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Abstract

In this paper we address the problem of local balancing in multi-hop wireless networks. We introduce the notion of proactive
routing: After a short pre-processing phase in which nodes build their routing tables by exchanging messages with neighbors, we
require that nodes decide the relay of each message without any further interaction with other nodes. Besides delivering very low
communication overhead, proactive routing protocols are robust against some well known active attacks to network routing. In
this framework, we develop a proactive routing protocol that is able to balance the local load. Experiments show that our protocol
improves network lifetime up to 98% and that it delivers a network that is more robust against attacks that have the goal of getting
control over a large part of the network traffic.
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1. Introduction

The interest on multi-hop ad-hoc wireless networks has been
largely growing in the last decade. In large multi-hop wire-
less networks nodes communicate from source to destination
using other nodes as relays. Important examples of these kind
of networks are sensor networks—networks made of low-end
tiny devices that are equipped with a battery and a radio trans-
mitter. Sensors are usually deployed in large numbers within a
geographic area in order to perform some common task such as
monitoring environment properties, like temperature, humidity,
presence of people, etc. The scientific literature on multi-hop
wireless networks is vast. A large part of it is devoted to the
problem of routing—how to forward packets hop by hop from
source to destination in an efficient way.

Typically, routing protocols try to route packets through the
shortest path from source to destination so as to obtain small
delays and short travelled distances [28]. However, shortest-
path routing is not always the appropriate option as it can often
cause the appearance of large congested areas or the occurrence
of local hot-spots. The obvious consequence is that some nodes
become significantly more loaded that others, thus quickly dis-
charging their battery. This is a critical concern, especially in
wireless sensor networks. When a node dies, its neighbors ex-
periment an immediate increase in traffic volume due to the ne-
cessity of handling routes that were previously covered by the
deceased node. The congestion can then spread to a large area
thus limiting the network’s lifetime and efficiency. To avoid
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such an undesired effect, researchers have designed a number of
routing protocols that attempt to distribute traffic evenly among
nodes. Load balancing protocols can assure longer operational
functionality and a more graceful decay of the network.

Moreover, congestion also raises security related issues, that
are important concerns in both wireless sensor networks and
muti-hop wireless networks. For instance, the disrupting effects
of jamming become more severe when the attack is directed to
an overloaded region of the network. In addition, if traffic is
concentrated in small areas, the attacker is further favored, as
jamming can disturb a large number of communications at a
limited cost [16].

In this paper, we introduce the notion of pro-active routing
and apply it to load balancing. A proactive routing protocol
performs all the decisions regarding how to route packets in the
network in a short pre-processing phase at the start of the net-
work operations. Then, routing tables and routing mechanisms
are frozen, and every node decides how to select the next relay
only looking at the destination of the packet and at its internal
information, without any further interaction with other nodes.
The rationale of proactive routing is to have a routing protocol
that is both efficient and robust against some security attacks
to the network. We assume that the adversary is inactive for a
short period of time at the start of the network operations. This
is a common assumption (see [27] for an example among many
others)—for a short period of time we are able to use expensive
security techniques, including physical surveillance, that avoid
the presence of malicious activity. Afterwards, we expect the
network to be robust against the adversary.

In the literature, load balancing is usually obtained by using
reactive routing protocols. There is a very large number of such
protocols—we review only a few of them in Section 2. These
are protocols that dynamically use local information, like the
remaining energy of neighboring nodes, to repeatedly choose,
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time after time, an appropriate relay for the goal of getting an
even load balance. However, this information can be easily
spoofed, altered, or replayed. In [11], these attacks are de-
scribed and are shown to be hard to stop. In particular, by
altering routing information it is usually easy to perform the
sinkhole attack [11], where the adversary’s goal is to attract a
large amount of traffic in a particular area through a compro-
mised node. It is enough that the nodes under the control of
the adversary claim to have a high level of remaining energy.
Pro-active routing techniques, like the one we introduce in this
paper, is a simple and clean way to protect the network against
these attacks since no routing information is exchanged, except
in the very first pre-processing phase. A positive side-effect of
pro-active routing is that it is extremely efficient, since the over-
head due to control information is reduced to virtually zero.

In this framework, our target is to obtain a fairly distributed
traffic on a strictly local basis. The problem is far from triv-
ial since we cannot rely on any dynamic information to achieve
our goal. The solution we propose in this paper takes advan-
tage of pro-active routing and allows an extraordinary result on
network lifetime. As our experiments will show, we are able to
deliver 98% more messages when comparing our protocol with
standard, state of the art shortest path routing protocols.

The rest of the article is organized as follows. In Section 2,
we briefly survey the related work. In Section 3, we discuss the
main general advantages achievable by routing pro-actively. At
the beginning of Section 4, we show how pro-active and reac-
tive routing specifically act on nodal load. We then distinguish
two levels at which load unbalance is generated, the macro-
scopic and the microscopic level. We discuss the opportunity
of separately designing load balance at the two levels and in-
troduce, in Section 4.1, a tool that allows to isolate and cut out
the macroscopic unbalance. In Section 5, we address the micro-
scopic load balance problem through the notion of competence
and use this to propose, in Section 6, a complete algorithm for
competence balancing. Finally, in Section 7, simulation results
show that competence balancing induces load balancing and en-
ables improvements in terms of load variance, network lifetime
and protection against adversaries.

2. Related work

In the last decade wireless ad-hoc networks have drawn the
attention of the research community. The capability of these
networks of scaling gracefully has permitted a wide range of
applications. In particular, there is now a great interest in sen-
sor networks [1], as the limited capacity of these devices raises
a number of challenging issues. One of the most relevant ob-
stacles to the exploitation of sensor networks is the limited bat-
tery supply so that many efforts have been made in order to
design energy aware protocols [2]. In this paper we focus on
the achievement of a fair work load distribution among nodes,
as it has been broadly confirmed that load balancing has a con-
siderable impact on network lifetime [10].

The definition of appropriate routing schemes is obviously
one of the key solutions to energy saving. Many authors pro-
pose greedy routing schemes as an approximation of shortest

path routing, often coupled with alternate awake-sleep states
to a given duty cycle [3, 23, 28]. In [4], [24] and [25] the
problem of load unbalance has been tackled with the use of
reactive routing protocols. Routes are determined on-demand
by forwarding messages to neighbors with higher residual en-
ergy, thus smoothing the energy level among neighbors. Some
authors have also used multiple paths for load balancing [19].
However, it is shown in [5] that a good load distribution can
be obtained only by using a large number of paths, otherwise
results remain much similar to those obtained with single path
shortest routing.

Recently, it has observed that shortest path routing leads to
several problems in terms of load induced by the relay traffic.
In [13], it is shown that straight-line routing in a network de-
ployed in a convex surface generates an irregular distribution of
load among nodes. As a matter of fact, centrally located nodes
handle many more packets than nodes situated in peripheral ar-
eas of the network, and nodes with a large Voronoi set handle
many more packets than nodes with a smaller one.

The analysis of theoretical results reported in [13] also re-
veals that load unbalance has two independent components: one
at a macroscopic, global level (distance of nodes from the cen-
ter of the network), the other at a microscopic, local level (size
of Voronoi sets, that is local distribution of nodes). The authors
first give an estimate of nodal load (defined as the number of
packets served at a node) in the case of straight line routing and
then show that nodal load is a function of the traffic pattern,
of the nodes’ Voronoi cells and of the location of nodes in the
network.

The most efficient protocols addressing load unbalance at the
macroscopic level are pro-active in nature. Given a source-
destination couple, those solutions envisage the use of longer
routing paths. The idea is to replace shortest paths with alterna-
tive routes, computed in such a way to improve load balance at
the global level. This task cannot be accomplished only using
locally available data, so that reactive procedures appear to be
ineffective to this end.

In [14] and [20] wireless nodes on a disk are projected on
a sphere and routing decisions are made according to great
circle distances. Shortest paths defined on the sphere define
paths on the given disk and those paths avoid the central con-
gested area, redistributing load among nodes. A similar ap-
proach is adopted in [16]. Nodes in a square network surface
are mapped to a torus by the use of some randomness and of
an easily computable function. Using a simple metric defined
on the virtual toric space, each node chooses as next hop relay
the neighboring node closer to the destination. Authors of [10]
also address the crowded center problem and present a general
framework for analyzing traffic load and routing. They also pro-
pose an heuristic solution were routing on a disk is carried out
by switching from the circle traversing the source to the circle
traversing the destination.

3. Pro-active vs. reactive routing and security implications

All of the above-mentioned works focus on the problem of
load balancing in multi-hop wireless networks. They define an
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appropriate routing strategy in order to evenly distribute work
load among all nodes, so that overall energy endurance can be
preserved. As suggested, these routing protocols fall under two
distinguished paradigms: routes are either defined reactively or
pro-actively.

In the first case, nodes periodically inquire their neighbors
about their energy remainder, and load balance among nodes
is approached by routing to neighbors proving high power sup-
ply. The network’s response to unexpected topology changes
is swift, but blind to the inner cause of the appearance of con-
gested areas, such as the position of node in a centrally located
area. A considerable drawback of this method is the high com-
munication overhead.

On the other hand, when routing is defined in a pro-
active fashion, the information that a node requires to decide
which neighbor to rely on does not change during a network’s
activity—each node is only supposed to know what is the shape
of the surface that carries the network and its position within
such surface. This data is then employed in the computation of
an a priori known function which finally returns a convenient
relay node, without further interaction with neighboring nodes.

The search for energy efficiency can possibly backfire on the
safety of the system, if the network’s security is not taken into
account at routing design time [11]. Reactive routing protocols
are vulnerable to those attacks that abuse the protocol itself.
When energy preservation is a crucial demand, it is not surpris-
ing that an attacker can do serious damage by forging energy re-
lated information. An attacker may be able to identify itself as
a network node and therefore communicate with other nodes in
the network. Once a node is captured, the adversary can make
it look attractive to neighbors by declaring a very high battery
supply. All neighboring nodes will then preferably choose the
malicious node as next-hop relay. The result is that most of the
messages handled by network nodes located within the commu-
nication range of the attacker will be absorbed by the attacker
itself, who may decide to drop certain messages thus invalidat-
ing the overall accuracy of data.

Pro-active routing proves to be more robust against this sort
of attack. The pre-processing stage is designed in order to
prevent an unfair use of energy among nodes by preventively
establishing how nodes have to be used in the routing phase.
After pre-processing, nodes no longer inquire their neighbors
about their energy remainder, therefore ignoring any malicious
neighbor advertising high battery levels. During pre-processing
we assume that major security measures are adopted, including
physical surveillance, if necessary. It is only in this stage that
the network is vulnerable to attacks based on energy scarcity.
When pre-processing ends, all nodes stop exchanging energy-
related information, thus making unfeasible for an attacker to
intervene on the construction of routing tables.

There is a number of attacks that can be prevented, if nodes
are relieved from investigating their neighbors energy state or
their position [9, 11, 18]. We list a few of them.

Sinkhole attack A malicious node declares to have full or high
energy in order to drain all the traffic coming from its
neighbors. Damage to the network can be caused by sub-

sequently dropping all (blackhole behavior) or part (selec-
tive forwarding) of the received packets. Data can be also
altered before retransmission.

Wormhole attack A captured node owns a private and direct
link with another distant captured node. Packets arriving
at one of the two malicious nodes can be dysfunctionally
diverted to the other malicious node, thus altering the ex-
pected communication system.

Sybil attack A captured node forges multiple identities thus re-
sulting in different places simultaneously. In this case, the
malicious node promotes himself by increasing its chance
of being chosen, as it appears to be very often on the di-
rection of the packet’s destination.

Both wormhole and sinkhole attacks can be made more se-
vere by adopting the sinkhole strategy. Pro-active routing is an
effective counter-measure that can be used to stop the sinkhole
attack (nodes cannot attract more messages since routing tables
are frozen and the injection of malicious information regarding
energy and positioning does not influence routing decisions).
In this way, we also mitigate the possible damage caused by
the wormhole attack and the sybil attack, whose severity also
depends on the possibility of launching a sinkhole attack.

A limitation to the robustness of a network under a pro-active
routing protocol could be the necessity of joining new nodes
to the existing ones in order to replace exhausted nodes. In
this case, the pre-processing procedure must be repeated and
the adversary can then actively participate, therefore having the
opportunity to heavily influence routing decisions. However,
if the initial pre-processing procedure is well designed, then
nodes end their battery charge almost simultaneously. In this
case, there is no sense in linking the old nodes to the new ones.
It is more convenient to initiate a new network with a new set
of cryptographic keys.

The above observations suggests what has been the direction
of our effort. This work introduces a novel approach to the load
balancing problem and proposes a pro-active new protocol to
resolve it, in order to take advantage of the benefits in terms of
network security and network performance that this technique
offers.

4. Macroscopic and microscopic level

A common assumption, when focusing on the dynamics
ruling traffic distribution, is to consider nodes uniformly dis-
tributed over the surface of a convex polygon, usually a circle
or a square. We follow this assumption, but also anticipate that
our balancing procedure is not merely constructed for a uni-
form deployment of nodes, as it can be applied unchanged to
any distribution of nodes.

We also assume that each pair of nodes has the same chance
of being the sender and the final receiver of a communication
and we call this a uniform traffic communication model. This
type of traffic distribution has been widely adopted in network
simulations, for instance in the analysis of the capacity of a
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wireless network, in the study of routing optimality and for test-
ing security properties [7, 8, 26]. Moreover, there exist many
applications that generate a uniform traffic pattern, such as [17],
a protocol for the selection of witnesses for a node’s location in
sensor networks, that uses geometric probability to detect repli-
cated nodes. Another example of uniform traffic generation is
given by the use of mobile sinks in sensor networks [6, 15].
Sensors typically send data to a limited number of common
sink collectors, so that nodes in the proximity of a sink un-
dergo heavy forwarding. If a sink is able to move among several
anchor points (for instance around the network periphery), the
role of bottleneck nodes is then distributed over time, so that
the distribution of nodal load can approximate the uniform dis-
tribution.

The use of a uniform communication pattern, together with
shortest path routing, causes centrally located nodes to be much
more congested than others, as most of the routes will traverse
the central area of the network. From this point of view, it is
clear that the amount of traffic traversing a certain node strongly
depends on its position inside the network. We call this level of
sight the macroscopic level and underline that load unbalance
observable at this scale is a consequence of the global network
geometry. This problem has been investigated and a few effi-
cient solutions have been proposed recently [14, 16, 20]. Nev-
ertheless, local unbalance remains. With some sort of magni-
fying glass, we can imagine to zoom in on different parts of
the network. Most likely, the resulting observation frames are
going to look very different from one another. Mutual location
of nodes, density and surface coverage are some of the vary-
ing general aspects resulting in hot-spots scattered over the net-
work. We will show, later in this paper, that local irregularities
have a cospicuous impact on load balance and therefore on net-
work lifetime.

Opposite to the macroscopic level, we then define the micro-
scopic scale, corresponding to a single node and its immediate
neighbors. When we talk about load unbalance produced at
the microscopic level, we are therefore looking at load differ-
ences among single nodes. At this scale, the problem is often
addressed through reactive protocols that define routes dynam-
ically on demand according to remaining energy at each node,
however, we already discussed the security problems of this
choice.

In this paper, we attack the problem of designing a pro-active
routing protocol that guarantees load balancing of relay traf-
fic at the microscopic level. As far as we are concerned, this
is the first work proposing a pro-active procedure preventing
congestion on a local basis. In this way, we deliver a low
overhead, load-balancing routing protocol that is robust against
some well-known attacks to routing security.

4.1. Virtually routing

Motivated by the observations made so far, we propose a
completely distributed pro-active procedure for local load bal-
ancing. We assume that a pro-active procedure acting at the
macroscopic level adjusts unbalance due to the global geom-
etry of the network. Our target is then to tackle the residual

problem of local load unbalance. We will show that our pro-
cedure shows beneficial effects on both energy endurance and
security implications.

As far as we are concerned, local load unbalance has been
addressed exclusively through reactive routing protocols. The
drawbacks of reactive routing in terms of energy consumption
and network security have been already discussed. In our pro-
cedure, nodes don’t need to keep track of the residual energy of
their neighbors. They only need to gather local information on
their neighborhood before messages start to be sent. Each node
uses the gathered data to set the forwarding schedule it will
subsequently follow. Once the routes are set, they never change
again, unless changes in the network topology occur. Moreover,
schedules are constructed in such way that nodal load remains
equally distributed during all network activity. As a matter of
fact, known reactive protocols act on load unbalance only af-
ter its occurrence and the adopted countermeasures need some
time to produce their effect.

The parallel use of certain pro-active protocols dealing with
congestion produced at the macroscopic level allows us to iso-
late unbalance rising at the microscopic level. Hereunder we
make this statement more precise.

Let N = (V,E) be an undirected graph. N represents a
multi-hop wireless network with the following features. N
is deployed within a plane convex polygon S and two nodes
u, v ∈ V can directly communicate if and only if δ(u, v) ≤ r
where δ is the Euclidean distance and r is the communication
range, common to all nodes, so that E = {(u, v) ∈ V × V | u ,
v and δ(u, v) ≤ r}.

Among all routing protocols that are commonly employed
for load balancing control, virtual routing models have carved
out a space for themselves. In those models each node receives,
through an appropriate mapping function, new space coordi-
nates which take the name of virtual coordinates. Virtual coor-
dinates can be points in the original space, in our case S, or in
another convenient space. Whichever is the destination space,
we call this virtual space and denote it by Σ. Packet shipping
then takes place as in geographic routing protocols, except that
nodes act as if they were located at their virtual positions. Once
routing in the virtual space Σ is carried out, routing in the origi-
nal space S is immediately given. It is sufficient to trace routes
defined on Σ back into the original space S .

Suppose that a message has to be sent from s ∈ V to d ∈ V
and that geographic routing is the shortest path strategy fixed
for routing in the virtual space. Let f : S → Σ be some easily
computable function used to obtain virtual coordinates from the
real position of nodes in the network. Finally, let us denote the
real position of a generic node u with Pu. Then, s and d are vir-
tually located at f (Ps) and f (Pd) respectively. Let N(u) be the
set of nodes adjacent to u. Starting from u = s, each relay u de-
cides the next hop to destination selecting the neighbor v such
that δΣ( f (Pv), f (Pd)) = minw∈B⊆N(u) δΣ( f (Pw), f (Pd)), where δΣ

is some fixed distance defined on Σ. Then relays thus deter-
mined are the same relays that will route the message in the
real network. In other words, routes determined on Σ are traced
back in the original space S .

Note that we have imposed the choice of the next hop within
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some subset B of N(u). In fact, relays selected by the routing
protocol in the virtual space must be actual neighbors in the
original network, otherwise virtual paths will not correspond to
existing paths in the real network.

Various examples of virtual routing can be found in literature.
For instance, in [14] and [20] routing is virtually made over
a sphere, while in [16] paths are determined using a torus as
virtual space.

Why is virtual routing interesting for us? If the mapping
function and the virtual space Σ are carefully chosen, the fol-
lowing properties are ensured:

1. uniform distribution of (virtual) nodes over Σ;
2. absence of hot spots in Σ referable to its particular shape;
3. a uniform communication pattern on S results in a uniform

communication pattern on Σ.

Our idea is to directly consider the network to be deployed
on a virtual space producing the listed features. Obviously, we
are not saying that the network is actually located over some
odd virtual space! Instead we assume that an appropriate pro-
active virtual protocol is adopted, so that we can perform local
load balancing when nodes are mapped into the virtual space,
before any route is fixed. This expedient enables us to focus ex-
clusively on unbalance due to local topology difference among
neighborhoods, thus leaving out unbalance due to the global
geometry of the surface of deployment. For our convenience
the choice for the virtual space has fallen on a toric surface,
as shortest paths and distances can be easily visualized on it.
However, the same reasonings hold for other constructions.

An example of a mapping function f from the square S =

[0, 1]× [0, 1] to the torus Σ = [0, 2]× [0, 2] is the following. Let
P = (x, y) ∈ S and let px and py be two independent variables
assuming value 0 or 1 as the result of fair coin toss. Then the
new virtual coordinates are:

fx(P) = px · x + (1 − px)(2 − x)
fy(P) = py · y + (1 − py)(2 − y).

Under this mapping, properties 1-3 hold, as proved in [16].

Routing over a torus
Let T = [0, 1]×[0, 1] be a two-dimensional torus constructed

from a unit square by pasting the opposite edges together with
no twist. An unfolded torus then appears exactly as a square,
but points on the vertical edges with same y coordinate coin-
cide as well as points on the horizontal edges with same x co-
ordinate. Given P = (xP, yP),Q = (xQ, yQ) ∈ T we define on T
the distance δT as follows

δT (P,Q) =

√
δ2

x + δ2
y

where

δx = min{| xQ − xP |, 1− | xQ − xP |}
δy = min{| yQ − yP |, 1− | yQ − yP |}.

Note that if the network deployed on T presents a grid topol-
ogy, then it is obvious that shortest path routing among all pos-
sible pairs of nodes results in a perfect balance in nodal load.

5. Competence balancing

In the following, we briefly describe the compass routing
method and then introduce the notion of competence. We use
competences to give an approximate estimate of nodal work-
load and claim that an even distribution of competences among
nodes leads to a fair workload distribution. In other words,
the compass routing scheme is optimized through the notion
of competence, in order to achieve a uniform traffic load distri-
bution. The detailed procedure is described in Section 6 and the
foundation of our intuition has been empirically tested. Simu-
lation results can be found in Section 7.

5.1. Shortest path routing

A similar alternative to geographic routing is given by com-
pass routing [12]: A node u that has to transmit a packet to
a destination d chooses the next hop to destination by pick-
ing among its neighbors the node v that minimizes the angle
formed by v, u and d. If we compare paths between source and
destination obtained by routing geographically, with those de-
fined by compass routing, the latter appear to be closer to the
source-destination connecting straight line. This achievement
is obtained at the cost of a higher number of hops, as the se-
lected node v can be very close to u. To avoid brief hops we
restrict the choice of relay v to a subset of the set N(u) of neigh-
bors of u. We call such subset NA(u) and refer to elements in
it as u-active nodes, as these are the only neighbors that can be
appointed by u as relays for any possible packet shipping. If
βr(u) is the circle of radius r centered at u that defines the trans-
mitting range of u, then it is obvious that u-active nodes should
be selected among those neighbors of u that are located in the
proximity of βr(u). In the following we describe our choice for
the active set NA(u).

Given u ∈ V and v ∈ N(u), consider the locus C of points
in βr(u) that are closer to v than to any other neighbor of u.
If the network is sufficiently dense, C is either the empty set
or a continuous line, precisely an arc of βr(u). As shown in
Figure 1a, by using nodes in N(u) as sites to construct a Voronoi
diagram, arc C can also be viewed as the intersection of βr(u)
with the Voronoi cell of v. Referring to this formalism, we can
define our u-active set as follows.

Definition 1 (Active neighborhood). Given u ∈ V, consider the
Voronoi diagram constructed using nodes in N(u) as Voronoi
sites. A node v ∈ V is u-active if

(i) v is a neighbor of u;

(ii) the intersection of v’s Voronoi cell and βr(u) is non-empty.

Figure 1 shows how to identify a node’s active-neighborhood
using the previous definition. Note that the set of neighbors
that u selects as relays when geographic routing is adopted is a
subset of the set of u-active nodes above defined and eventually
agrees with it.
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u

rβ (u)

v
C

(a)

u

rβ (u)

(b)

u

rβ (u)

(c)

Figure 1: Example of active-neighborhood construction. (a) Black dots represent nodes within the transmitting range of the central
node u. The gray area is the locus of points that are closer to node v than to any other neighbor of u. In other terms, it is the Voronoi
cell of node v in the Voronoi diagram obtained by using neighbors of u as sites. - (b) Outline of the Voronoi cells of nodes in N(u).
- (c) Neighbors whose Voronoi cell is cut by the transmitting bound βr(u), here highlighted in gray, are taken as u-active neighbors.
Such nodes result to be closer to some point in the network surface T outside βr(u) and can be appointed by u as relays in a compass
routing procedure.

5.2. Estimating nodal work-load

Now we have fixed compass routing as routing strategy for
packet delivery, we are ready to introduce a tool to locally es-
timate the potential load of a node in order to balance energy
use among nodes basing decisions exclusively on neighborhood
evaluation. For every node v ∈ N(u) let ru(v) be the segment-
radius of βr(u) passing through v. If u is located in (xu, yu), the
coordinates of a point v ∈ NA(u) can be expressed in the form
(xu + r cosαv, yu + r sinαv), with αv ∈ [0, 2π) and r ∈ [0, 1). We
use the αv angle to order u-active nodes counterclockwise.

Definition 2 (Angle of competence). Given u, v ∈ V, if v ∈
NA(u), let vprev, vnext ∈ NA(u) be the u-active nodes that precede
and follow v in the given counterclockwise order. The angle
of competence (or simply competence) of v with respect to u is
then defined as

θu(v) :=

 φ2 +
ψ
2 if v ∈ NA(u)

0 otherwise

where φ is the angle formed by ru(vprev) and ru(v), and ψ the
angle located between ru(v) and ru(vnext).

The above definition is described graphically in Figure 2. In-
tuitively the angle of competence of a node v with respect to u
expresses a measure of the quantity of packets arriving at u and
that u will forward to v. In other words, the number of times
that u will choose v as a relay. In fact, if the line that connects u
to the destination of a certain packet passes through the compe-
tence of v and we follow the compass routing procedure, then
the packet has to be handled by v. We have extended the defi-
nition of angle of competence with respect to a node u also to
those nodes v that are not adjacent to u and to neighbors of u
that are not u-active by setting θu(v) = 0.

u

β (u)

v

r (v     )u prev

r (v     )u next

r (v)u

vnext

vprev

Φ

ψ

r

u

β (u)

v

r (v     )u prev

r (v     )u next

r (v)u

vnext

vprev

r

Θ (v)u

Figure 2: Angle of competence assignment. Node v belongs to
the active neighborhood of node u. u-active nodes are ordered
counterclockwise: The angle of competence θu(v) of v with re-
spect to u depends on the position of the two u-active nodes,
vprev and vnext, preceding and following v in the fixed ordering.
Angles ψ and φ are enclosed between the radius-segments pass-
ing through vprev, v and vnext (left figure). θu(v) is then obtained
merging together the lower half of ψ and the upper half of φ
(right figure).

For simplicity, from now on we will confuse the concept of
angle with the concept of magnitude of an angle each time the
disambiguation can be clearly established from the context. The
following is a key definition for our balancing procedure.

Definition 3 (Total competence). The total competence of a
node v ∈ V is the sum

L(v) =
∑
u∈V

θu(v).

of all angles of competence assigned to v by other nodes in the
network.

L(v) then expresses an estimate of how frequently v is used
as a relay by its neighbors.
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Figure 3: Mutual competence assignment between node cou-
ples. In a grid network topology (top figures), nodes are sym-
metrically placed so that θu(v) = θv(u) for all u, v ∈ V. When
nodes are uniformly distributed (bottom figures), there is no
such correspondence and the total competence of a node may
largely vary around the round angle.

5.3. Towards local load balancing

Let us suppose for a moment that the given network presents
a grid topology. Then work-load is perfectly distributed among
nodes and the following identity holds.

Lemma 1. If N is a grid then

L(v) =
∑
u∈V

θu(v) =
∑
u∈V

θv(u) = 2π ∀v ∈ V.

Proof. The first equality is the definition of total competence
of a vertex. Because of the typical symmetries of a grid, it fol-
lows that a node u makes a node v responsible for packets going
into a certain direction if and only if v makes u responsible for
packets going into the opposite direction (see Figure 3, top).
Therefore we have that θu(v) = θv(u) for all u, v ∈ V. Finally,
for every network node, each possible shipping direction must
be covered so that the angles of competence assigned from a
node to its active neighbors sum up to the round angle.

Roughly speaking this means that each node is assigned an-
gles of competence whose sum is equal to 2π, which is also the
total angle assigned from a node to its neighbors.

As shown in Figure 3 (bottom, left and right), when nodes are
uniformly distributed at random in the network space, the regu-
larity expressed by Lemma 1 is no longer assured. As a matter
of fact, the volume of packets traversing a node from opposite
incoming or outgoing directions does not agree in general; actu-
ally, it can differ greatly is spite of the assumption of a uniform
traffic pattern. This is due to the local irregular distribution of
neighbors as well as on the impact of irregular distribution of

source-destination pairs. Unfortunately, we cannot intervene
locally on the latter aspect without expensive searches in the
network and our interest remains that of constructing a light
and completely distributed procedure for load balancing.

Not being able to relocate nodes, we tried to artificially recre-
ate a fair distribution of packets among different directions
through the achievement of the equi-distribution of the angles
of competence. In particular, our idea is to approach as closely
as possible the main feature observed in grid-networks: the
equality, stated in Lemma 1, of the full circle to the sum of
competences received by a node from its neighbors. We will
show that the approximate optimization of this factor allows to
obtain excellent results in the balancing of nodal load.

6. An approximate procedure for competence balancing

As we have seen, when nodes are distributed at random on a
continuous surface, many local topological irregularities occur.
Compass routing, as well as geographic routing, generates on
a torus a balanced load at a macroscopic level, while punctual
load analysis, i.e. load per single node, shows a considerable
variance of values.

Our aim is to intervene on punctual load by reducing the vari-
ance around the mean load. To do so we modify for each node
u the set of nodes delegated by u to act as relays and therefore
modify the proportion of arc in βr(u) that those neighbors serve.
In compass routing the set of nodes that are capable to receive
packets from u are the u-active nodes. We recall that in compass
routing u sends a packet to the u-active neighbor v that mini-
mizes the angle between ru(v) and the line connecting u to the
destination. This line intersects circle βr(u), so each active node
is responsible for an arc of circumference. We act on the span of
the arc of circumference for which an active node is responsible
by reducing or enlarging it and we eventually modify the active
set in order to gain variance reduction in load distribution. The
key to variance load control is actually competence balancing.
As a matter of fact, simulation results will show that the attempt
to reduce the variance of quantity L(V) := {L(v) | v ∈ V} leads
to a reduction of load variance.

Proposition 1. The mean value of L(V) is 2π whether nodes
are uniformly distributed or they form a grid topology.

Proof. For a grid network the result follows immediately from
Lemma 1. However, in both case, every node assigns all of
its round angle so that globally all nodes will have assigned an
angle of 2π · n.

Moreover, Lemma 1 proves that L(V) is exactly equal to 2π
for a grid configuration, so that it follows from the above propo-
sition that the variance of L(V) is zero in this case. Figure 3
shows instead that a uniform distribution of nodes does not nec-
essarily lead to a zero mean value for L(V). As argued at the
end of Section 5.3, our intent is to artificially make the given
network N look like a grid, imposing the equality between the
total competence of a node and the round angle and therefore
reducing the variance of the total competence of a node. Sim-
ulation results in Section 7 will show that this strategy actually
leads to a reduction of load variance, as expected.
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order are drawn with a full black dot, while competences for u-active neighbors are highlighted in gray. If v is made u-active, half
of the angle formed between the radius-segments passing through v and prevu(v) is subtracted from

6.1. Neighborhood manipulation: insertion and removal oper-
ations

Our load balancing procedure is essentially constructed over
two basic operations, node removal and node insertion. Both
operations have effect on the active set of nodes. Loosely speak-
ing their behavior can be outlined as follows.

1. By node insertion, a non-active node is selected and ap-
pointed as active if its insertion in NA(u) reduces the vari-
ance of L(V).

2. Node removal is carried out to eliminate a node from
NA(u) in the case that the variance of L(V) decreases after
such removal.

As earlier mentioned, when using the compass routing pro-
cedure it is advisable to restrict the choice of a next hop relay
to a subset of the involved neighborhood, or hops might be too
short. Therefore, as we will operate on the set of active nodes
by the insertion and removal of nodes, it is necessary to fix a
reference set of the nodes that can be added to the current ac-
tive set. To this extent, let us denote with N(0)

A the initial and
largest possible set of active nodes and let N(0)

A be constructed
as specified in Definition 1. NA(u), instead denotes the current
u-active set. Any node to be inserted in NA(u) will be chosen
among nodes in N(0)

A (u): any other node in the neighborhood of
u is to be considered too close to the departure node u. A node
in N(0)

A (u) will be also called u-eligible. A u-eligible node is
also u-active if and only if it belongs to NA(u). To summarize,

N(0)
A (u) is the reference set of eligible nodes – nodes that u can

appoint as relays – and is fixed once and for all as in Defi-
nition 1;

NA(u) is the set of current active nodes for u and must be a
sub-set of N(0)

A (u).

As usual, nodes in N(0)
A (u) are considered numbered accord-

ing to the counterclockwise order specified at the beginning of

Section 5.2. Given a node v ∈ N(0)
A (u), let prevu(v) and nextu(v)

be the u-active nodes immediately preceding and following v
according to the fixed progressive numbering and let us use
symbol ≺ to precise the order relation between two eligible
nodes.

Operation 1 – Insertion

Require: u ∈ V, v ∈ N(0)
A (u) \ NA(u)

1: αprev = angle between rprevu(v) and rv

2: αnext = angle between rnextu(v) and rv

3: L′(prevu(v)) = L(prevu(v)) − αnext
2

4: L′(nextu(v)) = L(nextu(v)) − αprev

2
5: L′(v) = L(v) + αprev+αnext

2

6: Var′ = Var − (L(prevu(v))−2π)2+(L(nextu(v))−2π)2+(L(v)−2π)2

n

7: Var′+ = (L′(prevu(v))−2π)2+(L′(nextu(v))−2π)2+(L′(v)−2π)2

n
8: if Var′ < Var then
9: v→ NA(u)

10: update L(prevu(v)), L(nextu(v)), L(v),Var
11: return

Figure 5: Operation 1. The procedure evaluates and eventually
executes the insertion of an eligible node in a current active set.

Suppose that one has to check if the insertion in NA(u) of
an eligible non-u-active node turns out to be convenient and let
Var denote the current variance for competences. The opera-
tion is then carried out as described by the algorithm in Figure 5
and by the drawing in Figure 4. The insertion of v in NA(u) has
effect on the values of L(v), L(prevu(v)) and L(nextu(v)), enlarg-
ing the total competence of v and reducing the total competence
of prevu(v) and nextu(v). In particular, v becomes responsible
for a portion of packets passing through u. Lines 3, 4 and 5
account for this task. The term 2π that appears from line 6 is
the mean value of L(V). Notice, at lines 6 and 7, that updat-
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Operation 2 – Removal

Require: u ∈ V, v ∈ NA(u)
1: αprev = angle formed by rprevu(v) and rv

2: αnext = angle formed by rnextu(v) and rv

3: L′(prevu(v)) = L(prevu(v)) + αnext
2

4: L′(nextu(v)) = L(nextu(v)) + αprev

2
5: L′(v) = L(v) − αprev+αnext

2

6: Var′ = Var − (L(prevu(v))−2π)2+(L(nextuv)−2π)2+(L(v)−2π)2

n

7: Var′+ = (L′(prevu(v))−2π)2+(L′(nextu(v))−2π)2+(L′(v)−2π)2

n
8: if Var′ < Var then
9: remove v from NA(u)

10: update L(prevu(v)), L(nextu(v)), L(v),Var
11: return

Figure 6: Operation 2. The procedure evaluates and eventually
executes the removal of a node from a current active set.

ing Var, a global variable, only requires the knowledge of local
variables that node u can trace from its neighbors. It is suffi-
cient to remove the addends that involve the total competence
of prevu(v) and nextu(v) and to add the terms that are related to
the inclusion of v in NA(u). At lines 8–10, the inclusion of v in
NA(u) is made final when competence variance is reduced.

It might be worth to explain the assignments at lines 3 and 4.
If node v is not u-active, the angle enclosed between rprevu(v) and
rnextu(v) measures αprev + αnext. Let us call γ the angle between
rprev(prevu(v)) and rprevu(v), and σ the angle between rnextu(v) and
rnext(nextu(v)). Then we can compute the competence of prevu(v)
and nextu(v):

θu(prevu(v)) =
γ
2 +

αprev+αnext

2
θu(nextu(v)) =

αprev+αnext

2 + σ
2

If v is inserted in NA(u) competences are updated as follows:

θ′u(v) =
αprev

2 + αnext
2

θ′u(prevu(v)) =
γ
2 +

αprev

2 = θu(prevu(v)) − αnext
2

θ′u(nextu(v)) = αnext
2 + σ

2 = θu(nextu(v)) − αprev

2

In a similar way we check for node removal. We suppose that
prevu(v), nextu(v) and v are u-active nodes that are responsible
for three adjacent arcs of βr(u). The procedure described in Fig.
6 decides whether it is convenient to remove v from NA(u) and
eventually redistributes θu(v) to prevu(v) and nextu(v).

6.2. Operations scheduling
Operations are scheduled in a distributed manner, but for the

sake of simplicity in Fig. 7 we give the pseudo-code description
of the procedure in a sequential mode.

All nodes must define the angle of competence to be assigned
to their neighbors. We preferred not to adopt a fixed order of as-
signment of competences to a neighborhood in order to answer
for a fair assignment flow. Consider a node u and the initial

assignment of competences defined by N(0)
A (u). u associates to

each node v ∈ N(0)
A (u) a state variable e such that

eu(v) =


0 if u needs to evaluate the convenience

of an insertion or removal operation on v
1 otherwise.

Initially eu(v) = 0 for all v ∈ N(0)
A (u) and for all u ∈ V. u

selects at random a node v marked with eu(v) = 0. If v is cur-
rently u-active, by performing Operation 2, u decides whether
to maintain or erase v from NA(u). Clearly v is actually removed
if and only if it’s removal decreases competence variance. Simi-
larly, if v is non-u-active, u checks for the convenience of restor-
ing v in NA(u), throughout Operation 1. Once the operation is
executed, eu(v) is set to 1.

An additional state variable is used to define the state of the
evaluation tasks of each node. To this extent we set

f (u) =

0 if ∃ v ∈ N(0)
A (u) | eu(v) = 0

1 otherwise.

We initialize f (u) = 0 for all nodes in the network. Once all
nodes have assigned the convenient angle of competence to
their neighbors, we have f (u) = 1 for every v ∈ V and the
procedure is complete.

When a node v receives a new competence assignment θu(v)
from a neighbor u, the consequent change of L(v) might create
new opportunities of improvement in competence distribution,
i.e. the opportunity to further decrease competence variance.
Our competence balancing procedure is thoroughly described
in Fig. 7 where the above mentioned additional checks are in-
cluded in lines 16-20. The procedure selects at each round a
node u such that f (u) = 0 at random and carries out the above
described routines.

In the Competence Balancing algorithm a naı̈f strategy is
adopted. As described in lines 16-20, each time the assign-
ment of a node v changes, all nodes u′ that contain v in N(0)

A (u′)
set the elements in N(0)

A (u′) as to be evaluated, through the ap-
propriate setting of the variable state e. This occurs whether or
not the evaluation and assignment of the competence of these
neighbors have been previously executed. Node u obviously
knows that some neighbors are to be checked and sets f (u) = 0.
This sub-routine may be optimized by reducing the number of
neighbors set for checking as in the following proposition.

Proposition 2. Suppose that the Competence Balancing algo-
rithm has just modified the value of θu(v) by an insertion or
removal operation and let u′ be such that v ∈ N(0)

A (u′). Then
(i) the only nodes w ∈ N(0)

A (u) that require eu(w) to be set to zero
are such that

prevu(prevu(v)) � w � nextu(nextu(v)).

(ii) If v is u′-active, it is sufficient to set for checking only nodes
w ∈ N(0)

A (u′) such that

prevu′ (v) = w or nextu′ (v) = w.
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If v is non-u′-active, no node in w ∈ N(0)
A (u′) requires eu′ (w) to

be set to zero.

Proof. Suppose that a node v has been inserted back or removed
from NA(u) for some u ∈ V. Each time Operation 1 or Op-
eration 2 are carried out on a node v ∈ N(0)

A (u), it is neces-
sary by definition to modify the value of the competence of the
two u-active nodes preceding and following v in the counter-
clockwise order established by u over its neighbors in N(0)

A (u).
Those nodes are prevu(v) and nextu(v). Therefore it makes
sense to check only those nodes w for which either prevu(w)
or nextu(w) has changed as a consequence of the insertion of
v. Then it is not difficult to see that such nodes are namely the
nodes included between prevu(prevu(v)) and nextu(nextu(v)) in
the counterclockwise order set by u. Checks on any other node
in N(0)

A (u) are unnecessary and this proves (i).
On the other hand if u′ is such that v ∈ N(0)

A (u′) and u′ , u,
even less checks have to be imposed. Precisely, if v is non-
u′-active, prevu′ (v) and nextu′ (v) are unchanged for every w ∈
N(0)

A (u′), so no additional checks are necessary.
On the contrary, if v is u′-active then it is necessary to mark

w ∈ N(0)
A (u′) for checking only if prevu′ (w) or nextu′ (w) are

equal to v, as v is the only u′-active node that has changed its
competence. And this proves (ii).

Figure 7: Basic competence balancing procedure

6.3. Transition to a distributed procedure: holdbacks, checks
and termination

The complete transposition of the Competence Balancing Al-
gorithm into a completely distributed procedure is almost im-
mediate. This is due to the fact that each single node u main-
tains it’s own state variable e and the set of f variables related to
its neighbors. When checking a node v marked with eu(v) = 0
for eventual insertion or removal from its active set, u only
needs to know the value of the current angle of competence
of three of its neighbors, information that u can obtain with a
simple 1-hop request message. Yet, it may be of use to point
out the possibility of deadlocks. In order to avoid the corrup-
tion of data regarding the value of competences, it is necessary
to impose a lock on the neighbors that receive a competence
request. When a node u asks for the value of the angle of com-
petence of a neighbor v for the execution of Operation 1 and
2, it also wants to be sure that no other node will change such
value while he is evaluating. Therefore u will lock v to prevent
it from giving information over his total competence to another
inquiring node until he has sent an unlock message to v, even-
tually changing its total competence by a different assignment
of θu(v). This procedure can obviously lead to deadlocks with
nodes indefinitely waiting for information. Procedures against
the occurrence of deadlocks, such as ordered labeling of nodes,
are well known and able to avoid any possibility of deadlock in
our case.

An issue that regards the distributed version of our algorithm
as well as the centralized procedure, is termination. It is im-
mediate to prove that the network always reaches a configura-
tion such that no further insertion or removal operations lead to
variance decrease. Should the number of operation be infinite,
then there would exist two distinguished time units t1 and t2,
t1 < t2, such that the same assignment of competences occurs.
As the Competence Balancing Algorithm envisages the neces-
sity of carrying out a new operation only if the variance of L(V)
decreases, then variance at time t2 must be strictly smaller than
variance at time t1. But this a contradiction because at time t1
the network presents the same configuration of time t2.

Finally we would like to briefly discuss the countermeasures
adopted for the acquisition of competence values in the case
of node failures. The communication of competence values
is requested only for pre-processing. If a competence value
is not available as a consequence of node failure, the failing
neighbor is simply considered as non-existing and its compe-
tence is split between the two surviving adjacent active nodes.
Pre-processing then carries on regularly. The situation is differ-
ent when node failure occurs after preprocessing. In this case,
unless pre-processing is restarted, optimal competence balanc-
ing is disturbed. However, in most of the network competence
values are equally distributed, so that only very local counter-
measures are sufficient in order to contain load inequalities and
avoid an excessive surcharge of the nodes adjacent to the failing
node.

In our experiments we assumed that nodes do not fail, al-
though our protocol works in case of failures, too. We stress
that pre-processing may be restarted if needed, but it is crucial
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in this phase to protect the network with all the necessary se-
curity measures against external attacks in order to avoid the
corruption of energy-related data.

7. Experimental results

In this section we show the results obtained by the simulation
of our local load balancing procedure by means of a high level
simulator implemented in C++. We don’t model communication
interferences, but we do look at packet losses. The reason be-
hind this choice is due to our interest in analyzing the algorithm
behavior in order to confirm our intuition over a high bond be-
tween nodal load and the notion of angle of competence.

We model our network as a sensor network with limited ca-
pacity, in terms of battery supply, using data given in [22]:
324000 mJ of total available node battery, 15.104 mJ for packet
transmission and 7.168 mJ to receive a packet. Nodes are de-
ployed on a unit square network with opposite sides glued to-
gether. Obviously no real network is deployed on such a sur-
face, but this expedient allows us to analyze network conges-
tion spots due exclusively to local topological features, thus ig-
noring hot spots caused by the well known and studied phe-
nomenon of central congestion in convex plane surfaces for
which many solutions have been already proposed.

Nodes are located uniformly at random over the network sur-
face and they all have the same radial communication range,
that is a radius of 0.1. We consider networks with 1000 and

Figure 8: Achievement obtainable by the competence balanc-
ing procedure. Nodes are plotted on the xy plane while the z
axis carries the information over nodal load. The graphic is
pictured facing the yz plane in order to show how the cloud of
points obtained without pre-processing (top) gets compressed
by competence balancing (bottom).

2000 of nodes, hence nodes have on average approximatively
30 neighbors for experiments with 1000 nodes and approxima-
tively 60 neighbors for experiments with 2000 nodes. In all
analyzed data there is a steady improvement from the case of
1000 nodes and that of 2000 nodes and it is reasonable to ex-
pect improvements along with the increase of nodal density.

The communication system used for simulation changes ac-
cording to the data information we are mining. We use either an
all pairs communication system (Section 7.1), were each node
sends a message/packet to every other node in the network, or
a uniform communication system (Sections 7.2 and 7.3), were
the source-destination couples are chosen uniformly at random.
Note that the former merely represents the ideal convergence
point of a uniform communication routine.

By our pre-processing procedure each node u defines the por-
tion of communication range served by its neighbors. If the
line connecting u to the destination passes through a certain
arc, the node serving this arc will be chosen as relay. We then
inject traffic into the network and follow the defined schedule
for packet shipping.

As a result of pre-processing, each node stores a small table
containing only two numeric values for each of its neighbors.
The two values identify the beginning and the end of the angle
of competence of a neighbor. Nodes are already aware of their
neighbors and their relative position, so that we are only stor-
ing a small additional information for each (active) neighbor.
Moreover, the size of the additional information required from
our protocol is comparable to the size of additional information
required by reactive protocols, where instead it is the level of
residual energy to be associated to each neighbor. On the con-
trary, after pre-processing the neighbor to be chosen for each di-
rection is already known and never changes, while it should be
decided from time to time when a reactive protocol is adopted.
The small amount of data stored during pre-processing and the
absence of routing decision as the networks begins to be oper-
ational make our protocol well suited for a context of resource
scarcity.

More precise experiments have shown that the number of u-
active neighbors for a node u is much smaller than the total
number of neighbors of u. In a network with 2000 nodes, each
node has on average 62.59 neighbors with 7.06 of standard de-
viation. The average size of the initial u-active neighborhood is
23.14, while at the end of the pre-processing phase the average
size of the u-active neighborhood drops down to 12.03 with a
dispertion from the expected value of 4.81.

Let us call a round the collection of operations carried out
from a node in order to evaluate the competence values of its
reference u-active set N0

A(u), that is all the insertion and removal
operations that lead to an optimal local distribution of compe-
tences. We have calculated that the average number of rounds
carried out by a node is 9.46 with 3.05 of standard deviation.
Altogether, the number of insertion and removal operations is
on average 14.7 with a standard deviation from the expected
value of 5.99. This means that, in general, the total number of
operations carried out by a node to make competences final is
below the size of the initial u-active set N0

A.
In all our experiments we compare the response of the pre-
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Figure 9: Punctual load statistics.

processed network with the case of a non pre-processed iden-
tical network that undergoes the same traffic pattern. The
scheduling of relays follows in this case the compass routing
strategy. We chose this technique because it makes use of an-
gles to determine the next hop to destination, as well as our bal-
ancing procedure does. Note that, as well as geographic rout-
ing, compass routing is a shortest path protocol as it greedily at-
tempts to approximate the straight line connecting the two ends
of a communication. We have also produced statistics with the
use of geographic routing, but we omit them, as the difference
with those obtained via compass routing is negligible. This
is also confirmed in [21], where simulation results reveal that
nodes select in the two schemes the same forwarding neighbor
in over 99% of cases.

The other key comparison is made with an ideal configura-
tion in terms of nodal load distribution: We take a regular grid
network, whose nodes adopt a greedy strategy to forward pack-
ets, and inject traffic into it. When the all pairs communication
system is adopted each node handles exactly the same number
of packets, while with the uniform communication system we
have near enough the same number of packets going through
each node. Results over a regular grid serve as ideal bounds for
the maximum increment achievable in load balancing. In the
following we name the above described simulation scenarios as

CR – for the simple shortest path strategy;

BCR – for competence balancing pre-processing;

Grid – for the ideal grid configuration.

The reported results refer to random networks with 2000
nodes and grids made up of 44 nodes on each row and column.

7.1. Statistics over punctual nodal load

The load of a node is the number of times that a node re-
ceives, receives and retransmits or simply transmits a packet.
Even by eliminating the crowded center effect of shortest path
routing typical of convex surfaces, the pure greedy routing strat-
egy causes some nodes to be considerably more loaded than
others. This is shown clearly in Fig. 8 - top - where isolated

nodes are traversed by a number of packets near to zero while
other nodes nearly reach the level of 30000 of handled packets.
In the bottom figure, BCR shows instead a tighter concentration
of points around the average load level.

This is even clearer in Fig. 9. At the price of a minimum
increment of the average load (5%), we achieve a substantial
80% of variance decrement. Fig. 9d and Fig. 9e show how the
nodes that in CR are barely used, see their exploitation increase
in BCR; similarly, nodes overloaded by a pure greedy protocol
are instead relieved in BCR.

Nodal load statistics also give an idea of the average and
maximum stretch of a path. One can easily calculate that on
average BCR routing increases the path length by less than 6%.
It is extremely important to keep this percentage small as on
realistic convex networks our competence balancing technique
should be associated to a coarse-grained balancing procedure—
to attack unbalance also at the macroscopic level—that alone
brings with it a non negligible path stretch.

7.2. Network lifetime

The small increment in average nodal load translates into a
small increment in overall energy consumption, as shown in
Fig. 10. Nevertheless, by evenly spreading workload among
sensors, the network manages to live longer. We measure net-
work lifetime using four different metrics broadly present in
literature. We count the number of messages that are sent be-
tween random source-destination pairs until an undesired event
occurs: the death of the first node, the arise of unsensed areas
(i.e. an area outside the transmission/sensing range of any node
in the network), the disconnection of the network and finally
the reaching of a fixed percentage of undelivered messages. Re-
sults shown in Fig. 11 are dramatic: When the first node dies
we manage to send over 98% more messages than those sent by
carrying out a simple compass routing procedure, almost halv-
ing the way to the result achievable with the ideal topology of
a grid. Similarly, BCR halves the way to the grid case for the
other three metrics (delivery rates are depicted in Fig. 10d).

We also report that at the time of the first death of a node
no message was lost, while at network disconnection and at the
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Figure 10: Monitoring of network behaviour. We sent 7 million packets and observed the reponse of the network. Our balanced
routing procedure requires a negligible amount of extra energy respect to the greedy routing approach (fig. a) and the use of energy
is far more efficient as it is better spread among nodes (fig. b). In fact, nodes die off at much smaller rate (fig. c) and the number of
undelivered messages with BCR stays always below the corresponding value for CR.

first occurrence of a coverage hole only less than 1% of the total
sent messages did not reach the destination.

7.3. When squares are squares. . .
So far we have tested our competence balancing procedure

over a torus surface, in order to exclusively address unbalance
springing at the microscopic level and we saw that nodes die
out at a much slower rate, almost doubling network longevity.
We now show how BCR behaves when it is applied to a sim-
ple square network—opposite sides of the square are not glued
together to construct a torus. The best way to use BCR, how-
ever, is to couple it with a load balancing procedure acting at the
macroscopic level. BCR works in fact on smoothing energy use
among neighboring nodes, prolonging their concomitant use as
long as possible. This is achieved by virtually re-creating local
topological regularity. If a balancing procedure for the macro-
scopic level is adopted, BCR is able to further prolong its ac-
tion, as major disconnection and coverage loss due to the global
geometry of the network is thus postponed. For time being, we
test BCR alone on a square network and leave for future work
the coupling with coarse-grained procedures.

The result of our simulation is depicted in Fig. 12. All pa-
rameters have been set as earlier described, at the beginning of
Section 7. Experiments in [16], establishes that – with geo-
graphic routing – network disconnection and coverage loss ap-
pear after approximatively 3 million messages have been send.
At this time the network can be considered exhausted, as perfor-
mance starts to become very poor and the decay process rapidly
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Figure 11: Network lifetime. Number of messages sent at the
death of the first node.

evolves. By running BCR over the same network, we observe
that node’s death can be slowed down, before 3 million packets
are sent (Fig. 12b). This confirms the above stated intuitions—
if a macroscopic balancing procedure is also adopted, major
disconnection can be postponed, while BCR maintains the net-
work in a healthier state up to that moment.

The most remarkable result comes when considering deliv-
ery ratio as an efficiency estimator (Fig.12c ). Although un-
balance due to global geometry parameters remains, the pre-
processed network manages to reduce, by more than half, the
number of messages not reaching the destination. By assuring
fair work-load distribution among neighboring nodes, we be-
lieve that the BCR procedure prevents the formation of dead
ends, where paths are interrupted before reaching the destina-
tion. In Fig. 12a, we also show that the observed achievements
are obtained at a low energy cost increment.

7.4. Security related data results
As discussed earlier in this paper, our pro-active routing pro-

tocol protects the network against the sinkhole attack. However,
homogenous distribution of work load also makes it harder for
an adversary to perform attacks with the goal of taking con-
trol over the largest possible number of messages. In fact, an
attacker interested in controlling as many messages as possi-
ble would certainly start with compromising the most loaded
nodes, as those are the ones that witness the major volume of
traffic. We assume that a strong adversary is capable of iden-
tifying these nodes and tamper with them. To measure the ad-
ditional protection against this attack obtainable with our pro-
tocol we made the following experiment. We considered the
set P of packages that traverse the network. We then select
the node u that handles the maximum number of packets and
consider the set P′ obtained from P by deleting packets go-
ing through u. At the second step we select a second node u′,
distinguished from u, choosing the node that handles the max-
imum number of packages contained in P′ and consider the
set P′′ obtained from P′ by deleting packets going through the
last selected node. We follow this procedure until the number
of packets taken out from P is the 25% or 50% of the total
number of packets traversing the network. It thus results that
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Figure 12: Performance on a square network. We have sent 7 million packets over a network deployed on a square surface and
have compared the performance of our balancing procedure (BCR) with the greedy-compass protocol (CR). Fig. (a) shows that the
amount of additional energy required by BCR is almost negligeable. Fig. (b) depicts the distribution of the number of exhausted
nodes. We observe that, up to 3 million of sent packets, BCR outperforms CR; afterwords the tendency is inverted. The highlighted
turning point corresponds to the approximate time of first appearance of a disconnection and loss of coverage in the network. A
network is generally considered inefficient at this point. In fig. (c) network efficiency is measured with the percentage of undelivered
messages out of the total number of sent messages. The percentage of undelivered messages with BCR is always well below the
corresponding value for CR.

using our protocol, an attacker should take control of approx-
imatively 20% nodes more than the number of nodes that the
same attacker should capture if the sole greedy protocol is to be
adopted.

8. Conclusion

In this paper we have introduced the first pro-active routing
mechanism to balance the relay traffic in multi-hop wireless net-
works at a local level of sight. Our experiments show improve-
ments on network lifetime up to 98%. As a positive feature of
our pro-active strategy, we also deliver a network that is more
robust against the presence of nodes that try to divert routing in
such a way to attract a large part of the traffic in the network.
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