Robust and Speculative Byzantine Randomized Consensus
with Constant Time Complexity in Normal Conditions

Bruno Vavald! and Nuno Neves
*LaSIGE, University of Lisbon, Portugal
fCarnegie Mellon University, U.S.
Email: {vavala, nung¢@di.fc.ul.pt

Abstract—Randomized Byzantine Consensus can be an inter- of the system (i.e., processes’ internal states, exchanged
esting building block in the implementation of asynchronows messages, etc.) aim at subverting it.

distributed systems. Despite its exponential worst-caseom- Although it is reasonable (and actually realistic) to assum

plexity, which would make it less appealing in practice, a ;
few experimental works have argued quite the opposite. To that the system does not always run in the worst-case

bridge the gap between theory and practice, we analyze a well scenario, It Is not wise to relax Completely this assumption

known state-of-the-art algorithm in normal system conditons,  First, the worst-case clearly represents an abstracticanof

in which crash failures may occur but no malicious attacks,  attack the system can suffer. Second, even if no attack is
proving that it is fast on average. We then leverage our performed, a bad execution run might simply happen. How-

analysis to improve its best-case complexity from three towo . S 2 .
phases, by reducing the communication operations through €V€l, Once established that the distributed system is lysual

speculative executions. Our findings are confirmed throughm  reliable, then attacks and failures can only interfere vtgh

experimental validation. efficiency, thereby being detectable as they slow it down
Keywordsrandomized consensus; message passing; normal and r_educe its thrOL_Jghput. These issues can be considered
situations; asynchronous model; speculative algorithm transient because either they can be solved through human
intervention, or it is unlikely that they are accidentalbng-
lasting.

. INTRODUCTION _ . _
The previous argument would not be useful if the im-

Is randomized consensus practical? Researchers have bgsismented algorithms were slow in all scenarios, simply
asking this question for the past few decades and yet thelyecause normal and abnormal situations would be indistin-
cannot reach an unanimous conclusion. On the one handuishable. In the first case, as the algorithm would keep
theoreticians believe it is inefficient due to its exponen-the same performance even in presence of good conditions,
tial worst-case complexity. On the other hand, practicianshere would be no need to worry about it. The existence of
believe that many theoretical models are too extreme tdast algorithms in the worst-case is still an open question
describe the real world, and eventually decide to integrat®ut there is a wide belief that it might be extremely difficult
in their systems well-performing algorithms, though theter to devise one.
ically inefficient in the worst-case. In this paper we redtec In this paper, we prove that Bracha’s algorithm terminates
these positions to some extent by providing a theoreticain constant time in normal conditions. The result is close
analysis of a randomized consensus algorithm in a moreo the lower bound given by Attiya and Censor in [3].
practical model, eventually proving that it is fast. Also, building on it, we present a new extension to the

Bracha'’s algorithm [5] has attracted a lot of attentionBracha’s algorithm so that it converges more rapidly, in
because of its pivotal contribution to the area and forterms of communication steps, while retaining the robussne
its simplicity. Today it still represents the state-of-the  against colluding Byzantine processes. In particularsésu
in Byzantine fault-tolerance, in terms of reliability and a speculative execution to reduce the number of phases
resiliency. Improving on Ben-Or’s result [4], it is the first from three to two. Our experimental results ultimately give
algorithm able to tolerate the optimal bound b= L"T*lj further and clearer confirmation that randomized consensus
malicious failures [14] in a completely asynchronous gyste is indeed practical, and even more attractive if specuiatio
by leveraging randomization, thus eluding the impossibil-is used.
ity result for deterministic algorithms [11], and without
resorting to public key cryptography. However, it is quite
inefficient in theory because it takes an exponential number As consensus cannot be attained by any deterministic
of rounds to terminate. The high complexity is related to thealgorithm [11], two main techniques can be followed to
worst-case scenario, in which up jocorrupted processes circumvent this limitation: relaxing the model, typically
and an adversarial scheduler having complete knowledgassumingeventual synchron{directly in the system model

Il. RELATED WORK



or hiding it in a failure detector), or making the algorithm of experimental evaluation of randomized consensus algo-
non-deterministic, typically leveraging randomizatitvhile  rithms, probably because simple algorithms are theotgtica
the first trades correctness with a weaker model, the secondefficient, while more specific ones are rather complex
instead maintains correctness in the strongest modelgthou to implement and/or not viable due to the number of
its performance is yet to be better understood and improveghrocesses. In [19] it is investigated the practical impac i
Our work makes a contribution in this direction. LAN of the impossibility result [11] in a replicated system

In terms of resiliency, Bracha’s algorithm, as well as theunder high load, ultimately observing that it maintains a
speculative one that we will describe, compares favorablyositive throughput even in adverse network conditions. In
against several other works [4], [8] that employ up2t6  [17], Bracha’s algorithm is evaluated in a LAN, and the
more processes, though at the price of more expensiveesults show that it takes at most a couple of rounds to
communication primitives (i.ereliable broadcast Firstly,  terminate. In [16] the same algorithm is instead evaluated
it is widely believed that keeping the number of processesn a wireless network, showing that the latency increases
low represents the main practical challenge due to its cost lot with the number of processes. However, as suggested
For several consensus applications more processes mesn[20], this is probably due to the high contention among
more machines that need to run diverse software to avoithe processes in accessing the wireless medium. Our work
common vulnerabilities, which could lead to the completeprovides: 1) theoretical fundaments that sustain and predi
compromise of the system. Secondly, the impact of sendinthese experimental results; and 2) a methodology that helps
(moderately) more messages is typically noticeable when ththe analysis of randomized consensus algorithms in pedctic
underlying hardware is limited or when they have to travelscenarios.
over a wide area. Hence for several deployments (e.g., a
LAN with high speed routers) it is possible to maintain a
sustainable workload. The Randomized Binary Consenspsoblem is defined

In [6], [2] it was shown that by assuming randomnessby 3 properties [10]. The first two arsafety properties,
in the environment rather than within the algorithm is which are common to most solutions present in the literature
sufficient to achieve consensus efficiently (i.e., deteistim  validity, if all correct processes start the computation with
algorithms can be proved correct and fast). The drawbacthe same proposat, this is the only value that can be
of those protocols is that they cannot withstand actions thadecided on;agreementno two correct processes decide
fall in the scope of the strong adversary model, although irdifferently. The third one is thdivenessproperty, which
this case only liveness is compromised. specifies that the system must eventually make progress in

Randomized consensus algorithms under the more realigts computation, eventually taking a decisidermination
tic message-oblivious model were first considered in [8]. Inall correct processes eventually decide with probability
this model, either no malicious entity acts, or it aslimdly,  This property is the one that usually differentiea@domized
independently from the message content. Also in this casdfom deterministicconsensus, since the second one always
the algorithms are not resilient-optimal, or cannot wiingt ~ ensures decision.
malicious failures. The work in [3] extends the previous one Bracha’s Solution. Algorithm 1 presents the main struc-
and provides a new lower bound on the probability that arture of the algorithm [5]. We voluntarily overlooked two
algorithm does not terminate afterounds, which is at least primitives of the original algorithm (and so we dubbed it
[%1*’“. In our analysis we show that Bracha's algorithmweak), which are crucial to withstand Byzantine failures
provides a close (up to a constant factor) upper bound. under the strong adversary model: the reliable broadcast

A few works [7], [1] addressed successfully the problemprimitive (see Section VI for a description) and the message
of Byzantine failures when the adversary only controls thevalidation procedure. The reason is that our analysis is
corrupted processes — he does not look at the interndbr the normal conditions where no malicious entity exists,
state of the correct processes nor at the messages thtereby making them unnecessary. In turn, even though we
exchange with each other. Contrarily to [5], they all proveuse this simplification, our result still holds for the full
that consensus can be achieved fast under that model, adgorithm.
polynomial [1] and constant [7] time, respectively. The mai  The algorithm is composed of three phases. In each one, a
limitation of these protocols is that, beyond the fact thayt process performs a broadcast, waits to receive at teasf
cannot withstand a strong adversary, the low time complexit messages, and then makes some computation. Specifically,
is attained at the expense of an extremely high numbein the first phase the processes run a sort of pre-agreement,
of message exchanges, making their implementation hardiyn which a process sets its proposal to the one present in
feasible. However, in presence of a weaker adversary anithe majority of the received messages. In the second phase
of crash-only failures, it is possible to improve it through instead, a value is set only if the majority of processes
gossip algorithms [12]. proposed it, otherwise a process opts for a default value

Finally, we notice that the literature is somewhat poor_L. Such a majority implies (by reasoning about intersecting

IIl. THE CONSENSUSPROBLEM AND ITS SOLUTION



rr=1 # round number round and phase, but processes do not get necessarily the
2: v = initial proposal same set of messages.
3: while true do The Strong Adversary Model. The definition of the
4. broadcast(<r,v,1>) # 1st Phase powers that an hypothetical adversary has to disrupt the
5. M} =receive n — f <r,x, 1>-messages successful execution of the protocol gives an abstraction
6 if Jw € {0,1},[{m € ML m =<r,w,1>}| > f| of the environment. In the literature, tietrong adversary
then model typically characterizes the worst-case scenario. In
7: v=w this model, a computationally unbounded adversary (i.e.,
g endif cryptography cannot be used) is able to: access the internal
. broadcast(<r,v,2>) # 2nd Phase state of the processes, eavesdrop on the communication
100 M? =receive n — f <r,*,2>-messages among them, tune their execution speed, delay and reorder
1 if Jw € {0,1}, [{m € MZ,m =<r,w,2>}| > % messages, adaptively corrupt up foprocesses which, in
then case of Byzantine failures, collude against the correcsone
12: v=w Normal Situations. A model for normal conditions
13 else should describe what we would expect in practice, during
14: v=_1 # default value most of the system execution time. Firstly, we can assume
5. end if that usually there are no Byzantine failures. Secondly, as
16:  broadcast(<r,v,3>) # 3rd Phase we noticed in several experiments [17], [16], [19], the
172 M3 =receive n — f <r,*,3>-messages presence of an adversarial scheduler does not also ocaur. Fo
18 if Jw € {0,1},[{m € M2, m =<r,w,3>}| > 2f| example, itis safe to make no assumption on: which process
then first acquires the transmission medium; what scheduling
19: V=09 =w # decision algorithm is used at the switch/router to serve the procgsse
20.  elseifdw € {0,1}, [{m € M3, m =<r,w,3>}| > f| communication requests; how the channel polling is per-
then formed at the process, since there are logical/real links th
21: v=w connect it with all the others. Itis also hard (though pdssib
22 else that each process receives in every phase the worst possible
23 v = coin() # toss a coin set of messages, potentially delaying the decision and thus
24:  end if the algorithm’s termination.
250 r=r+1 # next round Therefore, we do not lose generality by considering that
26: end while each message has the same probability of being received,
Algorithm 1: Weak Bracha’s Algorithm f = %=1 | for several reasons: 1) the algorithm is decentralizedhén t

sense that there is no leader and all messages have the same

guorums) that if one value is ever set, then that is the onl eight: 2) the identity of the sender of a message does not
one any other process can ever choose (beyond the defaylf

| In the third oh it th ice th ¥ ally matter, what is important is that the messages redeiv
value). In the third p ase, | the processes notice t at@mog by a process ardistinct 3) randomization is already present
of them have set a particular value, then they safely decid

. i : Within the algorithm itself and in particular in the value
on it, otherwise they toss a coin and start over. each message carries. It must be noted that this is not in
contrast with the asynchrony assumption. Also, the model
considers that that no malicious entity is acting, and thus

We consider a system of processesf of which might  the messages are delivered independently from their conten
experience failures (we will define this better later on)eTh and internal status of the processes. Finally, crash &slur
computation proceeds in asynchronous rounds. Rounds acan occur obliviously (i.e., they may not necessarily slow
structured in phases, each one composed by a communicdewn the algorithm).
tion operation and some computation. The asynchrony that
characterizes the system implies that no assumption i take
on the relative speed of both the processes and the messagdn this section we provide the complexity analysis of the
delivery. The channels are reliable, so a message broadcd&&tacha’s protocol imormal conditionsAs the correctness
eventually reaches all recipients, or a subset of them ia cads preserved from the stronger model, the algorithm inkerit
the sender is faulty and crashes. Also, it is assumed that the exponential time complexity as an upper-bound. We
process can correctly identify the sender of a message, so will show however that at each round the algorithm has a
avoid impersonation attacks. The computation is said to beonstant probability to terminate, so an expected constant
message-driveto indicate that processes take steps basetime complexity.
only on the information that they receive. Progress occurs Preliminaries. In order to derive our result, we employ
with the reception ofi — f distinct messages for the same some of the tools and techniques from [6]. In particular, we

IV. NORMAL CONDITIONS

V. PROBABILISTIC ANALYSIS



make extensive use of approximations, but we avoid using Lemma 1:If a processp decides at the end of round

Markov chains for the analysis. We also take advantage athen all processes decide by the end of round1.

another old approximation provided in [9]. Proof: If p decides onv then it received at least
The approximations are asymptotically precise. In pafticu 2 f +1 messages carrying that value in the third phase. Since

lar, for a large enough population of sizeand a probability n = 3f + 1, all the other processes receive at lefist 1

p that an element of the population is considered a succesmessages with. If they do not decide in round, they do

the number of successes is modeled through the Binomialot toss a coin but rather set thereby starting roung + 1

distribution B(n, p), and the probability to get less than with the same value. Since the algorithm is correct under the

(or equal to)i successes is approximated using the Normalalidity property, then all the (remaining) processes deci

distribution A/ (np, np(1 — p)) as follows: by the end of the round. ]
. Lemma 2 represents the crucial part of the final theorem.
P(B(n, p)<i)=® <i> It allows us to understand under what condition processes
np(l—p) can set a bad (default value) or a good (eitbeor 1)

proposal following the message exchange in the second
phase. Surprisingly, we get an “everyone or no one”-style
result, asymptotically.

where®(x) represents th&tandard Normal distribution
Moreover, we frequently use the following inequality
between the hypergeometrié{] and the Binomial B)

distribution. Letn be defined as above; the number ~ Lemma2:Let0 < ky < 3 be a constant. If} + kon
of items considered successes, the sample size. For Processes proposeat the beginning of the second phase in
i < ke — B(%), it can be stated that a roundr, then at the end of the phase with probability 1:
- " if ko < i, all processes set the default valuekif > %, all
P (H (n’ k, ns) < Z) <P (B (ns’ E) < 2) processes sef.
n Proof: A processp setsv in the second phase if it

The inequality is true because, according to the parametef§ceives more tharf;, messages carrying that value. The
of the distributions, they both have the same averagettiad ~ probability that this happens follows a hypergeometrie dis
variance is less or equal #'s. So?#{ is more concentrated tribution that can be computed and bound as follows:
around the average. n n

Additionally, we will use the following Chernoff Bound P (H (n’ 5t ko, m— f) = 5) -
(CB, Theorem 1), which shows that in a stochastic process o ( ( n _ ) < Q)
involving n binary independent random variables, the sum =1=P{H 2 then, n—f) < 2
of the variables is concentrated around the average with hig

probability (w.h.p.). n n

Theorem 1 (Chernoff Bound [L5]tet X,....X, be T (H (”’ 5T kan, m — f) < 5) <
independent poisson trials such thBt(X;) = p;. Let .

=>", X;andu = IZE[X]. Then, for0 < § < 1, gP(B (n—f, —+k2) < ﬁ)
Pr(|X — p| > 6p) < 2e=#9°/3, 2 2

Finally, the following theorem describes the normal ap- n_ 2n/l 4

L0 . g 5 — 5 (3 + ko)

proximation to a general Binomial distribution. ~ o ] -

Theorem 2 (De Moivre-Laplace [9])Consider a Bino- \/?(2 + k2)(5 — k2)
mial distribution B (n, p), with averagey = np and W oken \/Z(l —k:)
standard deviatioa = /np(1 — p). For fixedz, 22, —® 6 5 _ 3 \4 2

oo 2n 1—4(k2)? 1—4(ko)?

P(u+2z10 <B(n, p) < p+z0) "= B(z) — (z1) 3 512 4(12

Analysis in Normal Conditions. We proceed phase by For a large enough, the probability obtained is—O(e™")
phase, each time describing the properties of the array der k2 < ; and it isO(e™") for k; > ;. So, depending
proposals in the system. In particular, we will be focusedon k2, either the considered event or its complement will
in understanding under what conditions in the second phasgicceed with high probability. Hence, we have (fer> 1)
(most of) the processes either set a default value, so tHey wi o
not reach a decision, or a specific value that is subsequently (H (”’ 5T kan, m — f) > 5) >1-0(™)
decided on. A\ P n—oo

The following lemma is a well-known property of the P (each process sety > (1 - O(e™"))" "= 1
original algorithm [5]. Basically it states that the deoisiof = The case whetky < Z is symmetrical. ]
one process at some round implies the consensus terminatip@mma 3 describes under what conditions, by the end of the
property. first phase, the difference between the number of processes



that propose the two value 8(n). Substituting in the equation above and sikge> 0

Lemma 3:1f a process has a constant probability> % n _ n e
to set a valuey at the end of the first phase then, for some P (H (n’ 2t f/n, m f) ” 3) 21-2(-163k)
constantd) < ke < p — % at leasts + kon processes set —P (1.63k1)>§ u

with high probability.

We are now ready to go through our main result. We
proceed bottom-up: starting from a good configuration in
the last phase that leads the processes to a decision with
high probability, we go back to the coin tossing procedure,
investigating what conditions must be ensured in order to
reach that good final configuration. Eventually, the first
condition can be met with constant probability.

Theorem 3:In normal situations, the Bracha’s algorithm
terminates at least with constant probability, namei0,
Hence in expected.5 rounds.

Proof: Let us assume that all processes propose
the third phase of a round. This case is ensured with
probability 1 by Lemma 2 provided that there is a constant
Lemma 4 quantiﬁes the initial difference in the number Ofk2 > %, such tha%+k2n processes started the second phase
processes that propose the two values, such that they haggoposingy. This means that, with the same probability, all
a biased constant probability to set the most frequent one gfrocesses necessarily take a decision by the end of round
the end of the first phase. — actually the decision of one correct process imould be

Lemma 4:Let k1 > 0 be a constant. IfZ + k;/n  sufficient since it implies the termination of the algorithm
processes proposeat the beginning of the first phase in a from to Lemma 1.
roundr, then there is at least a constant probability, namely From Lemma 3, constarit; exists if the processes have
®(1.63k;) > 1, that a process setsat the end of the first @ constant probability > 3 of settingu following the mes-
phase. sage exchange of the first phase. From Lemma 4, provided

H 3
Proof: A process sets in the first phase if it received that there exists a constai such thaty +ky/n processes

a majority of messages carrying that value. The probabilit)Pmposa} atthe beginning of the first phase, such probability

that this happens follows a hypergeometric distributioat th |s_§]: (I)(l‘i?’kle)&) Bly6§zmb|n|1ng tl?e reﬂuwed bound dn
can be computed and bound as follows: with p, we have®(1.63k1) — 5 > k2 > 7, SO

Proof: Without loss of generality let us assume that, for
some constant > 0,p = %—l—c. Considering alh processes,
the number of those that sefollows a Binomial distribution
B(n,p), whose average ig = 5 +cn. A simple application
of the CB (Theorem 1) shows that, for any constelnt 0,
P(B(n,p) < p—c'n) < e ©" (because, in Theorem &,
would be a constant dependent orand ¢’). In particular,
this still holds if we take0 < ¢ < ¢. Now consider a
constant, > 0 such that’'+k; = c. The resultimmediately
follows because the complementary event happens with hig
probability, that isP(B(n,p) > p—c'n) > 1—e~°™), and
p—c'n= 3%+ kon.

3
®(1.63k1) > 7 = 163k 2068 = k1 2042 (2)

n n
P (7'[ (”7 5T kivn, n— f) > §) = (1) Sincek, is related to the distribution at the beginning of
n n the first phase, it depends on the coin tossing at the end of
=1-P (7'[ (n, 5t kivn, n— f) < 5) roundr — 1. The coin tossing follows a Binomial distribution
B (n, 1), hence from Theorem 2, we have

P (7—[ (n gwﬁ\/ﬁ, n— f) < g) < P(B(n, p)—p| > 2ki0) "= 2(1 — ®(2k;)) > 0.40

Therefore, if the algorithm does not terminate (no process
k1 n decide) in round-, then there is at least a constant probabil-
> < §> ity to get agood coin tossing that would let the algorithm
terminate in round- + 1. Such constant probability implies
) that the algorithm terminates in expect2d rounds. ™=
An Improved Approximation.
According to our experimental evaluation (see Section
VII), the result obtained is loose and does not describe
_2kiyn o < 2k2(4n) ) exactly the behavior of the algorithm. The reason is that
3

some precision is lost while passing from the hypergeometri

to the Binomial distribution. Building on our analysis, we

3 4n
QK2 enhance it by using a result of Feller [9], [18, p.194], which
<o <— %) =& (—1.63k) indicates how to approximate the hypergeometric distribu-
tion with the Normal distribution under some conditions.



Feller shows that when the ratio between the sample anleginning of each round by crashiid®(,/n) processes. In
the population size tends to a constant then the hypergehis way the processes would reach a decision after the crash
ometric distribution? (n, k, n — f) can be approximated of f of them, hence irfO(y/n) rounds. However, in normal

by the Normal distribution as follows conditions, crashes occur obliviously and not selectjvady
(k)( ek ) ) . _ this problem will not affect the performance in practice.
i An S e T with - —H* . Our analysis did not consider crash failures because they
(nff) V2roy OH can be abstracted and thus the result still holds in that case

det us consider a somewhat stronger model in which the
adversary only controls the scheduler. In this case, eltber
has the power, namely enough messages with each value
(n—f)k o = \/(n — Nk(n—k)f to schedule in some disrupting way, the postponement of

whereuy, andoy represent respectively the average and th
standard deviation df{, that is:

P = nZ(n —1) the termination, or he cannot succeed. It is clear that in the
' first case he does not need to crash any process, while in
Since in our cases = 3f + 1, we have% — % and the second case crashes will not help him to acquire the
Feller's approximation holds. capability to delay the protocol. Therefore, if crash fegls
To show the impact of such approximation on our previousdo not help to slow down the algorithm in the stronger model
analysis, we need to consider again the binomial approxithen, by reduction, crashes will not be of any aid in our

mation to the hypergeometric distribution, and in particul weaker model either.

n

its average and standard deviation, namely Comparison with a Lower Bound. It is interesting to
note how tight the result is. Attiya and Censor [3] provide
s = (n—fk op = (n— flk(n —k) a lower bound on the probability to reach consensus under
2 . .
n n a weak adversary in presence of crash failures. They proved

Itis now clear thaus — j andoy — o [ § _ os By that: forn = 3f + 1, the probability that a randomized

1= 3 ; : _
translating Feller's approximation in terms of the Staxdar consensus algorithm does not terminatetim — f) steps

Normal distribution, we thus get is at Ieast[?]*’c ~ (0.25)". Roughly speaking, the defini-
’ tion of step corresponds to the execution of ophase at

PH(n, k, n—f) <) Fg'[erq)<i—ﬂ7{) _ ¢<i—MB \/§> one processin our context. Instead, our result states that
T - on 0B the probability that the algorithm does not terminaterin

This means that we can easily get a more precise (aliﬁ)unds ('He-a?”“ pg‘asej), is atl mostl — 0.63)" = (?-37)T- -
proximated) result by adjusting with a constant the input ence, the two bounds are close up fo constant factors. The

to the cumulative distribution function in Theorem 3. This experimental evaluation will show that ours is rather seci

adjustment has no asymptotical impact when such inputis /| THE RANDOMIZED CONSENSUSALGORITHM
positively (resp. negatively) dependentenbecause in that

case the probability is exponentially high (resp. low),tsg i
ligible. Instead, the i tis noticeable when thefi ) .
negigiv’e. nstea © IMpact 1S notcean’s when thetmpu in the strong adversary model in presence fof< n/3

constant, thereby giving a constant probability. This teaqsp _ _ - ]
in the analysis of the first phase (Lemma 4 and Equation Z)I_Byzi’:\nt.me faﬂgres. Accjzl(_thtlonallyk,) we Ieverage. ourbpre\gou_
Therefore we restate the main theorem as follows: analysis to gain speed in more benign scenarios, by reducing

) . . , . the number of phases from three to two. We start by
Theorem 4:1n normal situations, the Bracha’s algorithm describing the communication primitives that we use, then
terminates at least with constant probability, namel§3, 9 b '

hence in expected.59 rounds. we give a description of the consensus algorithm.

Proof: Starting from Equation 2 of Theorem 3 and Communication Primitives
adjusting equations and results according to Feller's@ppr
imation, then

In this section we present our speculative algorithm.
Overall, the algorithm derives its robustness by beingemirr

The broadcast primitive is fundamentally an extension of
the Reliable Broadcast algorithm described in [6], which is
augmented to guarantee the FIFO property.

Reliable Broadcast.The reliable broadcast algorithm [6]
P(IB(n,p) — p| > 2ki0) n2eo (1— ®(2k)) > 0.63 achieve_s asynchronous Byzantine agreement as specifie_d in
[14]. It is composed by 3 message exchanges. In the first
Such constant probability implies that the algorithm termi step, the sender broadcasis in an initial message. In
nates in expected 1.59 rounds. B the second step, the processes that receive this message,

Crash-Failures are Already Included. In order to slow rebroadcast it in arecho message. In the third step, if a
down the algorithm, our analysis suggests that the begirocess receive@ + f)/2 echomessages, it broadcasts
strategy is to balance the proposals ®@fand 1 at the in a ready message. Finally, if a process recei&S+ 1

3
® (1.63\/§k1) >5 = 1.63v/3k; > 68 = ky > 0.24



ready messages withn, then it deliversm. The algorithm  FIFO property helps to solve this problem, because the
guarantees the following properties: sequence number of a message exposes the execution flow
P1: if the sender of a message is correct then all the of its sender, namely what it computeéxt

correct processes eventually deliver

P2: if a malicious process sends a message, then either dRescription of the Consensus Algorithm

or none of the correct processes deliver Message Stratum Validation. As processes may have
FIFO (Reliable) Broadcast. FIFO Broadcast [13] further  gifferent execution flows and some of them may be mali-
achieves the following property: cious, it is important that each process be able to match each

P3 if a process sends a message before standlng a received message to the correct MS. In other words, pro-
messagem’, then no correct process delivers’ before  cesses need message validatioprocedurejecv-validate

having deliveredn. in Algorithm 2, to decide if a message belongs to the correct

It can be easily implemented on top of Reliable Broadcasjs, This occurs if the message éxpectedand justified
as follows. Each process maintains a sequence nusgaer

that it uses to serialize all of its outgoing messages. Adso,

k i K f h oth séth 11 my # message received from
process keeps track, for each other progess the sequence | stratumi[¥p] i=1,2,3 4 set of valldated messages
number of the last message belongingptat delivered. 3. s(p)=min{j| stratum,[p| =0} # ps owest empty stratum
A process FIFO-delivers a messageif: 1) m has been F 5P J i : Py

. . . 4 r # current consensus round
reliably delivered; 2)m carries the next expected sequence , .

. : 5. On is-expected(m,,) :

number with respect to its sender. 6 (rydp) = (myr,my.0)

One should notice that the cost of FIFO delivery is _ 277 LN

: . 70 (s(p), 1oy dp) S (3,741, 1)
fundamentally null because it does not involve any further & then SS # Speculation Successful
message exchange beyond the reliable broadcast. Further- .
NV : o if (s(p),rp,dp)e{(1,r,1),(2,r,2),(2,7,3spec ),(3,7,3) }

more, it is important to note that Byzantine processes @nmo, - ihen YES
arbitrarily break the FIFO property without being detected 11: elseNO

As the FIFO broadcast is built on top of reliable broadcas
the lower communication level prevents them from sendin
conflicting messages with the same sequence number.
Message Stratum.The FIFO broadcast gives the possi-
bility to reason aboumessage strataLet us assume that

-
N
[N

N
w .

[(®]

: On is-justified(m,,) :
in stratumgp)—1 : YES
in stratumgp) :

=
a A

. . 16: if 3 a set ofn — f messages iatratum,_, that
a proces® has just started a new roundof computation. justifies thatp might have set the value im,,
Assume also that all the old messages from the other correct then YES
processes have been received. This can be easily achievel%{ elseNO

due to the FIFO property: late messages from previols

. X . . 19:
rounds are delivered first inby p and then discarded. Now 20: On recv-validate(stratum;) -
let next[] be the array of the next sequence numbers of the

s t . E h i 21: StTatuiji[Vp] =0 # clean current and higher stratd
messageg expects to receive. For each correct proogss | =\ oo |stratums]]| < n— f messages
p can associate theext[q]-th message to first phase of the : _
23: m,, < FIFO-deliver # message received from
round, the(next[q] + 1)-th to the second, and so on. Hence o ST,
. . 24 if is-expected(m,)=55 & is-justified(n,) then
we say that the set dhext[-|+:)-th messages characterizes
25: stratums [p] = stratums [p] # reuse p's old msg

a (subset.of anessage stratuWS). In particular, a MS can | o postponen,’s delivery# m, has roundr + 1
be associated to each phase in each round. In the following, else ifis-expected(n,) & is-justified(n,)
since late messages carrying old rounds are discarded and v p
messages with future rounds are buffered to be delivered then stratum,) [p] =mp )
. . [ 28 elsepostponemn,,’s delivery or discard it
later, we deal only with the message strata belonging to thezg_ end if
round a process is currently computing. '
In Algorithm 1 MSs are trivial because: 1) all processes
always execute the same phases; and 2) the round and Algorithm 2: Message Stratum Validation
phase number fields (contained in the messages) altogetherA message isexpected (Algorithm 2, line 5) if the
characterize a sequence number. However, suppose thatirdormation it carries (i.e., round, phase number) belongs
processp could voluntarily miss one phase, then the otherl) to the round the receiver is currently computing and the
processes would get desynchronized, namely: a progessindex of the lowest empty stratum cell for the sender (at the
waiting for a message from procepscannot distinguish receiver) matches the phase number in the message (line 9)
the case wherg skipped the transmission or the message— for a speculative message (phasg..), the index to be
lagged behind due to the asynchrony of the system. Thenatched is2 — or, 2) to the first phase of the round that

30: end while




immediately follows the one that the receiver is currently 1. r =1 # round number
computing, provided that the message sequence number ig: ¢ = 1 # phase number
immediately adjacent to the one of the previous message3: v = input # initial proposal
received from the same sender, which carried the phase® Stmt“f"ﬁi # I stratum tag identifier
number2 (line 7), and was thereby placed in the second 5 while 2 .
tratum 6: when¢=1: # 1st Phase/Stratum
message s : . ) 7: FIFO-broadcast(<r, ¢, v>)
In the consensus algorithm, a process sets its proposal (r) _ .
. . 8: S; 7 = recv- vahdate(stmtuml)
according to the received set of messages. Hence, a message
. R . . 9! v_wst|{m€S ,m =<r,p,w>} > f
carrying some proposal is justified (Algorithm 2, line 13) .
if the receiver has a set of (older) messages that could havé” if [{m g 87 m=<r,9, Z>}| >It§ thentA
allowed itself to set that proposal previously. Any proposg E els¢e_ spec spectlifive exectiion
at the beginning of the round (i.e., in the first phase) is .. b =2 u )
. . . cr . . . - normal execution
immediately justified. This cannot create any deadlockén th ,,. end if
system when the processes wait to justify some messagess: when¢ = 2 or ¢ = 3spec - # 2nd Phase/Stratum
because 1) at least— f of them are correct and follow the | 16: FIFO-broadcast(<r, ¢, v>)
protocol, and 2) Propert® of the reliable broadcast holds, | 17. gé’“) = recv-validate(stratums)
so the processes cannot sen(_tl cqnflicting messages. 18: if [{m € Sé”,m =<13spec, V> 2 n—f &
Our message stratum validation procedure completely ¢ = 3spec then
replaces Bracha's message validation. 19: Vg =V =w # decision
Consensus Algorithm. The consensus algorithm pro-| 20: p=1
ceeds in asynchronous rounds. Each round is represented: r=r+1 # next round
by a full or a speculative execution of thehile loop (line | 22 else
5), terminating in line 21 and 41, respectively. Each round % ¢=3 ")
is structurally composed by phases plusl speculative. | 2% if 3w, [{m € S%T)’m =<7 38?60’w>}|n> f
The speculative phase is identified 8s,..., and it may | 2% or ({meS; ' ,m=<r2,w>}>3&
allow a process to execute only two phases in one round. [{m € S%T),m =<r,2,%>} >n— f)
Each phase is identified by a computation block (line 26: or |{me SQT),m =<,k w>H >n—f
6, 15, 30), starting with a communication operation. The 27: then v = w
speculative phasé;,.. is embedded together with phase 28 elsev = L
2. Each message-receive operation is implemented in thé® hend 'i _
recv-validate primitive, which is useful for the processes| % Whemo =3 : # 3rd Phase/Stratum
: . . 31 FIFO-broadcast(<r, ¢, v>)
to recognize the message strata (line 8, 17, 32). A round|is™ S = i
full if a process participates in all th strata, while it is | ** Sy * = recv-validate(stratums)
iva . i - 33: if 3w, [{m € 8§, m =<r, ¢, w>}| > 2f then
speculativef a process participates only in the fitsstrata, - ) 35 ’d » U
before starting a new round. 34 Va = v=wWo oy  Foeeson
If no process executes the speculative phase, processésg elsvelf?uw, [{m € 857, m =<r,¢,w>}| > f then
follow the same execution flow as in [5]. In the first phase, a7 else_
following the message exchange, a process sets its propgsal. v = coin() # toss a coin
to the value on the majority of the received messages (line 9) 3. end if
If this majority is larger tham /2 (line 10) then it speculates | 4o bp=1
by setting phasel,.., otherwise it sets phasg. In the 41: r=r+1 # next round
next phase, if a process receives f speculative messages Algorithm 3: Speculative Randomized Consensus

(necessarily carrying the same proposal), then it speslilat
successfully, and therefore decides and proceeds to ttte n
round. Instead, a process that cannot speculate succtyessful
must at least try to decide in the third phase.

Let us analyze how the configuration efratums influ-

+1 speculative messages are received, then the speculation
necessarily failed at all processes. In this case, it i&igic

to set a proposal, since both valuer 0 may appear in
stratums (though only one can be speculative). From the

ences a process proposal in ph&sdf a process receives point of view of a process, the speculators may be more

at leastf + 1 speculative messages (line 24), it may bethr‘?m thef it trﬂail be ablethto see, due fo :gehasynchronyd
that some other process has already decided — due to asyn- IS meéans that some other process cou ave receive
or instance,f + 1 speculative messages and thus set the

chrony the remaining speculative messages may have bee lati | Theref | th
delayed. Clearly, for validity’s sake, it must be mandataory speculative value. 1hereiore, a process receiving less tha
+ 1 speculative messages can set its proposal to a non-

it to follow those speculators, by setting the same propos . " X .
for the next phase. On the other hand, if strictly less thar‘?p%u'at've value if: 1) either no speculative message has



been received (line 25), which ensures that at mfogtro-
cesses speculated; or 2) the received speculative messages

comply with the non-speculative value to be set (liné)2B " i 1
the remaining cases it is safer for a process to set the defaul 2 L ‘” ” H ‘
locked.

4 28 52 76 1

= N W

value, to avoid having more than one proposal in ptiise 3
beyond the default value. Hence, at most one proposal is &

Finally, a process executes the phasany time it is not
able to decide in the speculative phase. This phase resumes
the original protocol execution, where a process can safely
decide on a (locked) proposal (line 34), provided that itdoe
not receive default values istratums. However,stratums

00

Number of Processes
Figure 1: Round complexity of Algorithm 1 in a LAN
same proposal and reach the agreement in one round. With
may contain strictly less than — f phase3 messages, if the speculative algorithm, our previous analysis shows tha

a process decided on a speculative value, and this coul§n€n (from Lemma 2)5 + kyn processes (withk, >3
potentially lead to a deadlock. As we mentioned before Propose the same value, then the agreement is achieved just
this problem is prevented by the FIFO property and by thdn 2 phases.

assumption that at least— f processes are correct. In fact,
a process expects that some message from some prpitess
stratums may belong to the subsequent round (Algorithm The experiments evaluate the performance (in number
2, line 7). In this case, it can recognize theg speculation of rounds) of Algorithm 1 and 3. They were performed
was successful (Algorithm 2, line 8) and, therefore: 1) itin a cluster of 6 Dell PowerEdge 850 nodes, carrying an
reusesqg’s previous message, fromtratums, in the third  Intel Xeon E5520 CPU, 2GB of RAM, and a Broadcom
phase (Algorithm 2, line 25) and 2) it postpones the deliveryNetXtreme BCM5721 Gigabit Ethernet card. Nodes ran the
of the new message, which in fact belongs to theitum; 2.6.32-21-server Linux kernel and were connected by a
of the next round. Once this problem is solved, if a proces®ell PowerConnect 5448 switch. We divided the processes
can decide in a round, then necessarily: 1) all the others equally among the machines to avoid having faster priv-
receive at least a majority of messages with that decisiofleged units. The algorithm was executed to withstand a
value, thereby setting it for the subsequent round (ling 35)number of failures ranging irf = 1,...,33. Each process
and 2) as all correct processes start rousd with the same ~ was assigned a unique ID in the rarige. . ., 3 f]. The initial
value, then they all decide by the end of round1. On the proposal of a process was equal to the parity of its ID, so
other hand, if none of the previous events happens, then the initial configuration was divergent. This configuration
process tosses a coin (line 38) to escape the impossibility corresponds to the worst-case scenario that leads to ther lar
attaining consensus in deterministic asynchronous sygstemnumber of executed rounds.

Discussion.The need to maintain the algorithm’s correct- The broadcast primitives were emulated using point-to-
ness in the presence of Byzantine failures has a significaggoint TCP channels. When a process had a message to be
impact on performance because several phases must bransmitted, it randomly picked one of the receivers and
run. The speculative phase instead is useful to recognizéhen sent the message. This procedure was repeated until
and speed up the algorithm in normal situations: 1) inthe message was transmitted to all destinations. The exteiv
the worst-case, the Byzantine processes and an adversarigieration was carried out in a similar way, the channels were
message scheduler can make the speculation either fail oandomly polled to check for available messages. Note that
be avoided, while 2) in normal situations, particularly whe this implementatiomloes nothange the algorithm’s essence.
most processes start with the same proposal, they are ableFigure 1 provides the average number of rounds for
to reach a decision aft@ communication steps (or phases). termination of Algorithm 1. For each point we present the

Improving the complexity in normal situations makes average ofl0 runs and the95% confidence interval. The
sense as these are expected to occur frequently. For iestaneesults confirm that the algorithm runs in expected constant
let us consider a state machine replication applicatiop- Ty time. When processes start to execute, they have divergent
ically, processes that execute the algorithm receive from proposals and therefore, with very high probability as we
client a service request (using reliable-broadcast if ttent  expected, at the end of the first round they perform a coin
can be malicious) for which an agreement problem need ttossing operation. At this point our result begins to apply —
be solved in order to maintain consistency across replicashat is consensus should terminatelis9 rounds. Indeed
In this case, correct processes all start the algorithmthigh it is possible to confirm that our prediction represents a

L L _ good approximation (the threshold line is placed at1.59

The condition in line 26 is clearly stronger than the one dbsd.

Nevertheless it allows for a succinct description while meining the rounds). ) ) ) )
algorithm’s correctness. In relation to Algorithm 3, we performed a simulation

VIl. EXPERIMENTAL EVALUATION



" Rounds e [2] J. Aspnes. Fast deterministic consensus in a noisy @mvir
" Phases 1 ment. J. of Algorithms 45(1):16-39, 2002. .
[3] H. Attiya and K. Censor. Lower bounds for randomized
I consensus under a weak adversdPyoceedings of the 27th
r r 1 ACM Symposium on Principles of Distributed Computing
i (PODC), pages 315-324, 2008.
[4] M. Ben-Or. Another advantage of free choice (Extended

= W o1 N ©

Abstract): Completely asynchronous agreement protodols.

0 20 40 60 80 100 Proceedings of the 2nd Annual ACM Symposium on Princi-
Processes with initial proposal 0 ples of Distributed Computing (PODCpages 27-30, 1983.
[5] G. Bracha. An asynchronous [(n - 1)/3]-resilient corsen

Figure 2: Complexity of Algorithm 3 protocol. InProceedings of the 3rd Annual ACM Symposium
with 100 processes, whose results are displayed in Figure 2. Principles of Distributed Computing (PODQ@)ages 154—
We ran the algorithm for all possible initial configurations 162, 1984.
(by setting the initial proposal of a subset of the processesl6] G. Bracha, S. Toueg, and N. York. Asynchronous consensus
to 0 and the remaining tal). In the case of divergent and broadcast protocoldournal of the ACM32(4):824-840,

. . . 1985.
proposals (middle of the graph), the speculative version[7] R. Canetti and T. Rabin. Fast asynchronous Byzantine

performs similarly to the original Bracha’s algorithm (as agreement with optimal resilience. Rroceedings of the 25th
it can be confirmed by comparing Figure 1 and 2). For ~ ACM Symposium on Theory of Computing (ST®ayes 42—

the other cases, our former analysis applies and indeed th?B] gl’c‘%%?elvllgl\%l?élrritt and D. B. Shmoys. Simple constamni

speculative algorithm terminates in eithizior 3 phases. In consensus protocols in realistic failure moddisurnal of the
particular, almost precisely as we predicted, it termigdte ACM, 36(3):591-614, 1989.

pasesunon 2 o rocesse i, ) satun 1945 Eolb A il 1o oty ey a1
. . . . | | s .1, 1 | ' .
the same proposal. The reason for this difference lies in thg o) M T3 Fischer. The Consensus Problem in Unroliable Dis-

speculative decision condition (line 18), where even jue o tributed Systems (A Brief Survey). IRroceedings of the
process that does not speculate may make it false. According International Conference on Fundamentals of Computation
to our analysis this event is not likely to happen for a large, .. Theory (FCT) pages 127-140, Aug. 1983.

h b f H thi bl - l[sll] M. J. Fischer, N. Lynch, and M. S. Paterson. Imposgipili
enough number of processes. However, this problem exis of distributed consensus with one faulty procedsurnal of

as long as the processes receive only f messages, as we the ACM (JACM) 32(2), 1985.
simulated. If they are able to base their decisions on larged2] C. Georgiou, S. Gilbert, R. Guerraoui, and D. R. Kowalsk

sets of messages, as it may frequently happen in practice, Oof”tg;e Zcﬁﬁ“p*eé(&y So;/ n?;ggfuhr;og?lui gr?s{ijﬁésng?cg?gir?gjted

then it is more likely that the speculation is successful. Computing (PODC)page 135, Aug. 2008,

VIIl. CONCLUSIO [13] V. Hadzilacos and S. Toueg. A Modular Approach to
) NCLUSION Fault-Tolerant Broadcasts and Related Problems. Tedhnica

In the paper we show that a well-known, resilient-optimal, report, Computer Science Department, Cornell University,
Byzantine fault-tolerant (for a strong adversary) aldurit New York, 1994.

. . 2 . [14] L. Lamport, R. Shostak, and M. Pease. The Byzantine fsene
[5] is fast under normal conditions, thus making it attraeti als Problem ACM Transactions on Programming Languages

for real implementations. Then, building on our analysis and Systems (TOPLAS)(3):382-401, 1982.
we proposed a new speculative algorithm that reduces frorfd5] M. Mitzenmacher and E. UpfaProbability and Computing:

three to two the number of phases needed to achieve con- Randomized Algorithms and Probabilistic Analysi€am-
bridge University Press, Jan. 2005.

sensus in the best-case. Our experimental analysis udtiynat [16] H. Moniz, N. F. Neves, and M. Correia. Turquois: Byzati

confirmed our findings. consensus in wireless ad hoc networks. Pioceedings of
the 40th IEEE/IFIP International Conference on Dependable
ACKNOWLEDGMENTS Systems and Networks (DS¥pges 537-546, 2010.

. . [17] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo. BExpe
We would like to thank Alysson Bessani for an early imental Comparison of Local and Shared Coin Randomized

revie\_/v of the work, whigh helped to improve its presentation Consensus Protocols.  IRroceedings of the 25th IEEE
This work was partially supported by the EC through Symposium on Reliable Distributed Systems (SRp&)es

project FP7-257475 (MASSIF), and by the FCT through 235-244, 2006. o

the Multiannual and the CMU-Portugal Programmes, and th&8] W- L. Nicholson. On the Normal Approximation to the

project PTDC/EIA-EIA/113729/2009 (SITAN), and research g{ggﬂ?ﬁ;gﬁgi%‘ﬂ?g“2352'6 Annals of Mathematical

grant SFRH/BD/51562/2011. [19] P.Urban, X. Defago, and A. Schiper. Chasing the FLPdsp
sibility result in a LAN: or, How robust can a fault tolerant
REFERENCES server be? IrProceedings of the 20th IEEE Symposium on

[1] I. Abraham, D. Dolev, and J. Y. Halpern. An almost-surely Reliable Distributed Systems (SRDfjges 190-193, 2001.
terminating polynomial protocol forasynchronous byzaeti [20] B. Vavala, N. F. Neves, H. Moniz, and P. Verissimo. Ran-
agreement with optimal resilience. Rroceedings of the 27th domized Consensus in Wireless Environments: a Case Where

ACM Symposium on Principles of Distributed Computing More is Better. In Proce_e_dings of the 3rd International
(PODC), pages 405-414, 2008. Conference on Dependability (DEPENDDages 7-12, 2010.



