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Abstract—Randomized Byzantine Consensus can be an inter-
esting building block in the implementation of asynchronous
distributed systems. Despite its exponential worst-case com-
plexity, which would make it less appealing in practice, a
few experimental works have argued quite the opposite. To
bridge the gap between theory and practice, we analyze a well-
known state-of-the-art algorithm in normal system conditions,
in which crash failures may occur but no malicious attacks,
proving that it is fast on average. We then leverage our
analysis to improve its best-case complexity from three to two
phases, by reducing the communication operations through
speculative executions. Our findings are confirmed through an
experimental validation.
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I. I NTRODUCTION

Is randomized consensus practical? Researchers have been
asking this question for the past few decades and yet they
cannot reach an unanimous conclusion. On the one hand,
theoreticians believe it is inefficient due to its exponen-
tial worst-case complexity. On the other hand, practicians
believe that many theoretical models are too extreme to
describe the real world, and eventually decide to integrate
in their systems well-performing algorithms, though theoret-
ically inefficient in the worst-case. In this paper we reconcile
these positions to some extent by providing a theoretical
analysis of a randomized consensus algorithm in a more
practical model, eventually proving that it is fast.

Bracha’s algorithm [5] has attracted a lot of attention
because of its pivotal contribution to the area and for
its simplicity. Today it still represents the state-of-theart
in Byzantine fault-tolerance, in terms of reliability and
resiliency. Improving on Ben-Or’s result [4], it is the first
algorithm able to tolerate the optimal bound off = ⌊n−1
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malicious failures [14] in a completely asynchronous system
by leveraging randomization, thus eluding the impossibil-
ity result for deterministic algorithms [11], and without
resorting to public key cryptography. However, it is quite
inefficient in theory because it takes an exponential number
of rounds to terminate. The high complexity is related to the
worst-case scenario, in which up tof corrupted processes
and an adversarial scheduler having complete knowledge

of the system (i.e., processes’ internal states, exchanged
messages, etc.) aim at subverting it.

Although it is reasonable (and actually realistic) to assume
that the system does not always run in the worst-case
scenario, it is not wise to relax completely this assumption.
First, the worst-case clearly represents an abstraction ofan
attack the system can suffer. Second, even if no attack is
performed, a bad execution run might simply happen. How-
ever, once established that the distributed system is usually
reliable, then attacks and failures can only interfere withits
efficiency, thereby being detectable as they slow it down
and reduce its throughput. These issues can be considered
transient because either they can be solved through human
intervention, or it is unlikely that they are accidentally long-
lasting.

The previous argument would not be useful if the im-
plemented algorithms were slow in all scenarios, simply
because normal and abnormal situations would be indistin-
guishable. In the first case, as the algorithm would keep
the same performance even in presence of good conditions,
there would be no need to worry about it. The existence of
fast algorithms in the worst-case is still an open question
but there is a wide belief that it might be extremely difficult
to devise one.

In this paper, we prove that Bracha’s algorithm terminates
in constant time in normal conditions. The result is close
to the lower bound given by Attiya and Censor in [3].
Also, building on it, we present a new extension to the
Bracha’s algorithm so that it converges more rapidly, in
terms of communication steps, while retaining the robustness
against colluding Byzantine processes. In particular, it uses
a speculative execution to reduce the number of phases
from three to two. Our experimental results ultimately give
further and clearer confirmation that randomized consensus
is indeed practical, and even more attractive if speculation
is used.

II. RELATED WORK

As consensus cannot be attained by any deterministic
algorithm [11], two main techniques can be followed to
circumvent this limitation: relaxing the model, typically
assumingeventual synchrony(directly in the system model



or hiding it in a failure detector), or making the algorithm
non-deterministic, typically leveraging randomization.While
the first trades correctness with a weaker model, the second
instead maintains correctness in the strongest model, though
its performance is yet to be better understood and improved.
Our work makes a contribution in this direction.

In terms of resiliency, Bracha’s algorithm, as well as the
speculative one that we will describe, compares favorably
against several other works [4], [8] that employ up to2f
more processes, though at the price of more expensive
communication primitives (i.e.,reliable broadcast). Firstly,
it is widely believed that keeping the number of processes
low represents the main practical challenge due to its cost.
For several consensus applications more processes mean
more machines that need to run diverse software to avoid
common vulnerabilities, which could lead to the complete
compromise of the system. Secondly, the impact of sending
(moderately) more messages is typically noticeable when the
underlying hardware is limited or when they have to travel
over a wide area. Hence for several deployments (e.g., a
LAN with high speed routers) it is possible to maintain a
sustainable workload.

In [6], [2] it was shown that by assuming randomness
in the environment rather than within the algorithm is
sufficient to achieve consensus efficiently (i.e., deterministic
algorithms can be proved correct and fast). The drawback
of those protocols is that they cannot withstand actions that
fall in the scope of the strong adversary model, although in
this case only liveness is compromised.

Randomized consensus algorithms under the more realis-
tic message-oblivious model were first considered in [8]. In
this model, either no malicious entity acts, or it actsblindly,
independently from the message content. Also in this case,
the algorithms are not resilient-optimal, or cannot withstand
malicious failures. The work in [3] extends the previous one
and provides a new lower bound on the probability that an
algorithm does not terminate afterk rounds, which is at least
⌈nf ⌉−k. In our analysis we show that Bracha’s algorithm
provides a close (up to a constant factor) upper bound.

A few works [7], [1] addressed successfully the problem
of Byzantine failures when the adversary only controls the
corrupted processes — he does not look at the internal
state of the correct processes nor at the messages they
exchange with each other. Contrarily to [5], they all prove
that consensus can be achieved fast under that model, in
polynomial [1] and constant [7] time, respectively. The main
limitation of these protocols is that, beyond the fact that they
cannot withstand a strong adversary, the low time complexity
is attained at the expense of an extremely high number
of message exchanges, making their implementation hardly
feasible. However, in presence of a weaker adversary and
of crash-only failures, it is possible to improve it through
gossip algorithms [12].

Finally, we notice that the literature is somewhat poor

of experimental evaluation of randomized consensus algo-
rithms, probably because simple algorithms are theoretically
inefficient, while more specific ones are rather complex
to implement and/or not viable due to the number of
processes. In [19] it is investigated the practical impact in a
LAN of the impossibility result [11] in a replicated system
under high load, ultimately observing that it maintains a
positive throughput even in adverse network conditions. In
[17], Bracha’s algorithm is evaluated in a LAN, and the
results show that it takes at most a couple of rounds to
terminate. In [16] the same algorithm is instead evaluated
in a wireless network, showing that the latency increases
a lot with the number of processes. However, as suggested
in [20], this is probably due to the high contention among
the processes in accessing the wireless medium. Our work
provides: 1) theoretical fundaments that sustain and predict
these experimental results; and 2) a methodology that helps
the analysis of randomized consensus algorithms in practical
scenarios.

III. T HE CONSENSUSPROBLEM AND ITS SOLUTION

The Randomized Binary Consensusproblem is defined
by 3 properties [10]. The first two aresafety properties,
which are common to most solutions present in the literature:
validity, if all correct processes start the computation with
the same proposalv, this is the only value that can be
decided on;agreement, no two correct processes decide
differently. The third one is thelivenessproperty, which
specifies that the system must eventually make progress in
its computation, eventually taking a decision:termination,
all correct processes eventually decide with probability1.
This property is the one that usually differentiaterandomized
from deterministicconsensus, since the second one always
ensures decision.

Bracha’s Solution. Algorithm 1 presents the main struc-
ture of the algorithm [5]. We voluntarily overlooked two
primitives of the original algorithm (and so we dubbed it
weak), which are crucial to withstand Byzantine failures
under the strong adversary model: the reliable broadcast
primitive (see Section VI for a description) and the message
validation procedure. The reason is that our analysis is
for the normal conditions where no malicious entity exists,
thereby making them unnecessary. In turn, even though we
use this simplification, our result still holds for the full
algorithm.

The algorithm is composed of three phases. In each one, a
process performs a broadcast, waits to receive at leastn−f
messages, and then makes some computation. Specifically,
in the first phase the processes run a sort of pre-agreement,
in which a process sets its proposal to the one present in
the majority of the received messages. In the second phase
instead, a value is set only if the majority of processes
proposed it, otherwise a process opts for a default value
⊥. Such a majority implies (by reasoning about intersecting



1: r = 1 # round number

2: v = initial proposal
3: while true do
4: broadcast(<r, v, 1>) # 1st Phase

5: M1
r = receive n− f <r, ∗, 1>-messages

6: if ∃w ∈ {0, 1}, |{m ∈ M1
r,m =<r,w, 1>}| > f

then
7: v = w
8: end if
9: broadcast(<r, v, 2>) # 2nd Phase

10: M2
r = receive n− f <r, ∗, 2>-messages

11: if ∃w ∈ {0, 1}, |{m ∈ M2
r,m =<r,w, 2>}| > n

2
then

12: v = w
13: else
14: v = ⊥ # default value

15: end if
16: broadcast(<r, v, 3>) # 3rd Phase

17: M3
r = receive n− f <r, ∗, 3>-messages

18: if ∃w ∈ {0, 1}, |{m ∈ M3
r,m =<r,w, 3>}| > 2f

then
19: v = vd = w # decision

20: else if∃w ∈ {0, 1}, |{m ∈ M3
r,m =<r,w, 3>}| > f

then
21: v = w
22: else
23: v = coin() # toss a coin

24: end if
25: r = r + 1 # next round

26: end while

Algorithm 1: Weak Bracha’s Algorithm f = ⌊n−1
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quorums) that if one value is ever set, then that is the only
one any other process can ever choose (beyond the default
value). In the third phase, if the processes notice that enough
of them have set a particular value, then they safely decide
on it, otherwise they toss a coin and start over.

IV. N ORMAL CONDITIONS

We consider a system ofn processes,f of which might
experience failures (we will define this better later on). The
computation proceeds in asynchronous rounds. Rounds are
structured in phases, each one composed by a communica-
tion operation and some computation. The asynchrony that
characterizes the system implies that no assumption is taken
on the relative speed of both the processes and the message
delivery. The channels are reliable, so a message broadcast
eventually reaches all recipients, or a subset of them in case
the sender is faulty and crashes. Also, it is assumed that a
process can correctly identify the sender of a message, so to
avoid impersonation attacks. The computation is said to be
message-drivento indicate that processes take steps based
only on the information that they receive. Progress occurs
with the reception ofn− f distinct messages for the same

round and phase, but processes do not get necessarily the
same set of messages.

The Strong Adversary Model. The definition of the
powers that an hypothetical adversary has to disrupt the
successful execution of the protocol gives an abstraction
of the environment. In the literature, thestrong adversary
model typically characterizes the worst-case scenario. In
this model, a computationally unbounded adversary (i.e.,
cryptography cannot be used) is able to: access the internal
state of the processes, eavesdrop on the communication
among them, tune their execution speed, delay and reorder
messages, adaptively corrupt up tof processes which, in
case of Byzantine failures, collude against the correct ones.

Normal Situations. A model for normal conditions
should describe what we would expect in practice, during
most of the system execution time. Firstly, we can assume
that usually there are no Byzantine failures. Secondly, as
we noticed in several experiments [17], [16], [19], the
presence of an adversarial scheduler does not also occur. For
example, it is safe to make no assumption on: which process
first acquires the transmission medium; what scheduling
algorithm is used at the switch/router to serve the processes’
communication requests; how the channel polling is per-
formed at the process, since there are logical/real links that
connect it with all the others. It is also hard (though possible)
that each process receives in every phase the worst possible
set of messages, potentially delaying the decision and thus
the algorithm’s termination.

Therefore, we do not lose generality by considering that
each message has the same probability of being received,
for several reasons: 1) the algorithm is decentralized, in the
sense that there is no leader and all messages have the same
weight; 2) the identity of the sender of a message does not
really matter, what is important is that the messages received
by a process aredistinct; 3) randomization is already present
within the algorithm itself and in particular in the value
each message carries. It must be noted that this is not in
contrast with the asynchrony assumption. Also, the model
considers that that no malicious entity is acting, and thus
the messages are delivered independently from their content
and internal status of the processes. Finally, crash failures
can occur obliviously (i.e., they may not necessarily slow
down the algorithm).

V. PROBABILISTIC ANALYSIS

In this section we provide the complexity analysis of the
Bracha’s protocol innormal conditions. As the correctness
is preserved from the stronger model, the algorithm inherits
the exponential time complexity as an upper-bound. We
will show however that at each round the algorithm has a
constant probability to terminate, so an expected constant
time complexity.

Preliminaries. In order to derive our result, we employ
some of the tools and techniques from [6]. In particular, we



make extensive use of approximations, but we avoid using
Markov chains for the analysis. We also take advantage of
another old approximation provided in [9].

The approximations are asymptotically precise. In particu-
lar, for a large enough population of sizen and a probability
p that an element of the population is considered a success,
the number of successes is modeled through the Binomial
distribution B(n, p), and the probability to get less than
(or equal to)i successes is approximated using the Normal
distributionN (np, np(1− p)) as follows:

P (B (n, p) ≤ i) ≈ Φ

(

i− np
√

np(1− p)

)

whereΦ(x) represents theStandard Normal distribution.
Moreover, we frequently use the following inequality

between the hypergeometric (H) and the Binomial (B)
distribution. Let n be defined as above,k the number
of items considered successes,ns the sample size. For
i ≤ kns

n = E(H), it can be stated that

P (H (n, k, ns) ≤ i) ≤ P

(

B
(

ns,
k

n

)

≤ i

)

The inequality is true because, according to the parameters
of the distributions, they both have the same average andH’s
variance is less or equal toB’s. SoH is more concentrated
around the average.

Additionally, we will use the following Chernoff Bound
(CB, Theorem 1), which shows that in a stochastic process
involving n binary independent random variables, the sum
of the variables is concentrated around the average with high
probability (w.h.p.).

Theorem 1 (Chernoff Bound [15]):Let X1, . . . , Xn be
independent poisson trials such thatPr(Xi) = pi. Let
X =

∑n
i=1 Xi and µ = E[X ]. Then, for 0 < δ < 1,

Pr(|X − µ| ≥ δµ) ≤ 2e−µδ2/3.
Finally, the following theorem describes the normal ap-

proximation to a general Binomial distribution.
Theorem 2 (De Moivre-Laplace [9]):Consider a Bino-

mial distribution B (n, p), with averageµ = np and
standard deviationσ =

√

np(1− p). For fixedz1, z2,

P (µ+ z1σ ≤ B (n, p) ≤ µ+ z2σ)
n→∞
= Φ(z2)− Φ(z1)

Analysis in Normal Conditions. We proceed phase by
phase, each time describing the properties of the array of
proposals in the system. In particular, we will be focused
in understanding under what conditions in the second phase
(most of) the processes either set a default value, so they will
not reach a decision, or a specific value that is subsequently
decided on.

The following lemma is a well-known property of the
original algorithm [5]. Basically it states that the decision of
one process at some round implies the consensus termination
property.

Lemma 1: If a processp decides at the end of roundr,
then all processes decide by the end of roundr + 1.

Proof: If p decides onv then it received at least
2f+1 messages carrying that value in the third phase. Since
n = 3f + 1, all the other processes receive at leastf + 1
messages withv. If they do not decide in roundr, they do
not toss a coin but rather setv, thereby starting roundr+1
with the same value. Since the algorithm is correct under the
validity property, then all the (remaining) processes decide
by the end of the round.
Lemma 2 represents the crucial part of the final theorem.
It allows us to understand under what condition processes
can set a bad (default value) or a good (either0 or 1)
proposal following the message exchange in the second
phase. Surprisingly, we get an “everyone or no one”-style
result, asymptotically.

Lemma 2:Let 0 < k2 < 1
2 be a constant. Ifn2 + k2n

processes proposev at the beginning of the second phase in
a roundr, then at the end of the phase with probability 1:
if k2 < 1

4 , all processes set the default value; ifk2 > 1
4 , all

processes setv.
Proof: A processp sets v in the second phase if it

receives more thann2 messages carrying that value. The
probability that this happens follows a hypergeometric dis-
tribution that can be computed and bound as follows:

P
(

H
(

n,
n

2
+ k2n, n− f

)

>
n

2

)

=

= 1− P
(

H
(

n,
n

2
+ k2n, n− f

)

≤ n

2

)

P
(

H
(

n,
n

2
+ k2n, n− f

)

≤ n

2

)

≤

≤ P

(

B
(

n− f,
1

2
+ k2

)

≤ n

2

)

≈ Φ





n
2 − 2n

3 (12 + k2)
√

2n
3 (12 + k2)(

1
2 − k2)





= Φ





n
6 − 2k2n

3
√

2n
3

1−4(k2)2

4



 = Φ





√

2n
3

(

1
4 − k2

)

√

1−4(k2)2

4





For a large enoughn, the probability obtained is1−O(e−n)
for k2 < 1

4 and it isO(e−n) for k2 > 1
4 . So, depending

on k2, either the considered event or its complement will
succeed with high probability. Hence, we have (fork2 > 1

4 )

P
(

H
(

n,
n

2
+ k2n, n− f

)

>
n

2

)

≥ 1−O(e−n)

P (each process setsv) ≥
(

1−O(e−n)
)n n→∞

= 1

The case whenk2 < 1
4 is symmetrical.

Lemma 3 describes under what conditions, by the end of the
first phase, the difference between the number of processes



that propose the two value isO(n).
Lemma 3: If a process has a constant probabilityp > 1

2
to set a valuev at the end of the first phase then, for some
constant0 < k2 < p− 1

2 , at leastn2 + k2n processes setv
with high probability.

Proof: Without loss of generality let us assume that, for
some constantc > 0, p = 1

2+c. Considering alln processes,
the number of those that setv follows a Binomial distribution
B(n, p), whose average isµ = n

2 +cn. A simple application
of the CB (Theorem 1) shows that, for any constantc′ > 0,
P (B(n, p) ≤ µ− c′n) ≤ e−Θ(n) (because, in Theorem 1,δ
would be a constant dependent onc and c′). In particular,
this still holds if we take0 < c′ < c. Now consider a
constantk2 > 0 such thatc′+k2 = c. The result immediately
follows because the complementary event happens with high
probability, that isP (B(n, p) > µ− c′n) ≥ 1− e−Θ(n), and
µ− c′n = n

2 + k2n.

Lemma 4 quantifies the initial difference in the number of
processes that propose the two values, such that they have
a biased constant probability to set the most frequent one at
the end of the first phase.

Lemma 4:Let k1 > 0 be a constant. Ifn2 + k1
√
n

processes proposev at the beginning of the first phase in a
roundr, then there is at least a constant probability, namely
Φ(1.63k1) >

1
2 , that a process setsv at the end of the first

phase.

Proof: A process setsv in the first phase if it received
a majority of messages carrying that value. The probability
that this happens follows a hypergeometric distribution that
can be computed and bound as follows:

P
(

H
(

n,
n

2
+ k1
√
n, n− f

)

>
n

3

)

= (1)

= 1− P
(

H
(

n,
n

2
+ k1
√
n, n− f

)

≤ n

3

)

P
(

H
(

n,
n

2
+ k1
√
n, n− f

)

≤ n

3

)

≤

≤ P

(

B
(

n− f,
1

2
+

k1√
n

)

≤ n

3

)

≈ Φ





n
3 − 2n

3 (12 + k1√
n
)

√

2n
3 (12 + k1√

n
)(12 − k√

n
)





= Φ





− 2k1

√
n

3
√

2n
3

n−4k2

1

4n



 = Φ

(

−
√

2k21(4n)

3(n− 4k21)

)

≤ Φ

(

−
√

8k21
3

)

= Φ(−1.63k1)

Substituting in the equation above and sincek1 > 0

P
(

H
(

n,
n

2
+ k1
√
n, n− f

)

>
n

3

)

≥1− Φ (−1.63k1)

=Φ (1.63k1)>
1
2

We are now ready to go through our main result. We
proceed bottom-up: starting from a good configuration in
the last phase that leads the processes to a decision with
high probability, we go back to the coin tossing procedure,
investigating what conditions must be ensured in order to
reach that good final configuration. Eventually, the first
condition can be met with constant probability.

Theorem 3:In normal situations, the Bracha’s algorithm
terminates at least with constant probability, namely0.40,
hence in expected2.5 rounds.

Proof: Let us assume that all processes proposev in
the third phase of a roundr. This case is ensured with
probability1 by Lemma 2 provided that there is a constant
k2 > 1

4 , such thatn2+k2n processes started the second phase
proposingv. This means that, with the same probability, all
processes necessarily take a decision by the end of roundr
— actually the decision of one correct process inr would be
sufficient since it implies the termination of the algorithm,
from to Lemma 1.

From Lemma 3, constantk2 exists if the processes have
a constant probabilityp > 1

2 of settingv following the mes-
sage exchange of the first phase. From Lemma 4, provided
that there exists a constantk1 such thatn2 +k1

√
n processes

proposev at the beginning of the first phase, such probability
is p = Φ(1.63k1). By combining the required bound onk2
with p, we haveΦ(1.63k1)− 1

2 > k2 > 1
4 , so

Φ (1.63k1) >
3

4
⇒ 1.63k1 ≥ 0.68 ⇒ k1 ≥ 0.42 (2)

Sincek1 is related to the distribution at the beginning of
the first phase, it depends on the coin tossing at the end of
roundr−1. The coin tossing follows a Binomial distribution
B
(

n, 1
2

)

, hence from Theorem 2, we have

P (|B (n, p)− µ| ≥ 2k1σ)
n→∞
= 2 (1− Φ(2k1)) ≥ 0.40

Therefore, if the algorithm does not terminate (no process
decide) in roundr, then there is at least a constant probabil-
ity to get agood coin tossing that would let the algorithm
terminate in roundr + 1. Such constant probability implies
that the algorithm terminates in expected2.5 rounds.

An Improved Approximation.
According to our experimental evaluation (see Section

VII), the result obtained is loose and does not describe
exactly the behavior of the algorithm. The reason is that
some precision is lost while passing from the hypergeometric
to the Binomial distribution. Building on our analysis, we
enhance it by using a result of Feller [9], [18, p.194], which
indicates how to approximate the hypergeometric distribu-
tion with the Normal distribution under some conditions.



Feller shows that when the ratio between the sample and
the population size tends to a constant then the hyperge-
ometric distributionH (n, k, n− f) can be approximated
by the Normal distribution as follows

(

k
i

)(

n−k
n−f−i

)

(

n
n−f

) ∼ 1√
2πσH

e−
x
2

2 with
i− µH
σH

→ x

whereµH andσH represent respectively the average and the
standard deviation ofH, that is:

µH =
(n− f)k

n
σH =

√

(n− f)k(n− k)f

n2(n− 1)

Since in our casen = 3f + 1, we have n−f
n → 2

3 and
Feller’s approximation holds.

To show the impact of such approximation on our previous
analysis, we need to consider again the binomial approxi-
mation to the hypergeometric distribution, and in particular
its average and standard deviation, namely

µB =
(n− f)k

n
σB =

√

(n− f)k(n− k)

n2

It is now clear thatµB = µH andσH = σB

√

f
n−1 = σB√

3
. By

translating Feller’s approximation in terms of the Standard
Normal distribution, we thus get

P (H(n, k, n−f) ≤ i)
Feller≈ Φ

(

i−µH
σH

)

= Φ

(

i−µB
σB

√
3

)

This means that we can easily get a more precise (ap-
proximated) result by adjusting with a constant the input
to the cumulative distribution function in Theorem 3. This
adjustment has no asymptotical impact when such input is
positively (resp. negatively) dependent onn, because in that
case the probability is exponentially high (resp. low), so it is
negligible. Instead, the impact is noticeable when the input is
constant, thereby giving a constant probability. This happens
in the analysis of the first phase (Lemma 4 and Equation 2).
Therefore we restate the main theorem as follows:

Theorem 4:In normal situations, the Bracha’s algorithm
terminates at least with constant probability, namely0.63,
hence in expected1.59 rounds.

Proof: Starting from Equation 2 of Theorem 3 and
adjusting equations and results according to Feller’s approx-
imation, then

Φ
(

1.63
√
3k1

)

>
3

4
⇒ 1.63

√
3k1 ≥ .68 ⇒ k1 ≥ 0.24

P (|B(n, p)− µ| ≥ 2k1σ)
n→∞
= 2 (1− Φ(2k1)) ≥ 0.63

Such constant probability implies that the algorithm termi-
nates in expected 1.59 rounds.

Crash-Failures are Already Included. In order to slow
down the algorithm, our analysis suggests that the best
strategy is to balance the proposals of0 and 1 at the

beginning of each round by crashingO(√n) processes. In
this way the processes would reach a decision after the crash
of f of them, hence inO(√n) rounds. However, in normal
conditions, crashes occur obliviously and not selectively, so
this problem will not affect the performance in practice.

Our analysis did not consider crash failures because they
can be abstracted and thus the result still holds in that case.
Let us consider a somewhat stronger model in which the
adversary only controls the scheduler. In this case, eitherhe
has the power, namely enough messages with each value
to schedule in some disrupting way, the postponement of
the termination, or he cannot succeed. It is clear that in the
first case he does not need to crash any process, while in
the second case crashes will not help him to acquire the
capability to delay the protocol. Therefore, if crash failures
do not help to slow down the algorithm in the stronger model
then, by reduction, crashes will not be of any aid in our
weaker model either.

Comparison with a Lower Bound. It is interesting to
note how tight the result is. Attiya and Censor [3] provide
a lower bound on the probability to reach consensus under
a weak adversary in presence of crash failures. They proved
that: for n = 3f + 1, the probability that a randomized
consensus algorithm does not terminate ink(n − f) steps
is at least⌈nf ⌉−k ≈ (0.25)

k. Roughly speaking, the defini-
tion of step corresponds to the execution of onephase at
one process, in our context. Instead, our result states that
the probability that the algorithm does not terminate inr
rounds (i.e.,3r phases), is at most(1 − 0.63)r = (0.37)r.
Hence, the two bounds are close up to constant factors. The
experimental evaluation will show that ours is rather precise.

VI. T HE RANDOMIZED CONSENSUSALGORITHM

In this section we present our speculative algorithm.
Overall, the algorithm derives its robustness by being correct
in the strong adversary model in presence off < n/3
Byzantine failures. Additionally, we leverage our previous
analysis to gain speed in more benign scenarios, by reducing
the number of phases from three to two. We start by
describing the communication primitives that we use, then
we give a description of the consensus algorithm.

Communication Primitives

The broadcast primitive is fundamentally an extension of
the Reliable Broadcast algorithm described in [6], which is
augmented to guarantee the FIFO property.

Reliable Broadcast.The reliable broadcast algorithm [6]
achieves asynchronous Byzantine agreement as specified in
[14]. It is composed by 3 message exchanges. In the first
step, the sender broadcastsm in an initial message. In
the second step, the processes that receive this message,
rebroadcast it in anecho message. In the third step, if a
process receives(n+ f)/2 echomessages, it broadcastsm
in a ready message. Finally, if a process receives2f + 1



ready messages withm, then it deliversm. The algorithm
guarantees the following properties:
P1: if the sender of a messagem is correct then all the
correct processes eventually deliverm;
P2: if a malicious process sends a message, then either all
or none of the correct processes deliverm.

FIFO (Reliable) Broadcast.FIFO Broadcast [13] further
achieves the following property:
P3: if a process sends a messagem before sending a
messagem′, then no correct process deliversm′ before
having deliveredm.
It can be easily implemented on top of Reliable Broadcast
as follows. Each process maintains a sequence numberseq,
that it uses to serialize all of its outgoing messages. Also,a
process keeps track, for each other processp, of the sequence
number of the last message belonging top it delivered.
A process FIFO-delivers a messagem if: 1) m has been
reliably delivered; 2)m carries the next expected sequence
number with respect to its sender.

One should notice that the cost of FIFO delivery is
fundamentally null because it does not involve any further
message exchange beyond the reliable broadcast. Further-
more, it is important to note that Byzantine processes cannot
arbitrarily break the FIFO property without being detected.
As the FIFO broadcast is built on top of reliable broadcast,
the lower communication level prevents them from sending
conflicting messages with the same sequence number.

Message Stratum.The FIFO broadcast gives the possi-
bility to reason aboutmessage strata. Let us assume that
a processp has just started a new roundr of computation.
Assume also that all the old messages from the other correct
processes have been received. This can be easily achieved
due to the FIFO property: late messages from previous
rounds are delivered first inr by p and then discarded. Now
let next[·] be the array of the next sequence numbers of the
messagesp expects to receive. For each correct processq,
p can associate thenext[q]-th message to first phase of the
round, the(next[q]+1)-th to the second, and so on. Hence,
we say that the set of(next[·]+i)-th messages characterizes
a (subset of a)message stratum(MS). In particular, a MS can
be associated to each phase in each round. In the following,
since late messages carrying old rounds are discarded and
messages with future rounds are buffered to be delivered
later, we deal only with the message strata belonging to the
round a process is currently computing.

In Algorithm 1 MSs are trivial because: 1) all processes
always execute the same phases; and 2) the round and
phase number fields (contained in the messages) altogether
characterize a sequence number. However, suppose that a
processp could voluntarily miss one phase, then the other
processes would get desynchronized, namely: a processq
waiting for a message from processp cannot distinguish
the case wherep skipped the transmission or the message
lagged behind due to the asynchrony of the system. The

FIFO property helps to solve this problem, because the
sequence number of a message exposes the execution flow
of its sender, namely what it computednext.

Description of the Consensus Algorithm

Message Stratum Validation. As processes may have
different execution flows and some of them may be mali-
cious, it is important that each process be able to match each
received message to the correct MS. In other words, pro-
cesses need amessage validationprocedure,recv-validate
in Algorithm 2, to decide if a message belongs to the correct
MS. This occurs if the message isexpectedand justified.

1: mp # message received fromp

2: stratumi[∀p] i = 1, 2, 3 # set of validated messages

3: s(p)=min{j| stratumj [p]=∅} # p’s lowest empty stratum

4: r # current consensus round

5: On is-expected(mp) :
6: (rp, φp) = (mp.r,mp.φ)
7: if (s(p), rp, φp) is (3, r+1, 1)
8: then SS # Speculation Successful

9: if (s(p),rp,φp)∈{(1,r,1),(2,r,2),(2,r,3spec),(3,r,3)}
10: then YES
11: elseNO
12:

13: On is-justified(mp) :
14: in stratums(p)=1 : YES
15: in stratums(p)>1 :
16: if ∃ a set ofn−f messages instratums(p)−1 that

justifies thatp might have set the value inmp

17: then YES
18: elseNO
19:

20: On recv-validate(stratumi) :
21: stratumj≥i[∀p] = ∅ # clean current and higher strata

22: while |stratumi[]| < n− f messages:
23: mp ← FIFO-deliver # message received fromp

24: if is-expected(mp)=SS & is-justified(mp) then
25: stratum3[p] = stratum2[p] # reuse p’s old msg

26: postponemp’s delivery# mp has roundr + 1

27: else if is-expected(mp) & is-justified(mp)
then stratums(p)[p] = mp

28: elsepostponemp’s delivery or discard it
29: end if
30: end while

Algorithm 2: Message Stratum Validation

A message isexpected(Algorithm 2, line 5) if the
information it carries (i.e., round, phase number) belongs:
1) to the round the receiver is currently computing and the
index of the lowest empty stratum cell for the sender (at the
receiver) matches the phase number in the message (line 9)
— for a speculative message (phase3spec), the index to be
matched is2 — or, 2) to the first phase of the round that



immediately follows the one that the receiver is currently
computing, provided that the message sequence number is
immediately adjacent to the one of the previous message
received from the same sender, which carried the phase
number2 (line 7), and was thereby placed in the second
message stratum.

In the consensus algorithm, a process sets its proposal
according to the received set of messages. Hence, a message
carrying some proposalv is justified (Algorithm 2, line 13)
if the receiver has a set of (older) messages that could have
allowed itself to set that proposal previously. Any proposal
at the beginning of the round (i.e., in the first phase) is
immediately justified. This cannot create any deadlock in the
system when the processes wait to justify some messages,
because 1) at leastn− f of them are correct and follow the
protocol, and 2) Property2 of the reliable broadcast holds,
so the processes cannot send conflicting messages.

Our message stratum validation procedure completely
replaces Bracha’s message validation.

Consensus Algorithm. The consensus algorithm pro-
ceeds in asynchronous rounds. Each round is represented
by a full or a speculative execution of thewhile loop (line
5), terminating in line 21 and 41, respectively. Each round
is structurally composed by3 phases plus1 speculative.
The speculative phase is identified as3spec, and it may
allow a process to execute only two phases in one round.
Each phase is identified by a computation block (line
6, 15, 30), starting with a communication operation. The
speculative phase3spec is embedded together with phase
2. Each message-receive operation is implemented in the
recv-validate primitive, which is useful for the processes
to recognize the message strata (line 8, 17, 32). A round is
full if a process participates in all the3 strata, while it is
speculativeif a process participates only in the first2 strata,
before starting a new round.

If no process executes the speculative phase, processes
follow the same execution flow as in [5]. In the first phase,
following the message exchange, a process sets its proposal
to the value on the majority of the received messages (line 9).
If this majority is larger thann/2 (line 10) then it speculates
by setting phase3spec, otherwise it sets phase2. In the
next phase, if a process receivesn−f speculative messages
(necessarily carrying the same proposal), then it speculated
successfully, and therefore decides and proceeds to the next
round. Instead, a process that cannot speculate successfully
must at least try to decide in the third phase.

Let us analyze how the configuration ofstratum2 influ-
ences a process proposal in phase3. If a process receives
at leastf + 1 speculative messages (line 24), it may be
that some other process has already decided — due to asyn-
chrony the remainingf speculative messages may have been
delayed. Clearly, for validity’s sake, it must be mandatoryfor
it to follow those speculators, by setting the same proposal
for the next phase. On the other hand, if strictly less than

1: r = 1 # round number

2: φ = 1 # phase number

3: v = input # initial proposal

4: stratumi # i-th stratum tag identifier

5: while 1 :
6: when φ = 1 : # 1st Phase/Stratum

7: FIFO-broadcast(<r, φ, v>)

8: S(r)1 = recv-validate(stratum1)
9: v = w s.t. |{m ∈ S(r)1 ,m =<r, φ, w>}| > f

10: if |{m ∈ S(r)1 ,m =<r, φ, v>}| > n
2 then

11: φ = 3spec # speculative execution

12: else
13: φ = 2 # normal execution

14: end if
15: whenφ = 2 or φ = 3spec : # 2nd Phase/Stratum

16: FIFO-broadcast(<r, φ, v>)

17: S(r)2 = recv-validate(stratum2)
18: if |{m ∈ S(r)2 ,m =< r, 3spec, v >}| ≥ n− f &

φ = 3spec then
19: vd = v = w # decision

20: φ = 1
21: r = r + 1 # next round

22: else
23: φ = 3
24: if ∃w, |{m ∈ S(r)2 ,m =<r, 3spec, w>}| > f

25: or (|{m ∈ S(r)2 ,m =<r, 2, w>}| > n
2 &

|{m ∈ S(r)2 ,m =<r, 2, ∗>}| ≥ n− f)

26: or |{m ∈ S(r)2 ,m =<r, ∗, w>}| ≥ n−f
27: then v = w
28: elsev = ⊥
29: end if
30: whenφ = 3 : # 3rd Phase/Stratum

31: FIFO-broadcast(<r, φ, v>)

32: S(r)3 = recv-validate(stratum3)
33: if ∃w, |{m ∈ S(r)3 ,m =<r, φ, w>}| > 2f then
34: vd = v = w # decision

35: else if∃w, |{m ∈ S(r)3 ,m =<r, φ, w>}| > f then
36: v = w
37: else
38: v = coin() # toss a coin

39: end if
40: φ = 1
41: r = r + 1 # next round

Algorithm 3: Speculative Randomized Consensus

f+1 speculative messages are received, then the speculation
necessarily failed at all processes. In this case, it is trickier
to set a proposal, since both values1 or 0 may appear in
stratum2 (though only one can be speculative). From the
point of view of a process, the speculators may be more
than thef it may be able to see, due to the asynchrony.
This means that some other process could have received,
for instance,f + 1 speculative messages and thus set the
speculative value. Therefore, a process receiving less than
f + 1 speculative messages can set its proposal to a non-
speculative value if: 1) either no speculative message has



been received (line 25), which ensures that at mostf pro-
cesses speculated; or 2) the received speculative messages
comply with the non-speculative value to be set (line 261). In
the remaining cases it is safer for a process to set the default
value, to avoid having more than one proposal in phase3,
beyond the default value. Hence, at most one proposal is
locked.

Finally, a process executes the phase3 any time it is not
able to decide in the speculative phase. This phase resumes
the original protocol execution, where a process can safely
decide on a (locked) proposal (line 34), provided that it does
not receive default values instratum3. However,stratum3

may contain strictly less thann − f phase-3 messages, if
a process decided on a speculative value, and this could
potentially lead to a deadlock. As we mentioned before,
this problem is prevented by the FIFO property and by the
assumption that at leastn− f processes are correct. In fact,
a process expects that some message from some processq in
stratum3 may belong to the subsequent round (Algorithm
2, line 7). In this case, it can recognize thatq’s speculation
was successful (Algorithm 2, line 8) and, therefore: 1) it
reusesq’s previous message, fromstratum2, in the third
phase (Algorithm 2, line 25) and 2) it postpones the delivery
of the new message, which in fact belongs to thestratum1

of the next round. Once this problem is solved, if a process
can decide in a roundr, then necessarily: 1) all the others
receive at least a majority of messages with that decision
value, thereby setting it for the subsequent round (line 35);
and 2) as all correct processes start roundr+1 with the same
value, then they all decide by the end of roundr+1. On the
other hand, if none of the previous events happens, then a
process tosses a coin (line 38) to escape the impossibility of
attaining consensus in deterministic asynchronous systems.

Discussion.The need to maintain the algorithm’s correct-
ness in the presence of Byzantine failures has a significant
impact on performance because several phases must be
run. The speculative phase instead is useful to recognize
and speed up the algorithm in normal situations: 1) in
the worst-case, the Byzantine processes and an adversarial
message scheduler can make the speculation either fail or
be avoided, while 2) in normal situations, particularly when
most processes start with the same proposal, they are able
to reach a decision after2 communication steps (or phases).

Improving the complexity in normal situations makes
sense as these are expected to occur frequently. For instance,
let us consider a state machine replication application. Typ-
ically, processes that execute the algorithm receive from a
client a service request (using reliable-broadcast if the client
can be malicious) for which an agreement problem need to
be solved in order to maintain consistency across replicas.
In this case, correct processes all start the algorithm withthe

1The condition in line 26 is clearly stronger than the one described.
Nevertheless it allows for a succinct description while maintaining the
algorithm’s correctness.
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same proposal and reach the agreement in one round. With
the speculative algorithm, our previous analysis shows that
when (from Lemma 2)n2 + k2n processes (withk2 > 1

4 )
propose the same value, then the agreement is achieved just
in 2 phases.

VII. E XPERIMENTAL EVALUATION

The experiments evaluate the performance (in number
of rounds) of Algorithm 1 and 3. They were performed
in a cluster of 6 Dell PowerEdge 850 nodes, carrying an
Intel Xeon E5520 CPU, 2GB of RAM, and a Broadcom
NetXtreme BCM5721 Gigabit Ethernet card. Nodes ran the
2.6.32-21-server Linux kernel and were connected by a
Dell PowerConnect 5448 switch. We divided the processes
equally among the machines to avoid having faster priv-
ileged units. The algorithm was executed to withstand a
number of failures ranging inf = 1, . . . , 33. Each process
was assigned a unique ID in the range[0, . . . , 3f ]. The initial
proposal of a process was equal to the parity of its ID, so
the initial configuration was divergent. This configuration
corresponds to the worst-case scenario that leads to the larger
number of executed rounds.

The broadcast primitives were emulated using point-to-
point TCP channels. When a process had a message to be
transmitted, it randomly picked one of the receivers and
then sent the message. This procedure was repeated until
the message was transmitted to all destinations. The received
operation was carried out in a similar way, the channels were
randomly polled to check for available messages. Note that
this implementationdoes notchange the algorithm’s essence.

Figure 1 provides the average number of rounds for
termination of Algorithm 1. For each point we present the
average of10 runs and the95% confidence interval. The
results confirm that the algorithm runs in expected constant
time. When processes start to execute, they have divergent
proposals and therefore, with very high probability as we
expected, at the end of the first round they perform a coin
tossing operation. At this point our result begins to apply —
that is consensus should terminate in1.59 rounds. Indeed
it is possible to confirm that our prediction represents a
good approximation (the threshold line is placed at1+1.59
rounds).

In relation to Algorithm 3, we performed a simulation
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with 100 processes, whose results are displayed in Figure 2.
We ran the algorithm for all possible initial configurations
(by setting the initial proposal of a subset of the processes
to 0 and the remaining to1). In the case of divergent
proposals (middle of the graph), the speculative version
performs similarly to the original Bracha’s algorithm (as
it can be confirmed by comparing Figure 1 and 2). For
the other cases, our former analysis applies and indeed the
speculative algorithm terminates in either2 or 3 phases. In
particular, almost precisely as we predicted, it terminates in
2 phases whenn/2+k2n processes (withk2 > 1

4 ) start with
the same proposal. The reason for this difference lies in the
speculative decision condition (line 18), where even just one
process that does not speculate may make it false. According
to our analysis this event is not likely to happen for a large
enough number of processes. However, this problem exists
as long as the processes receive onlyn−f messages, as we
simulated. If they are able to base their decisions on larger
sets of messages, as it may frequently happen in practice,
then it is more likely that the speculation is successful.

VIII. C ONCLUSION

In the paper we show that a well-known, resilient-optimal,
Byzantine fault-tolerant (for a strong adversary) algorithm
[5] is fast under normal conditions, thus making it attractive
for real implementations. Then, building on our analysis
we proposed a new speculative algorithm that reduces from
three to two the number of phases needed to achieve con-
sensus in the best-case. Our experimental analysis ultimately
confirmed our findings.
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