
Securing Passive Replication Through Verification
Bruno Vavala1,2, Nuno Neves2, Peter Steenkiste1

1Carnegie Mellon University, U.S.
2LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract—We show how to leverage trusted computing tech-
nology to design an efficient fully-passive replicated system
tolerant to arbitrary failures. The system dramatically reduces
the complexity of a fault-tolerant service, in terms of protocols,
messages, data processing and non-deterministic operations. Our
replication protocol enables the execution of a single protected
service, replicating only its state, while allowing the backup repli-
cas to check the correctness of the results. We implemented our
protocol on Trusted Computing (TC) technology and compared
it with two recent replication systems.

I. INTRODUCTION

Replication is a fundamental technique to guarantee service
availability and reliability. Traditionally, component replicas
are managed using two main design approaches: active repli-
cation (AR) [13], [18] and passive replication (PR) [1], [3].
To the best of our knowledge, all past solutions for arbitrary
fault-tolerant (known as Byzantine, [14], or BFT) replication
are based on the former, commonly referred to as the State
Machine Replication (SMR) paradigm.

Although BFT-SMR can achieve a high level of assurance,
it is expensive and requires complex coordination protocols,
and deterministic operations. Service execution must be repli-
cated and protocols such as Consensus or Atomic Broadcast
are necessary to maintain state consistency [5], [11], [22].
Moreover, a well-known difficulty is the execution of oper-
ations that may cause the state on the replicas to diverge [12].
The solution is often to assume that the service is deterministic,
thereby restricting its applications.

The PR design solves the complexity and efficiency issues
above, but it is less reliable than the AR design in the
presence of arbitrary failures. Since PR adopts a single pri-
mary executing replica—thereby supporting non-determinism
by construction—such a single point of failure inherently
lacks the redundancy required to withstand failures caused
by malicious intrusions. As a consequence, although backup
replicas may maintain a state consistent with the primary,
there is no guarantee that it is untampered. Nevertheless, many
practical examples give evidence about the attractiveness of the
approach in the crash-only model (e.g., [15], [16]).

In this work we introduce the concept of Verified Passive
Replication (V-PR) that combines the security guarantees of
BFT-SMR with the resource efficiency of PR (Tab. I), without
trading off generality. Security is achieved using a trusted
component to isolate and protect the correctness of the service
execution from tampering. Efficiency is attained by verifying
the service results at the backup replicas, instead of re-
executing the service. V-PR is fully passive, as state updates
are propagated by the primary to the backup replicas, and
then applied deterministically upon validation. We demonstrate
these features by implementing a V-PR-ed database engine.

We make the following contributions: (1) We design a
robust passively replicated system, backed by a trusted compo-
nent. (2) We define secure protocols for system initialization,

fault-tolerant execution, and primary change. (3) We imple-
ment the V-PR protocol based on XMHF/TrustVisor [21],
[17], running the SQLite [20] database engine as a service.
In addition, we compare V-PR against state-of-art protocols.
We show that its performance is close to that of BFT-SMaRt
and Prime [19], [2], and it will become more and more efficient
as Trusted Computing technology continues to improve (e.g.,
using the forthcoming Intel SGX [10] instruction set).

Features Replication Protocols
AR PR V-PR

Byzantine Resistant yes no yes
Replicas 2f+1 2f+1 [7] 2f+1

with trust
assumptions f+1 [1] with trust

assumptions
Asynchronous yes yes[7] yes
for safety, partially

synchronous for liveness no [1]
(Re-)Computations O(n) O(1) O(1)
Data Transfer Unit O(cmd+din) O(u) O(u+dout)
Centralized Control no yes yes
Non-determinism no yes yes

TABLE I: Comparison among Active Replication (AR), Passive Replication
(PR) and our new proposal Verified Passive Replication (V-PR). cmd is the
command size, din (resp. dout) is the size of the input (resp. output) data, u
is the size of the updates.

II. OVERVIEW

Architecture. V-PR is a secure passively replicated system [1],
[3], [7], [6] (see Fig. 1) composed by middleware components
such as: the client security middleware (Security MW, or
SMW), which sets up a secure channel between the service
client and the service in the primary’s trusted environment;
the Manager, implemented on top of the trusted computing
component (TCC, Section III) — not the OS — that through
the Application, Security and Replication Managers (resp. AM,
SM, RM) supports the service, handling secret keys and au-
thentication, running the replication logic and managing state
updates; the U-Manager, which is an (untrusted) application
executing on the OS that mediates the communication between
the client, the primary’s service and the backup replicas.
Operations. The service client sends a request to the replicated
system (1) using the SMW to authenticate it (2). The request
is delivered by the OS to the primary U-Manager (3), and
then forwarded to the primary Manager (4). The request is
validated by the SM and passed to the AM for the execution.
The AM retrieves the reply (6) and the RM gathers the state
updates (if any). Both reply and updates are protected and
transferred to the U-Manager (7). Updates are broadcast to
backup replicas (7a), delivered to the backup U-Manager (7b),
then validated and applied deterministically (7c)1. After the
acknowledgements from backup replicas have been received
and processed by the primary (7d), the authenticated reply is
forwarded to the client (8), validated by the SMW (9) and
delivered to the service client application (10).

1State updates are handled on the TCC.

1

Service'

AM' SM'RM'
Manager'

10. reply

OS'

Security'MW'

Service'Client'

2. request

1. request

9. reply

U6Manager'

5. request 6.reply

'''''''TCC'' OS'
3. request
8. reply

4. request
7. reply

'' ''TCC''

client' primary'replica' backup'replica'

U6Manager'
Oth.
Svcs'

AM' SM' RM'
Manager'

OS'
7a. update
7e. ack

7b. update
7d. ack

7c. trusted update

Network'

Oth.
Svcs'

Update'Service'

Oth.
Svcs'

Level'
Applica6on'

Middleware'

SW/HW''
support'

Update'

Fig. 1: Architecture of the Verified Passive Replication scheme. Light shaded parts correspond to the trusted system components.

Failure Masking vs. Resource-Efficiency. V-PR leverages
Trusted Computing technology to detect any malicious be-
havior of the primary. Using recent advances in the area, V-
PR isolates and protects the service execution on the platform
by using hardware support. Service isolation allows us to: 1)
reduce the attack surface, for instance by excluding the OS
from the trusted computing base (TCB); 2) precisely identify
the executing code, so that it can be checked remotely without
re-execution. V-PR then creates a cryptographic chain that
links the service results to the identity of the service and trusted
hardware.

The increased resource-efficiency comes at the cost of
lower failure transparency. AR [4], [5], [12], [22] in fact is
able to mask malicious behavior by fully replicating the service
execution through many replicas and then voting on their
responses to extract the correct reply — assuming that they fail
independently. PR (and so V-PR) instead does not have such
redundancy. Backup replicas have to detect when the primary
fails, elect a new primary, and let the client know the change.
Such mechanisms can be safely implemented under periods of
partial synchrony, possibly using a semi-passive approach [7].
Tolerated Failures. V-PR is robust against arbitrary failures
such as: software attacks, compromised OS, message corrup-
tion, physical attacks that do not affect the TCC. However,
it does not protect against programming flaws in the service.
This holds even in SMR based systems unless they employ
diverse service software on the replicas [8]. Moreover, it
does not protect against transient or persistent hardware errors
in the trusted component that disrupt the service (unless it
crashes). Transient errors however could be addressed through
functional hardware redundancy (e.g., the Recovery Unit in
an IBM z10 maintains in a buffer the whole processor state to
retry the work on error, and also instruction-processing damage
checks are performed [9]); persistent errors may also affect
SMR systems that do not use diverse hardware.

III. TCC OVERVIEW

We abstract the TCC through a set of primitives related to:
code execution, data storage, attestation and trusted counters.
This allows us to hide the complex details of the TCC (e.g.,
memory isolation mechanisms to protect the service execution)
behind the primitives, and to focus later on the relevant aspects
of V-PR. The TCC can be instantiated using the available
technology (e.g., TPM, secure hypervisor) or future processor
architectures such as the Intel SGX instructions set [10].
Primitives. The dout ← execute(c, din) primitive makes the
TCC execute some code c over some input data din. It
eventually returns a result dout. The TCC is responsible to
maintain identification information about c—typically its hash

h(c)—internally in a special register IDR. This information
can be used for secure storage, attestation and trusted counter
management, whose operations are bound to c’s identity.

The storage primitives are d[IDR,hr] ← put(d, hr) and
{d, ∅} ← get(d[hs,hr], hs′). The first secures some data d on
the behalf of the currently running code s, identified in IDR as
hs≡h(s). The original data can only be retrieved by a specific
receiver code r, with identity hr≡h(r). The second primitive
accepts some secured data and the identifier of some sender
piece of code hs′. The TCC identifies in IDR the code r′

that raises the request. If IDR≡hr′≡hr and hs′≡hs then the
original data d is returned, otherwise it fails with ∅. Notice the
following: given d[hs,hr], the TCC ensures the trustworthiness
of hs on put, and of hr on get; it is up to the executing pieces
of code to specify the correct recipient and sender identities
in the respective operations.

The attestation primitive π[IDR] ← attest(t, params) al-
lows to convince a remote party of the current TCC’s state.
It accepts as input a timestamp (or nonce) t for freshness and
other parameters supplied by the executing code c, identified
in IDR. It produces a proof of execution (i.e., IDR’s value),
usually signed with the TCC-specific internal private key.

The primitives for trusted counter management are:
0← create cnt(sid), c← get cnt(sid), and finally
c← incr cnt(sid). They all accept a unique service identi-
fier sid. The primitives return the last or incremented counter
value. Specifically, the TCC creates, stores and modifies pairs
of (counter ID, value), where the identifier is dependent on
the running code’s identity stored in IDR. In our case, we use
counter ID← h(IDR||sid).

The primitive get cert() returns the TCC own public
key certificate. This can for instance be used to verify that the
private key used in a digital signature belongs to an actual (and
not emulated) TCC.

Finally, the TCC is equipped with a random number
generator, used to generate random secret keys.
Verification. The verifier must check that (1) an actual trusted
device issued the attestation and (2) the proof was generated
correctly. The first is achieved by checking that the public key
certificate associated to the attestation private key was issued
by a trusted Certification Authority (CA), possibly owned by
the hardware manufacturer. The second is achieved through
{0, 1} ← verify(cert, π[hs], hs′, t, params). The primitive
accepts an attestation π[hs], a certificate cert that vouches
for the TCC’s public key, the identity hs′ of a piece of code
that was supposedly executed, the timestamp (or nonce) t and
parameters params. The verification is meaningful provided
that the verifier trusts the CA that signed cert, the TCC

2

manufacturer; also, it succeeds if the right code ran (i.e.,
hs′ ≡ hs⇒ s′ ≡ s) over the correct input/output params.

IV. V-PR: VERIFIED PASSIVE REPLICATION

This section presents the system model, outlines (due to
space constraints) V-PR’s initialization and failure recovery
protocols, and gives details of V-PR’s execution.
A. System Model

The system consists of a group of n nodes, each one
equipped with a TCC. The V-PR Manager and the replicated
service run in the protected environment provided by the TCC.
The rest, including the V-PR U-Manager, the OS and other
services, execute in the untrusted part of the node. An arbitrary
number of clients can access the system, but they need to be
enrolled beforehand to obtain the necessary authentication cre-
dentials (e.g., by contacting an identity management service).

The TCC only runs code when the execute() primitive
is explicitly called by an untrusted software component (see
Section III). The component can give some data as input and
in the end receives the output value. While executing, the
code is isolated with no access to the network or general
storage (e.g., the disk). It can however use a limited set of
secure primitives to create counters, encrypt data, or perform
attestation. Moreover, any keys that are generated by the code
cannot be observed, unless they are returned (unprotected) to
the calling component.

At most a minority f = bn−12 c of the nodes can fail.
In particular, the TCC can only suffer crashes but the rest
of the system and network can experience Byzantine failures.
Therefore, the code in the TCC either produces correct results
or no values. Untrusted components (such as the U-Manager)
may corrupt data, delay the execution or do any other attempt
to maliciously break the protocol. Messages may be modified,
removed or delayed. These assumptions are similar to other
systems based on trusted components [5], [11], [22] .

The V-PR protocol ensures safety in the asynchronous
model. Liveness is guaranteed in periods of partial
synchrony—when messages are delivered and processed
within a fixed but possibly unknown time bound. This can
be achieved through retransmissions and acknowledgments.

B. The Context Data Structure
The Manager only runs when the execute() operation

is called by the U-Manager. While inactive, it relies on the
U-Manager to keep context information about the state of
the protocol execution (since no general persistent storage
exists in the TCC, in order to minimize the trusted computing
base). The Manager expects to receive as input a context data
structure (ctx), which is returned back to the U-Manager as
one of the outputs. The structure’s most relevant fields are:
• id: the identifier of the node
• nreplicas: the number of nodes
• clientCreds: for client authentication
• state: a description of the current service state, i.e.,

hash(statej). It identifies the state unambiguously
when associated with a trusted state counter, i.e.,
(state counter, state) is unique

• K: a system-wide shared key, created by the primary
during the initialization and forwarded to the backups

• auth: authenticator to protect the ctx structure while
it is stored by the U-Manager (e.g., a MAC)

The integrity of ctx and the confidentiality of K (a secret
shared only between Managers in the trusted environment
during the initialization phase) are critical for the system’s
operations. They are protected by each Manager before re-
turning to the U-Manager: (i) an authenticator (e.g., a MAC)
is computed with K; (ii) K is encrypted using the TCC
put primitive, specifying the Manager’s own identity as the
intended receiver; consequently, K cannot be accessed from
the untrusted environment by U-Managers. Later on, when the
Manager is re-executed, it calls the get primitive to decrypt
K, and then verifies the integrity of the received context. We
will omit these steps while presenting the protocols.

The TCC maintains a trusted state counter and a trusted
view counter between executions of the Manager. The former
is used to assign unique and ordered values to state updates
(and so to state versions); it is incremented whenever requests
cause an update on the service state. The latter is used to
determine a replica’s role at a given time — a replica is the
primary if viewcounter mod nreplicas ≡ id, otherwise it
is a backup — by counting the number of primary changes.

C. System Initialization
System initialization must ensure three main goals: (i)

every correct node of the system is able to join the group,
while malicious nodes are excluded; (ii) a system-wide secret
key K is securely shared among the nodes; (iii) all nodes
finish the initialization with the same state (state1). Some
of the challenges that have to be overcome are the lack of
network access by the Managers (making them vulnerable to
U-Manager misbehavior) and the absence of data protection
primitives that can be utilized between TCCs (e.g., storage
primitives can only be used locally and the TCC public key
cannot be employed to encrypt general data as the private key
is saved internally and never made available).

The first goal is achieved in two steps. First, the system ad-
ministrator supplies all nodes with a vector of TCC certificates,
each belonging to one specific node. Second, the Managers
at the backup replicas begin to run a protocol for mutual
attestation with the primary replica’s Manager. All Managers
are assumed to execute the same code, and thus they have
the same code identity. They differentiate among themselves
through the index in the certificate vector that points to the
public key of the local TCC. By including in the attestation
the certificate vector, the protocol guarantees that the Managers
can securely authenticate each other.

The second goal is attained by setting up a secure channel
between the backup and the primary Manager to exchange
a secret key K. Each backup Manager generates a fresh
public/private key pair, and includes the public part in the attes-
tation. The primary Manager verifies each backup’s attestation,
and thus each backup’s public key, and uses it to encrypt the
shared (for all replicas) key K. The primary then performs an
attestation, including the hash of the key, so to link the key
to its identity and the TCC. The primary U-Manager then
broadcasts the attestation, the encrypted key and the primary’s
context structure. Together with K, the Manager also distributes
the context structure ctx. When each backup Manager receives
the data, it verifies the primary’s identity, decrypts K and copies
the primary’s context to configure the local replica.

The third goal is achieved by making the backup Managers

3

Bi#

P#

TCC#

TCC#

validate$ACKs$

check$majority$of$ACKs$

increment$counter$toj

compute$blinder$

validate$state$
jO2$

$$$$$$$$$&$state$updates$$

increment$counter$to$jO1$$

apply$updates$uptojO1$

make$ACK
i$

j

$

validateReq&$state$
jO1

$

serveReq

makeRes

if$there$are$updates$

$$$$blindResto$BlindOres$

$$$$save$info$ofnewstatej

$$$$make$State_update
j

$

$$

$$

Req=<clientID,((
(((((((((cnt,(op>Kcl(

(ctx,$$$$$

state$
jO1

,$Req)$$

(ctx,$state$
jO1

,$ACK
i$

j

)#

(ctx,$state$
j

$,$BlindOres,$

$$$$State_update
j

$
)#

ACKi'j$='<i,'h(State_updatej')'>K''

Res=<clientID,(cnt,(result>Kcl(

State_update'j'='<'Req,''
'''''''BlindCres,'updates'j'>K(

unblind$$

BlindOres$

(ctx,$ACK[])# (ctx,$blinder)#

(ctx,$state$
jO2

$,''
State_update$

jO1

,$State_update$
j

$)$

Fig. 2: Procedure to serve a client request requiring state updates.

send an acknowledgment to the primary, authenticated with K.
The primary Manager waits for the arrival of enough ACKs
in order to install the initial service state (state1). This state
is then propagated to the backup Managers through the initial
state updates, as described in the next section.

D. Normal execution
V-PR’s processing guarantees that: (i) client requests are

correctly served; (ii) state updates are properly installed; (iii)
recoverability and consistency are ensured in the case of
failures. Read requests are only handled by the primary since
they do not update the state. For write requests, the procedure
requires a simple majority of replicas to be available, and
uses all their TCCs for three sequential Manager executions
(two at the primary Manager for processing a request and the
respective acknowledgments, and one at the backup Manager
to process the state updates).

The description below assumes that client and servers share
a key Kcl. Depending on the client authentication solution,
this key may be derived on-the-fly by combining the identifier
clientID and the credentials supplied by the system admin-
istrator (clientCred), or through a key distribution protocol.

The procedure is displayed in Fig. 2. Whenever the client
calls a service operation, it creates a request message (Req)
with the clientID, a session counter (cnt) and an operation
(op) including the associated parameters. The message is
authenticated and integrity protected with Kcl (e.g., by adding
a MAC), and transmitted to the primary.

When the message is delivered, the primary U-Manager
executes the Manager with the last context (ctx), the current
state version (statej−1) and the request. The Manager vali-
dates the request and the state, and runs the operation. Next,
it produces a response message (Res) for the client using
the value(s) returned by the service. The response to a read
request is simply authenticated and sent back to the client.
The response to a write request instead raises the challenge
of propagating the updates to the backups before the client
receives a response. In fact, consistency issues may arise if
the primary fails or the primary U-Manager is compromised.

Our solution is to blind the response (Blind-res)2, thereby
ensuring that the client cannot accept it. Moreover, the con-
text structure needs to reflect the changes, namely the state

2A blinder value is XORed with the message authenticator to prevent its
validation. It is computed using a secure pseudo-random number generator
seeded with the secret K, the state counter and the current state hash.

field becomes the hash of the new state. Additionally, a
State updatej message is created for the backups, which
includes the client request, the blinded reply and the update
information (updatesj) to bring the state from version j− 1
to j. Request and reply are useful in case of failure to match the
retransmitted client request to its associated response, without
re-doing the operation in statej. If these are not available,
the new primary proceeds from statej−1.

Each backup Manager needs to validate the messages (for
state update j− 1 and j) to check for corruptions and to
ensure that they are applied in the correct order3. In particular,
for these updates, the trusted state counter needs to be equal
to j− 2, indicating the last state update that was performed.
This counter has the benefit of allowing backup replicas to
coordinate without explicit message exchanges. In fact, when
the state update j arrives, the replicas have no knowledge
of which replicas have also received it. However, since the
primary Manager is trustworthy, the arrival of j-th update
actually implies that state j− 1 was accepted by a majority of
(primary and backup) replicas. Hence, the update j− 1 may be
applied and the trusted counter can be incremented up to j− 1.
Each backup Manager i uses then the acknowledgement ACKji
to inform the primary that state update j has been validated
and is locally available, but not yet applied.

The primary U-Manager waits for the arrival of a majority
of these acknowledgements. Then, it executes the Manager,
who checks for a majority of valid acknowledgements — this
ensures that at least one correct replica has the latest state. The
Manager increments the state counter (to j), thereby installing
the last state, and outputs the blinder. The U-Manager then
unblinds the response and forwards it to the client.

E. Fault Handling
If the primary node fails, the backup replicas have to select

a new primary in order to make progress. The recovery proce-
dure is timeout-driven and is triggered by the U-Managers, as
the Managers do not execute continuously and have no access
to network resources (§IV-A), so they cannot perform system
monitoring. Recall from the model that, although untrusted, a
majority of the U-Managers is assumed to behave correctly.
Therefore, each one begins the recovery procedure when it

3Notice that for the first state update j is equal to 2; State0 is the
uninitialized service state, and State update1 is actually represented by the
initial state update from the initialization procedure.

4

stops receiving valid state updates for a period4.
The selection of a new primary is guided by two principles:

Unique Majority and Progress Evidence. First, a primary is
effectively changed when a majority of replicas increment
their trusted view counter to the same value. This guarantees
the uniqueness of a primary that is able to make progress,
since a majority of the backups recognize its authority to issue
state updates. This also forces the other nodes to move to
the newer view because client requests, or updates, cannot be
successfully processed in the older view.

Second, a replica can safely apply all state updates up to
state j− 1 when state update j is received, independently of
the view number. In fact, for the primary Manager to issue the
state update j, it must have received the acknowledgements
for state j− 1. Consequently, replicas may change view, but
they can still make progress with any two consecutive updates.
Protocol. When the timeout at a backup replica expires,
the U-Manager executes the local Manager to obtain a
Probe change message. The message contains an authenti-
cated description of the current configuration (including the
state and view counter values) and it is multicast to all nodes.

Replicas wait for a majority of Probe change messages
that match the same configuration of their local Manager
before moving to the next phase. In the meanwhile, they
continue to participate in the system as usual, in case more
recent state updates are delivered.

The Manager is called again when enough Probe change
messages are delivered. It validates the messages, and then re-
turns a Probe reply also containing the current configuration.
A set with a majority of valid Probe reply messages that
match the same backup Manager’s configuration triggers the
view change. The Manager is called to increment the trusted
view counter, and a final New primary message is produced
and multicast to inform about the new view.
A corner case. Let us assume that the old primary crashes
while broadcasting the j+ 1-th state update (u1). If the new
primary receives this message, then it re-multicasts the same
update to be processed by backup replicas. However, if it
does not receive it, then the client times out and re-issues
the request. The new primary can therefore make progress by
computing a new j+ 1-th state update (say u2 6= u1). Since
the backup replicas have not yet increased their trusted state
counters to j+ 1, they can safely favor the last u2 issued by
the new primary Manager and drop u1. In fact, this update will
only become definitive when the update j+ 2 is broadcast.
Computation then proceeds as usual.

V. EXPERIMENTAL EVALUATION

We evaluate V-PR in a cluster of servers and also compare
its performance with two open-source BFT-SMR libraries,
namely BFT-SMaRt [19] and Prime [2].

A. Implementation and Experimental Setup
We instantiated our TCC using TrustVisor [17], a secu-

rity hypervisor implemented in the XMHF framework [21].

4The U-Manager, however, should adjust the timeouts to reflect the current
situation where the primary is taking longer to transmit messages (e.g., due
either to processing delays or network congestion). To prevent the case where
a malicious primary U-Manager tries to delay the whole system, the timeouts
are only increased up to a certain value defined by the system administrator.

XMHF/TrustVisor offers fast trusted services, and its security
is cryptographically bound to a hardware TPM.

We chose to replicate the well-known and widely deployed
SQLite [20] database engine. Our SQLite version is self-
contained to run in the isolated environment (i.e., no OS/library
support) provided by XMHF/TrustVisor. Moreover, we im-
plemented a module for fast in-memory database operations,
that enables fast state update interception whenever SQLite
modifies the database.

Our testbed is a set of Dell PowerEdge R420 servers,
equipped with Intel Xeon E5-2407 CPUs, 3GB of memory and
a TPM v.1.2. These machines run Ubuntu 12.04 with a kernel
version 3.2.0-27, and they are connected with a 1 GB/s Dell
PowerConnect 5448 switch. In order to tolerate one fault, we
used 3 machines for V-PR, and 4 for BFT-SMaRt and Prime.

B. Analysis
We evaluate the application-level CPU savings in V-PR,

and compare its performance with state-of-the-art tools. We
also study V-PR’s end-to-end latency in a realistic scenario.

 50
 100
 150
 200
 250
 300
 350
 400
 450

 20 40 60 80 100 120

C
PU

 C
yc

le
s

(×
 1

06)

Executed Requests

SQLite, 1 Primary, 2 Backups
SQLite, 4 Active Replicas

Fig. 3: Average system-wide appli-
cation-level CPU cycle consump-
tion for passively and actively repli-
cated SQLite deployments.

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7

Th
ro

ug
hp

ut
 (Q

PS
)

Batch Size

VPR-SQLite read-only
VPR-SQLite write-only

Fig. 4: End-to-end performance of
a VPR-ed SQLite implementation.

CPU savings. Fig. 3 compares the application-level CPU
consumption (in cycles) between a passive replication and an
active replication of SQLite. The amount of savings is pro-
portional to the processing effort performed by the replicated
service. In the experiments, the write workload is created with
simple delete queries that produce state updates, in order to
use all three V-PR replicas — recall that read-only queries
are executed just at the primary. As we grow the number
of requests, the gap between the two curves increases. More
expensive queries, like grouping and sorting operations, would
make the gap wider, thus being more favorable to V-PR.
End-to-end measurements. Fig. 4 presents the performance
of our V-PR-ed SQLite. We executed read-only requests
(such as select operations) and write-only requests (such as
delete operations) over a table of 200 items. Reads are at
least twice as fast as writes due to the additional TCC call to
process the acknowledgements from backup replicas. Batching
enables to amortize the TCC latency per-request by more than
three times for both types of operations.
Basic performance comparison. We analyze inherent fea-
tures of V-PR, BFT-SMaRt and Prime at run-time (Tab. II).
The exchanged messages measure the coordination overhead
to maintain state consistency (as shown in [4]). Each message
exchange phase counts as one hop. V-PR outperforms BFT-
SMaRt and Prime because it avoids expensive coordination
protocols for request ordering, such as Consensus.

In V-PR, the primary avoids any interaction with the
backups for read requests — client request and reply (2 hops)
are the only messages. V-PR recognizes a-posteriori which

5

BFT-SMaRt Prime V-PR
(r)

Messages (w)
1+1

4+3+16+16+4 3+16+16+3+12+16
1+1

1+3+3+1
Hops (r) 2 (w) 5 6 (r) 2 (w) 4
Replicas (f=1) 4 4 3

Executions
4

(active)
4

(active)
1 (active)

2 (passive)
TABLE II: Normal request execution in BFT-SMaRt, Prime and V-PR.

requests contain read or write operations by tracking the
changes to the database. BFT-SMaRt has a similar opti-
mized execution for read-only operations—namely through the
invokeUnordered primitive—which avoids the call to the
atomic multicast protocol. However, such capability has to
be explicitly programmed (a-priori) into the client application
by calling a specific read-only operation. For Prime, although
client operations can be classified as read-only or read/write,
no such optimization is mentioned in [2], and we noticed no
significant difference with respect to write-only requests.

Write requests must be ordered in all systems. In V-PR
this process is centralized at the primary: client requests are
ordered through a session counter, while state updates are
ordered through the state counter. Consequently, the primary’s
update message and the backup acknowledgements are the
only transmitted messages—2 hops more than read requests.
In BFT-SMaRt and Prime, instead, the ordering process is a
protocol to cope with potentially malicious replicas.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14

La
te

nc
y

(m
s)

Batch Size

VPR read-only
BFT-SMaRt read-only

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 2 4 6 8 10 12 14

La
te

nc
y

(m
s)

Batch Size

VPR write-only
BFT-SMaRt write-only
Prime write-only

Fig. 5: End-to-end latency, measured at the client, of a replicated zero-overhead
service.

Fig. 5 shows that V-PR is slower than BFT-SMaRt for sin-
gle requests. This is primarily due to the TCC. Prime is mainly
delayed by the heavy use of signatures. However, all systems
take advantage of request batching to improve their efficiency.
Noticeably, V-PR matches BFT-SMaRt latency when the batch
size reaches around 12 requests. This experiment is based on
a simple zero-overhead service in fault-free runs.

Future trusted computing technology is expected to reduce
TCC costs, and can be easily integrated below V-PR. In
fact, V-PR is not bound to XMHF-TrustVisor, since the TCC
primitives (§III) provide a suitable abstraction to separate V-
PR from the TCC. Another TCC could be based for instance
on Intel SGX [10], which provides on-CPU trusted computing
services based on CPU instructions rather than hypercalls.

VI. CONCLUSIONS

We presented the V-PR scheme, which is a fully passive
replication protocol based on the concept of computation
verification. V-PR shows how to leverage secure hardware
and trust assumptions to deal with arbitrary failures. V-PR
only requires one executing replica, and thus enables resource
saving and non-deterministic executions.

ACKNOWLEDGMENTS

This work was partially supported by the EC through project FP7-
607109 (SEGRID), by national funds of Fundação para a Ciência e a

Tecnologia (FCT) through project UID/CEC/00408/2013 (LaSIGE),
and by the research grant SFRH/BD/51562/2011. Thanks to Vinicius
Cogo for providing support in setting up the testbed, and to André
Nogueira for interesting discussions on implementation details.

REFERENCES
[1] P. A. Alsberg and J. D. Day. A principle for resilient sharing of

distributed resources. In In Proc. of the 2nd International Conference
on Software Engineering (ICSE), page 562, 1976.

[2] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine Repli-
cation under Attack. IEEE Transactions on Dependable and Secure
Computing, 8(4):564–577, July 2011.

[3] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-
backup approach. In Distributed systems (2nd Ed.), pages 199–216.
ACM Press, May 1993.

[4] M. Castro and B. Liskov. Practical byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems (TOCS),
20(4):398–461, Nov. 2002.

[5] M. Correia, N. F. Neves, and P. Verissimo. How to Tolerate Half Less
One Byzantine Nodes in Practical Distributed Systems. In Proceedings
of the 23rd IEEE International Symposium on Reliable Distributed
Systems (SRDS), pages 174–183, 2004.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: high availability via asynchronous virtual machine
replication. In Proceedings of the 5th Symposium on Networked Systems
Design and Implementation (NSDI), pages 161–174, Apr. 2008.

[7] X. Defago, A. Schiper, and N. Sergent. Semi-passive replication.
In Proceedings of the 17th IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 43–50, 1998.

[8] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. Analysis
of operating system diversity for intrusion tolerance. Software: Practice
and Experience, 44(6):735–770, June 2014.

[9] IBM. System z10. http://www.redbooks.ibm.com/redbooks/pdfs/
/sg247516.pdf.

[10] Intel. Software Guard Extensions. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf.

[11] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel. CheapBFT: resource-efficient
byzantine fault tolerance. In Proceedings of the 7th European Confer-
ence on Computer Systems (EuroSys), page 295, 2012.

[12] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin. All about Eve: execute-verify replication for multi-core
servers. In Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation (OSDI), pages 237–250, Oct. 2012.

[13] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[14] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982.

[15] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou.
Boxwood: abstractions as the foundation for storage infrastructure. In
Proceedings of the 6th Symposium on Opearting Systems Design &
Implementation (OSDI), page 8, Dec. 2004.

[16] J. Maccormick, C. A. Thekkath, M. Jager, K. Roomp, L. Zhou, and
R. Peterson. Niobe: a Practical Replication Protocol. Journal ACM
Transactions on Storage (TOS), 3(4):1–43, Feb. 2008.

[17] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig.
TrustVisor: Efficient TCB Reduction and Attestation. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P), pages 143–158,
2010.

[18] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: a Tutorial. ACM Computing Surveys (CSUR),
22(4):299–319, 1990.

[19] J. Sousa, E. Alchieri, and A. N. Bessani. State Machine Replication for
the Masses with BFT-SMaRt. In Proceedings of the IEEE Conference
on Dependable Systems & Networks (DSN), pages 355–362, 2014.

[20] SQLite. http://www.sqlite.org/.
[21] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta.

Design, Implementation and Verification of an eXtensible and Modular
Hypervisor Framework. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), pages 430–444, May 2013.

[22] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo.
Efficient Byzantine Fault-Tolerance. IEEE Transactions on Computers,
62(1):16–30, Jan. 2013.

6

