state root,  
output reply, nonce

- Client checks validity of attestation 
and intended identities/hashes

Outline

• Goal
• Previous Work
• Our solution: key ideas and

overview
• Implemention(s)
• Evaluation

TCB size

VC3 Haven
LaStGT

hypervisor library SQLite  
(example)

KSLoC  
(lines of

code x 1000)
9.2 O(103) 17 7.7 92.6

library is small
compared to
real service

SGX-based
TPM/TXT

based

53

load&hash
data upfront

LaStGT entry/exit &
block validation

Comparison
XMHF-TrustVisor vs. LaStGT

0
2
4
6
8
10
12

0
MB

128
MB

256
MB

384
MB

512
MB

se
co
nd
s

TrustVisor
LaSt-GT

LaStGT is Incremental, Faster & Scalable

LaStGT chunk
loading

54

SQLite on LaStGT

0.0

0.2

0.4

128
MB

256
MB

512
MB

1
GB

2
GB

... 0.25
TB

3.2

3.4

3.6
seconds

 0

 5

10

15

20

1
MB

2
MB

4
MB

8
MB

16
MB

32
MB

64
MB

128
MB

256
MB

512
MB

1
GB

2
GB

... 0.25
TB

seconds

- First large-scale
experiment on
hypervisor 

- Data I/O can be
optimized
through state
hierarchy 

- SGX expected
to improve
substantially

55

Conclusions
• Security for large-scale data processing can

be guaranteed with a small TCB

• Virtual memory-based data handling  
 => zero interface

• No change to source code 
 => easy integration

• One design can fit diverse HW & SW

Secure Tera-scale Data Crunching with a Small TCB
Bruno Vavala1,2, Nuno Neves1, Peter Steenkiste2

1LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal 2CSD, Carnegie Mellon University, U.S.

Abstract—Outsourcing services to third-party providers comes
with a high security cost—to fully trust the providers. Us-
ing trusted hardware can help, but current trusted execution
environments do not adequately support services that process
very large scale datasets. We present LASTGT, a system that
bridges this gap by supporting the execution of self-contained
services over a large state, with a small and generic trusted
computing base (TCB). LASTGT uses widely deployed trusted
hardware to guarantee integrity and verifiability of the execution
on a remote platform, and it securely supplies data to the
service through simple techniques based on virtual memory. As
a result, LASTGT is general and applicable to many scenarios
such as computational genomics and databases, as we show
in our experimental evaluation based on an implementation of
LASTGT on a secure hypervisor. We also describe a possible
implementation on Intel SGX.

1. INTRODUCTION
Outsourced applications such as cloud services (databases,

storage, etc.) are widely deployed but strong security guaran-
tees are taken for granted. The de facto security model assumes
that the service provider is fully trusted. In the real world, how-
ever, one third of the top threats listed by the Cloud Security
Alliance [33] concern an attacker tampering with the integrity
of computation or data, namely: (i) service hijacking [38], (ii)
malicious insiders [1], (iii) system vulnerabilities [39], and (iv)
shared technology issues [2]. This can raise suspicions on the
trustworthiness of the results produced by a service.

The above threats stem from at least three issues:
• the lack of strong execution isolation, whereby a sub-

verted OS, or hypervisor, or service application, can make
threats affect other running software.

• a large TCB, which makes systems hard to verify; also,
when it includes the OS—containing millions of lines of
code [35]—a bug in the kernel [34] endangers security of
all the applications and data.

• a complex OS interface—hundreds of system calls—
which is difficult to secure [30] and whose malicious
alteration can subvert an application [3].

Unfortunately, service owners and end-users have little or no
means to distinguish between correct and compromised service
code or input data by just looking at the results received from
the cloud.

Trusted Computing (TC) technology is making progress
towards allowing clients to verify results. The technology (e.g.,
Trusted Platform Modules (TPMs) [4] and Intel SGX [29]) is
available in commodity platforms, and it is tied to a hardware
root of trust certified by the manufacturer. This can be used
by a service provider to isolate the service execution and to
attest the identity of the executed code for remote verification.

Software support for such trusted hardware however is not
(or just partially) suitable for many applications that process
a huge amount of data (e.g., clinical decision support [5],
predictive risk assessment for diseases [6], malware detection
[7], workloads for sensitive financial records outsourced on
public clouds [8], and genome analytics [9]). Previous systems

support the execution of either small pieces of code and data
[10], or large code bases [11], or specific software like database
engines [12] or MapReduce applications [13]. Recent work
[14] has shown how to support unmodified services. However,
since ”the interface between modern applications and operating
systems is so complex” [30], it relies on a considerable TCB
that includes a library OS. In addition, the above systems are
specific for TPMs [10], [15], secure coprocessors [12], or Intel
SGX [13]. Hence, porting them to alternative architectures
(e.g., the upcoming AMD Secure Memory Encryption and
Secure Encrypted Virtualization [36], [37]) requires significant
effort. Clearly, it is desirable to design a generic system “not
relying on idiosyncratic features of the hardware” [16].

We present LASTGT, a system that can handle a LArge
STate on a Generic Trusted component with a small TCB.
LASTGT supports a wide range of applications and hardware
because its design only relies on commonly available hardware
features—mainly paged virtual memory. LASTGT uses mem-
ory maps that allow the application to manage the placement
of data in memory, and authenticated data structures for
efficiently validating the data before it is processed. As most
of the LASTGT’s mechanisms (e.g., data validation and mem-
ory management) are implemented at the application level,
they can be optimized for different application requirements.
LASTGT ultimately delivers the following guarantee: if the
client can verify the results attested by the trusted component
on the service provider platform, then the client request was
processed by the intended code on the intended input state, so
the received response can be trusted.

We provide the following contributions.
• We describe LASTGT’s design, and show how it can

protect large-scale data in memory efficiently and how it
enables a client to verify the correctness of service code,
data and results.

• We detail how LASTGT has been implemented on XMHF-
TrustVisor [10] using a commodity platform equipped
with a TPM. Also, we discuss a possible implementation
using the Intel SGX instruction set. In addition, we high-
light important differences between the two architectures
and how LASTGT deals with them.

• We evaluate our XMHF-TrustVisor-based implementation
for datasets up to one terabyte. We show that LASTGT has
a small TCB compared to state-of-the-art prototypes, and
good performance. We also discuss expected improve-
ments with an SGX-based implementation.

2. RELATED WORK
We describe related work on trusted execution, trusted

execution targeting large-scale data, and other solutions for
ensuring the integrity of computation on large data.
Trusted Execution Environments. TrustVisor [10], Mini-
box [15] and Haven [14] all support secure execution. The
first two focus on keeping the TCB small by removing the
OS from the trust boundaries, thus supporting self-contained
applications (i.e., with statically linked libraries and no OS

ad maiora.

IEEE/IFIP DSN’17 Bruno Vavala, UL / CMU, bvavala@cs.cmu.edu

(blank)

58

Steve Wozniak

“Never trust a computer
you can’t throw out the window.”

59

(excerpt from)
Intel’s Legal Desclaimer

“No computer system can be absolutely secure.”

60

