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…more generally…
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Haven 
(OSDI’14)

picoprocess

host OS

enclave

service

libOS

interface

— designed for Intel SGX 
— large TCB (due to libOS) 
— 10s of new interface calls 
+ works with  
    unmodified applications

VHD
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VC3 
(IEEE S&P’15)

process

host OS

enclave

map & reduce 
functions

job execution 
protocol

narrow interface

— designed for Intel SGX 
— specific for Hadoop  
+ small TCB 
+ data confidentiality 
+ can run unmodified 
    Hadoop applications
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small 
TCB

Large 
State

Interface 
calls

App 
Specific

Trusted 
Computing 

arch.

Haven 
(OSDI’14) No Yes tens No SGX

VC3 
(S&P’15) Yes Yes 

MapReduce 
workloads

R,W Yes SGX

XMHF-
TrustVisor  

(S&P’13,’10)
Yes No none 

(but Minibox has 
tens)

No TPM / TXT

LaStGT Yes Yes zero! No TV&SGX

A Niche in the State of the Art
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Scenario: two execution environments



untrusted env.

 trusted env.

app’s execution flow

21
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the service code accesses data in memory
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when data is available, there are no interruptions
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otherwise, the service is interrupted and 
data memory pages are loaded
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data is validated inside trusted environment, 
independently from service execution
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service is resumed and 
only if data is valid, service can make progress
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on TrustVisor, Supervisor is trusted 
on SGX,           Supervisor is untrusted 



LaStGT in 5 steps

•Offline data protection at the source 
•State registration 
•Data processing 
•Lazy loading from memory & disk 
•Execution verification
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State Hierarchy
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State Hierarchy

34

state root

directory

masterchunk

chunk chunkmasterchunk

chunk chunk

- components are 
loaded separately 

- unneeded components 
not loaded in memory 

- state root (1 hash) 
allows state validation



•Offline data protection at the source 
•State registration 
•Data processing 
•Lazy loading from memory & disk 
•Verification
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When the trusted execution environment is 
created, only the code is available inside
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Untrusted address 
space

Trusted address space

SMM
(State map manager)

OS
Supervisor

state 
handler

service 
code

grab root  
from diskregister state

- registration is 
the first 
execution 

- state handler 
installs root 

- root is trusted 
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- state root is available  
before service code runs  



•Offline data protection at the source 
•State registration 
•Data processing 
•Lazy loading from memory & disk 
•Verification
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- service code has view of entire state 
- state not readily available: inefficient loading it upfront

pages NOT availablepages available

OS
Supervisor

Untrusted address 
space

Trusted address space

SMM
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page hit on access

- Service code execution begins 
- Service accesses data in memory 
- Data retrieval is fast if data is already available

OS
Supervisor

Untrusted address 
space

Trusted address space

SMM
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page miss on access

OS
Supervisor

- Service code may access data  
on missing pages

Untrusted address 
space

Trusted address space

SMM
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- A page fault is triggered 
- Execution is interrupted, 

seamlessly waiting to continue 

OS
Supervisor

page  
fault!

Untrusted address 
space

Trusted address space

SMM
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•Offline data protection at the source 
•State registration 
•Data processing 
•Lazy loading from memory & disk 
•Verification
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Untrusted address 
space

Trusted address space

OS
Supervisor

page fault!

page address

grab state component  
from disk- Let SMM handle missing data 

- SMM loads data from disk

SMM
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Untrusted address 
space

Trusted address space

OS
Supervisor

page fault!

SMM data

validate data

- in TrustVisor, validate in place 
- in SGX, copy, validate, copy
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Untrusted address 
space

Trusted address space

OS
Supervisor

page fault!

SMM data

data is valid

- If Supervisor is trusted, 
invalid data => no resume  
(e.g.: TrustVisor) 

- If Supervisor is untrusted 
invalid data => no accept, 
so no access (e.g.: SGX)
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Untrusted address 
space

Trusted address space

OS
Supervisor

SMM data

page hit on access

resume

fault solved,  
data accessible on resume,  
continue…
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•Offline data protection at the source 
•State registration 
•Data processing 
•Lazy loading from memory & disk 
•Execution verification

5
- HW-based attestation of code identity,  

including input request, state root,  
output reply, nonce 

- Client checks validity of attestation 
and intended identities/hashes 
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TCB size

VC3 Haven
LaStGT

hypervisor library SQLite  
(example)

KSLoC  
(lines of 

code x 1000)
9.2 O(103) 17 7.7 92.6

library is small 
compared to 
real service

SGX-based
TPM/TXT 

based
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load&hash 
data upfront

LaStGT entry/exit & 
block validation

Comparison
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SQLite on LaStGT
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- SGX expected 
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substantially
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Conclusions
• Security for large-scale data processing can 

be guaranteed with a small TCB 

• Virtual memory-based data handling  
                                            => zero interface  

• No change to source code 
                                            => easy integration 

• One design can fit diverse HW & SW
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Abstract—Outsourcing services to third-party providers comes
with a high security cost—to fully trust the providers. Us-
ing trusted hardware can help, but current trusted execution
environments do not adequately support services that process
very large scale datasets. We present LASTGT, a system that
bridges this gap by supporting the execution of self-contained
services over a large state, with a small and generic trusted
computing base (TCB). LASTGT uses widely deployed trusted
hardware to guarantee integrity and verifiability of the execution
on a remote platform, and it securely supplies data to the
service through simple techniques based on virtual memory. As
a result, LASTGT is general and applicable to many scenarios
such as computational genomics and databases, as we show
in our experimental evaluation based on an implementation of
LASTGT on a secure hypervisor. We also describe a possible
implementation on Intel SGX.

1. INTRODUCTION
Outsourced applications such as cloud services (databases,

storage, etc.) are widely deployed but strong security guaran-
tees are taken for granted. The de facto security model assumes
that the service provider is fully trusted. In the real world, how-
ever, one third of the top threats listed by the Cloud Security
Alliance [33] concern an attacker tampering with the integrity
of computation or data, namely: (i) service hijacking [38], (ii)
malicious insiders [1], (iii) system vulnerabilities [39], and (iv)
shared technology issues [2]. This can raise suspicions on the
trustworthiness of the results produced by a service.

The above threats stem from at least three issues:
• the lack of strong execution isolation, whereby a sub-

verted OS, or hypervisor, or service application, can make
threats affect other running software.

• a large TCB, which makes systems hard to verify; also,
when it includes the OS—containing millions of lines of
code [35]—a bug in the kernel [34] endangers security of
all the applications and data.

• a complex OS interface—hundreds of system calls—
which is difficult to secure [30] and whose malicious
alteration can subvert an application [3].

Unfortunately, service owners and end-users have little or no
means to distinguish between correct and compromised service
code or input data by just looking at the results received from
the cloud.

Trusted Computing (TC) technology is making progress
towards allowing clients to verify results. The technology (e.g.,
Trusted Platform Modules (TPMs) [4] and Intel SGX [29]) is
available in commodity platforms, and it is tied to a hardware
root of trust certified by the manufacturer. This can be used
by a service provider to isolate the service execution and to
attest the identity of the executed code for remote verification.

Software support for such trusted hardware however is not
(or just partially) suitable for many applications that process
a huge amount of data (e.g., clinical decision support [5],
predictive risk assessment for diseases [6], malware detection
[7], workloads for sensitive financial records outsourced on
public clouds [8], and genome analytics [9]). Previous systems

support the execution of either small pieces of code and data
[10], or large code bases [11], or specific software like database
engines [12] or MapReduce applications [13]. Recent work
[14] has shown how to support unmodified services. However,
since ”the interface between modern applications and operating
systems is so complex” [30], it relies on a considerable TCB
that includes a library OS. In addition, the above systems are
specific for TPMs [10], [15], secure coprocessors [12], or Intel
SGX [13]. Hence, porting them to alternative architectures
(e.g., the upcoming AMD Secure Memory Encryption and
Secure Encrypted Virtualization [36], [37]) requires significant
effort. Clearly, it is desirable to design a generic system “not
relying on idiosyncratic features of the hardware” [16].

We present LASTGT, a system that can handle a LArge
STate on a Generic Trusted component with a small TCB.
LASTGT supports a wide range of applications and hardware
because its design only relies on commonly available hardware
features—mainly paged virtual memory. LASTGT uses mem-
ory maps that allow the application to manage the placement
of data in memory, and authenticated data structures for
efficiently validating the data before it is processed. As most
of the LASTGT’s mechanisms (e.g., data validation and mem-
ory management) are implemented at the application level,
they can be optimized for different application requirements.
LASTGT ultimately delivers the following guarantee: if the
client can verify the results attested by the trusted component
on the service provider platform, then the client request was
processed by the intended code on the intended input state, so
the received response can be trusted.

We provide the following contributions.
• We describe LASTGT’s design, and show how it can

protect large-scale data in memory efficiently and how it
enables a client to verify the correctness of service code,
data and results.

• We detail how LASTGT has been implemented on XMHF-
TrustVisor [10] using a commodity platform equipped
with a TPM. Also, we discuss a possible implementation
using the Intel SGX instruction set. In addition, we high-
light important differences between the two architectures
and how LASTGT deals with them.

• We evaluate our XMHF-TrustVisor-based implementation
for datasets up to one terabyte. We show that LASTGT has
a small TCB compared to state-of-the-art prototypes, and
good performance. We also discuss expected improve-
ments with an SGX-based implementation.

2. RELATED WORK
We describe related work on trusted execution, trusted

execution targeting large-scale data, and other solutions for
ensuring the integrity of computation on large data.
Trusted Execution Environments. TrustVisor [10], Mini-
box [15] and Haven [14] all support secure execution. The
first two focus on keeping the TCB small by removing the
OS from the trust boundaries, thus supporting self-contained
applications (i.e., with statically linked libraries and no OS

ad maiora.
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Steve Wozniak

“Never trust a computer  
you can’t throw out the window.” 
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(excerpt from) 
Intel’s Legal Desclaimer

“No computer system can be absolutely secure.” 
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