
Securing Passive Replication
Through Verification	

Bruno Vavala1,2, Nuno Neves1, Peter Steenkiste2

1University of Lisbon (Portugal)

2Carnegie Mellon University (U.S.)

IEEE Symposium on Reliable and Distributed Systems, 2015	

Outline	

•  Motivation and background

•  Goals

•  Architecture Design & System Operations

•  Evaluation

•  Takeaways

Fault-Tolerance	
•  Service continuity has to be ensured in case of failure

•  Components have to be replicated

•  Replicas must be coordinated

replication

✗	
coordination

3

Fault-Tolerance	
•  Service continuity has to be ensured in case of failure

•  Components have to be replicated

•  Replicas must be coordinated

•  Arbitrary failures require
+replicas
+coordination

replication

coordination

4

Replication	

Active
Replication

(State Machine Replication)

Passive
Replication

2 main design choices

vs.

5

Active Replication (AR)	
State Machine approach:

1.  System receives the requests

2.  Requests are ordered
(“many” messages)

3.  Enough replicas execute
them

4.  Each replica returns an
answer

5.  Answers are voted

R1

R2

R3

R4

C

Request

Ordering

Protocol

1

2
3

4

5

6

Passive Replication (PR)	

R1

R2

R3

R4

C

1.  Primary receives the
requests

2.  Requests are executed

3.  State updates are
broadcast

4.  Backups apply updates
and return ACK

5.  Primary votes on ACKs

6.  Primary replies to client

1 2 3

4

5 6

7

Current BFT Solutions	

•  PBFT (OSDI’99)
Seminal practical SMR work

•  Correia et al.(SRDS’04)
Hybrid model with TTCB

•  Zyzzyva (SOSP’07)
Speculative executions

•  Prime (DSN’08)
Bounded Delay Guarantee

•  MinBFT (TC’11)
Less replicas in hybrid model

•  CheapBFT (Eurosys’12)
Hybrid model, activation of
passive replicas upon failures

•  BFT-SMaRt (DSN’14)
High performance

∅

AR	 PR	

…and
many

.

.
many
others!

8

Why no PR solutions?	

9

Why no PR solutions?	

AR	

R1

R2

R3

R4

Voter	

system

correct
answer

client

✔︎	

•  Enough redundancy to extract correct answer
10

Why no PR solutions?	

AR	

PR	

R1

R2

R3

R4

Voter	

system

correct
answer

client

R1

R2

R3

correct
?	

?

•  Challenge: how to verify the result efficiently?

•  Trivial inefficient solution: re-execute the service

✔︎	

11

Pros & Cons 	
AR PR

Byzantine FT ✔︎ ✗
Replicas 2f+1 2f+1

Re-Computations O(n) O(1)
Message size

|request|
+|input|

|reply|
+|update|

Non-determinism ✗	 ✔
“While some consensus algorithms, such as Paxos […] have started to
find their way into those systems, their uses are limited mostly to the
maintenance of the global configuration information in the system, not
for the actual data replication.” – L. Lamport et al.

12

Outline	

•  Motivation and background

•  Goals

•  Architecture Design & System Operations

•  Evaluation

•  Takeaways

Goals	
Fault-tolerant & resource-efficient & simple

replicated architecture for unmodified services

Challenges

•  Protect the service results from malicious failures

•  Efficient verification of the results

•  Ensure that state updates are correctly propagated

•  Ensure that client gets correct and consistent results

14

Outline	

•  Motivation and background

•  Goals

•  Architecture Design & System Operations

•  Evaluation

•  Takeaways

V-PR	
Verified Passive Replication

16

Best of Both Worlds	

AR PR V-PR

Byzantine FT ✔︎ ✗ ✔
Replicas

(w/ trust assumptions) 2f+1 2f+1 2f+1
Executions O(n) O(1) O(1)

Message size
|request|
+|input|

|reply|
+|update|

|reply|
+|update|

Non-determinism ✗	 ✔ ✔

17

TCC Overview	
•  Trusted Computing Component

o  It performs actual general-purpose computation

o  It provides trusted services (TPM-like)

o  It has internal registers that store the identity (i.e., hash) of running code

•  Primitives
o  put(data, ID)/get(data, ID). TCC-backed and ID-based secure external

storage. Only the same ID can store and retrieve data

o  execute(code, input). TCC-backed isolated execution of arbitrary code.

Running code is identified for ID-based operations

o  attest(). TCC signature that could carry information on running code and results

o  create/get/incr_counter(ID, name). Access controlled Trusted counters. Only ID

can read or modify them

o  verify(). Check validity of attestation, through manufacturer certificate

No different assumptions with
respect to previous works,
just a more powerful TCC!

18

Model	
•  TCC is crash-only

Rest of the system can fail arbitrarily (Byzantine)

•  TCC only usable through primitives

•  Correct Majority of replicas

•  Asynchronous model for safety, partially synchronous oth.

•  Model does not consider:
o  Denial of Service attacks

o  Physical tampering (at least not to the TCC hardware)

o  Service vulnerabilities

19

V-PR Architecture	

service client

Security MW

OS OS TCC OS TCC

Service

Manager U-Manager

primary backup client

Manager

Update Svc Update

network

U-Manager

20

V-PR Architecture	

•  Core components: SMW, Manager, U-Manager

•  Update service only applies state updates

service client

Security MW

OS OS TCC OS TCC

Service

Manager U-Manager

primary backup client

Manager

Update Svc Update

network

U-Manager

21

V-PR Architecture	

•  Service Client and Service are not modified

•  Important effort to make V-PR service oblivious

service client

Security MW

OS OS TCC OS TCC

Service

Manager U-Manager

primary backup client

Manager

Update Svc Update

network

U-Manager

22

V-PR Architecture	

service client

Security MW

OS OS TCC OS TCC

Service

Manager U-Manager

primary backup client

Manager

Update Svc Update

network

U-Manager

trusted

untrusted

trusted

untrusted

•  Dual failure model (crash+Byzantine)

•  Two execution environments with different Trust assumptions

•  Entry point: execute(Manager) to call TCC service 23

Read Requests	

service client

Security MW

OS OS TCC OS TCC

Service

Manager U-Manager

primary backup client

Manager

Update Svc Update

network

U-Manager

client
request/reply

2.execute

1.client
request/reply

•  Client SMW can verify primary’s execution and
establish a session key with the Manager

•  No state updates => read request

•  2 messages
24

Write Requests	

service client

Security MW

OS OS TCC OS TCC

Service

Manager U-Manager

primary backup client

Manager

Update Svc Update

network

U-Manager

state
updates/ACKs
3.state
updates/ACKs

4.trusted
updates

•  Available state update => write request

•  4 steps (of message passing) overall

25

6.check
ACKs

Outline	

•  Motivation and background

•  Goals

•  Architecture Design & System Operations

•  Evaluation

•  Takeaways

Evaluation	

27

Implementation	

Hardware

XMHF

TrustVisor

Manager

Service

trusted environment

TCC

•  Message passing with ZeroMQ

•  TCC with XMHF-TrustVisor
(S&P’10, S&P’13)

•  Full SQLite database engine
o  VPR-ed SQLite

•  OS-free implementation
o  very small TCB

28

•  Against recent AR schemes:
o  BFT-SMaRt (IEEE DSN’14)

o  Prime (IEEE TDSC’11)

Performance	
•  Overhead comparison among

BFT-SMaRt, Prime and V-PR

0

1

2

3

4

1 5 10 20

BFT-SMaRt

V-PR

0

5

10

15

20

25

1 5 10 20

BFT-SMaRt

V-PR

Prime

Batch size Batch size

Read-latency (ms) Write-latency (ms)

29

VPR-ed SQLite	

0
5

10
15
20
25
30
35

1 2 5 7

Read

Write

•  Realistic trusted executions are the bottleneck
o  2 TCC execution at the primary (for write requests)

o  in pessimistic runs, 1 more TCC execution at backups

La
te

n
c

y
(m

s)

Batch size

30

Outline	

•  Motivation and background

•  Goals

•  Architecture Design & System Operations

•  Evaluation

•  Takeaways

Takeaways	
•  Easy to design fault-tolerant protocols

using hardware-based security
o  V-PR is the first fully-passive replication scheme that tolerates Byzantine failures

•  No additional assumptions (compared to previous literature)

•  Linear factor reduction in executing replicas
o  Non-determinism supported by design

•  Main limitation is the current technology
o  …but it’s making progress, check out Intel SGX

32

Thanks.	

33

34

35

System Initialization	
•  Need to form a secure group

o  If other replicas participate, they could be later shutdown (state loss)

•  Share a unique key K (use TCC secure storage for confidentiality)

•  Start from same initial state

MPrimary

MBackup

Admin attested
JOIN

check attestation

attested
ACCEPT
+encr.{K}

check ACKs,
install initial state

ACK initial state,
TCC cert.

check attestation

36

Primary Change	
•  Primary identified through local view counter

o  Each replica answer to only one specific primary

•  Detect primary’s failure through timeouts
(partial synchrony)
o  Start primary change protocol, but always answer to primary’s updates

o  Exchange messages to increment view counter

o  Eventually, no progress => new primary

•  Extreme cases
o  Multiple primaries: safe, because only one can make progress

o  Only one view increment:

•  replica wait for others to change primary

•  replica can make progress through consecutive updates anyway

37

Implementation	
•  Message passing w/ high

performance library
ZeroMQ

•  TCC with XMHF (S&P’13)
and TrustVisor(S&P’10)

•  Full SQLite database engine
o  VPR-ed SQLite

primary backup client

network

client
broker

replica
broker

38

Implementation	

Hardware

HMHF

TrustVisor

Manager

Service

trusted environment

•  Some addressed challenges:
o  Extending the hypervisor to provide dynamic resource management and

trusted counters

o  Running the service in an untrusted environment (no OS support, no access
to devices, like disk): created custom APIs (memory allocation, debugging,
etc.), custom filesystem (as a module, so no modification to SQLite)

TCC

•  Message passing w/ high
performance library
ZeroMQ

•  TCC with XMHF (S&P’13)
and TrustVisor(S&P’10)

•  Full SQLite database engine
o  VPR-ed SQLite

39

Reducing TCC Demand	

service client

Security MW

OS OS TCC OS TCC

Service

Manager U-Manager

primary backup client

Manager

Update Svc Update

network

U-Manager

4.untrusted
updates

•  Speculative update: validate it and send ACK

•  No TCC execution => 1 active TCC and rest are passive

•  Backup ACKs required: 2f+1
(yes, all of them, so at least a correct one always available) 40

Blinder	

service client

Security MW

OS OS TCC OS TCC

Service

Manager U-Manager

primary backup client

Manager

Update Svc Update

network

U-Manager

2.execute/
blind reply

•  Reply’s authenticator is blinded during update

•  U-Manager cannot send it back to client and break
consistency

•  Reply is unblinded after ACKs are validated

5.unblind
reply

41

Code size	

0

20

40

60

80

100

120

AR VPR
Primary

VPR
Backup

Update

Network

SQLite

V-PR

Average AR

•  Actively used code in fault-free scenario
o  KSLoC=thousand lines of source code

•  VPR Backup’s code is independent from the implemented service
o  Measurement of service code is not included

42

