
END USER DEVELOPMENT: APPROACHES TOWARDS A
FLEXIBLE SOFTWARE DESIGN

Michael Spahn, SAP Research, SAP AG, Bleichstr. 8, 64283 Darmstadt, Germany,
michael.spahn@sap.com

Christian Dörner, University of Siegen, Hölderlinstraße 3, 57068 Siegen, Germany,
christian.doerner@uni-siegen.de

Volker Wulf, University of Siegen, Hölderlinstraße 3, 57068 Siegen, Germany,
volker.wulf@uni-siegen.de

Abstract

Acknowledging the competition in today’s global markets demands enterprises to be resilient in order
to survive. Therefore product life cycles shorten and new customer segments have to be addressed
permanently. Obviously, such environments require flexible information systems, which can be
adapted quickly to the enterprises’ changing needs, without spending vast amounts of resources. Us-
ing End User Development (EUD) approaches can help to solve this dilemma by enabling software
developers to create information systems that can even be adapted by technically inexperienced end
users. This reduces time and costs needed for adaptations and increases their quality by avoiding po-
tential misunderstandings between business users and IT experts. This paper presents a broad over-
view of existing EUD approaches. Based on this, it provides recommendations, how EUD design prin-
ciples can be used conjointly, to develop embedded design environments for end users. We describe
and classify EUD approaches taken from the literature, which are suitable approaches for different
groups of end users. Implementing the right mixture of EUD approaches leads to embedded design
environments, having a gentle slope of complexity. Such environments enable differently skilled end
users to perform system adaptations on their own.

Keywords: Design Approaches, Methods and Methodologies, End User Development, Design Recom-
mendations, Adaptable Software.

1 INTRODUCTION

The design and development of flexible standard software, which matches the needs of a maximum of
customers, is still a hard issue for software engineers. On one hand it is impossible to identify all re-
quirements of all stakeholders a priori of design time (Henderson & Kyng, 1991). On the other hand,
even if this was possible, requirements of a system would not be static, leading to a growing misfit
between altering customer needs and features offered by a system. Due to continuous changes, like
market conditions, competitor behaviour, partner collaborations, and the legal environment, companies
face considerable challenges resulting in changing workflows, processed data and information needs.
As a result, one of the main requirements for software systems is their design for change. Many re-
searchers dealt with this subject and most of them concluded that the adaptation of software is neces-
sary during use time (Nardi, 1993; Repenning & Ioannidou, 2006). Continuous adaptations often lead
to higher costs than the costs caused during their initial design, implementation and introduction phase
(Wulf & Jarke, 2004). In many cases users are only able to adapt software systems indirectly, by
communicating their change requirements to IT experts. This could result in communication problems
between IT experts and users (Stiemerling et al., 1997), which have a negative impact on the adapta-
tion quality. Offering users the possibility to adapt software systems by themselves, shortens the adap-
tation process, cuts down resulting costs, and increases the overall quality, while at the same time of-
fering a high level of flexibility. By means of End User Development (EUD) approaches and the
increasing popularity of the so-called Web 2.0 technologies (e.g. Mashups), system design will shift
from “easy-to-use” to “easy-to-develop” and make the vision of designing “easy-to-use” user-
customizable systems more tangible. However, technology by itself is not able to overcome the com-
plexity inherent to software engineering (Brooks, 1987). Therefore, the research field of End User De-
velopment addresses the topic more holistic and explores how users can be enabled to adapt software
systems at runtime. Lieberman et al. (2006) define End User Development to be “a set of methods,
techniques, and tools that allow users of software systems, who are acting as non-professional soft-
ware developers, at some point to create or modify a software artifact.” Such artefacts could be for
example user interface models, workflow definitions or even source code.

This paper gives an overview of existing EUD approaches and provides recommendations, how those
approaches can be used to develop embedded design environments for end users. The overview gives
IS designers a guideline to select appropriate EUD approaches for the design of user-adaptable infor-
mation systems. The paper is organised in five sections. In section two we describe the “gentle slope
of complexity” as a meta-approach to realise user-adaptable information systems. Afterwards we give
an introduction to EUD in section three and give an overview over EUD methods, tools and tech-
niques. Based on this we provide recommendations for the design of embedded design environments
in section four and conclude the paper in section five.

2 COMPLEXITY DISTRIBUTION

One reason, preventing users from adapting software systems on their own, is the high complexity of
adaptation mechanisms. Analyzing the complexity of these mechanisms is a first step to identify the
ability of a software system to be tailored by end users (MacLean et al., 1990). A coarse method of
analysis is to identify the complexity curve of adaptation mechanisms, offered by a software system.
To do this, it is necessary to rate the skill level needed to use an adaptation mechanism (complexity)
and the power of adaptations achievable by its usage (adaptation power). If ratings for each mecha-
nism are determined, it is possible to depict them in a diagram as shown in Figure 1 and 2. Steep
slopes (indicated by dotted lines) imply barriers for users to understand, learn, and use a more power-
ful adaptation mechanism. Given the example of a system that only allows users to write source code
to apply even the simplest adaptation of system functionality, will prevent most end users from doing
any adaptations, due to the complexity of programming. A system offering only a sparse set of design

Figure 1. Steep slope of complexity Figure 2. Gentle slope of complexity

principles for performing adaptations is depicted in Figure 1. In contrast to this, systems providing
multiple adaptation mechanisms limit the additional complexity end users have to handle in order to
use a more powerful adaptation mechanism (c.f. Figure 2). End users are able to start with simple ad-
aptation mechanisms and gradually advance to more powerful adaptation mechanisms without facing
insuperable barriers (MacLean et al., 1990). When examining how end users adapt software systems,
this approach of using adaptation mechanisms with a stepwise increasing complexity can be observed.
For instance, users of Microsoft Word start often with very simple adaptations like modifying the but-
ton bar. A first step to functional adaptations can be seen in the recording of recurring tasks as macros
and assigning them to shortcuts or buttons. More advanced users start to have a look at the generated
macrocode and adapt it, without understanding the code, just by replacing parameters. They gain a
deeper understanding of how the code works and start modifying the code more freely. Even more
advanced users start writing code from scratch.

In absence of adaptation mechanisms, usable by end users, adaptations have to be delegated to IT ex-
perts, often leading to a long and costly adaptation process – as already discussed before. If the rela-
tion of time, cost and quality is influenced in a negative manner, because end users are being pre-
vented from adapting systems on their own, an improvement of this relation can be achieved by
increasing the end user adaptability of these systems. Steep slopes of complexity in the design princi-
ples limit the system’s adaptability. Such slopes can be smoothed and flattened through the introduc-
tion of additional adaptation mechanisms (c.f. Figure 2). Assuming that a better relation of time, cost
and quality is desirable for all potential customers of a software system, the realization of a gentle
slope of complexity can be seen as a crucial goal for the development of information systems. This
leads to a design environment offering different levels of complexity for different types of users. As a
consequence, users having the skills for using a certain adaptation mechanism can learn and under-
stand an advanced adaptation mechanism more easily. The additional complexity end users face is re-
duced through the smooth slope of the complexity graph. A prerequisite for this effect is that the de-
sign principles used in the advanced adaptation mechanisms build on, or strongly relate to, principles
introduced in preceding adaptation mechanisms.

3 END USER DEVELOPMENT APPROACHES

End User Development as a term has evolved over time and complements a lot of older research fields
denoted by other terms, while having a stronger focus on the development of new artefacts. In the end
of the 1970s, David Smith started to change the process of programming by the implementation of the
Pygmalion system. Inspired by the system, the research field of end user programming (EUP) emerged
(Cypher, 1993). During the 1980s, the term “end user computing” (EUC) became popular (Brancheau
& Brown, 1993). Later on the term “(end user) tailoring” (EUT) emerged from those research efforts.
The term refers to the change of stable aspects of an artefact (Henderson & Kyng, 1991). In the fol-

lowing we describe also approaches from those fields (EUP, EUC and EUT), as we consider them to
be specific predecessors of EUD. Some surveys of EUD approaches can be found in the literature:
(Blackwell, 2005; Brancheau & Brown, 1993; Germonprez et al., 2007; Nardi, 1993). In comparison
to those surveys, we present an updated overview, focusing on the conjunction of the different ap-
proaches, while using our own classification schema. We propose this schema could be used in com-
bination with the later presented recommendations as orientation for IS designers, to make informed
design decisions, when building embedded design environments for adaptable information systems.
Table 1 displays our classification schema. We classified the EUD approaches by using the dimen-
sions complexity of design principle and adaptation power of design principle. The dimensions com-
ply with the following definitions.

Complexity of design principle: The complexity of a design principle is defined in accordance to the
technical knowledge needed by an end user in order to apply it in a sensible way. Despite the existence
of many classifications of end users in the literature, even much more recent ones, the classification of
Nardi and Miller (1990) is appropriate in the context of this paper, as it takes the user’s technical
knowledge into account. Although end users represent a continuum of people with different technical
skill levels, Nardi and Miller classify end users by discrete user groups as follows: Non-programmers
have no or only little programming education and lack an intrinsic interest in computers. Local devel-
opers are domain experts and have usually a good knowledge of particular programs. Programmers
have a good education in computers and therefore a broader technical knowledge than the other
groups. The term “EUD approach” focuses at approaches suitable for the user group with the least
technical knowledge. But if we categorize an EUD approach as an appropriate design principle for
non-programmers, it is obvious, that local developers and programmers can use this approach as well.

Adaptation power of design principle: The second dimension of our schema is used to classify how
much power an adaptation method has, defining which level or extent of adaptations can be realised
by its usage. We based our classification on the classification of Mørch (1997), who developed the
schema for tailoring approaches. The first level, customisation, contains approaches that are used to
tailor the look and feel of applications. The second level, integration, contains all approaches, which
allow changing the internal design of applications by using some kind of model. The third level, exten-
sion, contains all approaches, which allow changing the program code.

EUD Approaches

Complexity
 Adaptation
 Power Customisation Integration Extension

Supportive EUD
Approaches

Programmers Programming

Local Developers Component swapping at
runtime;
Separated tailoring
interfaces

Natural Pro-
gramming;
Scripting

Non-Programmers Interface
customisation;
Parameterisation

Programming by
demonstration (PBD);
Accountants paradigm;
Integrated tailoring
interfaces

Testing:
Question-based testing;
WYSIWYT;
Integrity checks;
Exploration environments

Community aspects:
Configuration files

Appropriation support

Table 1: Classification of EUD approaches

We further differentiate, if an approach is a primary, self-contained EUD approach, which can be used
directly for adaptations, or if an approach is a secondary supportive EUD approach, which is targeted
at supporting other (primary) EUD approaches. The complexity and adaptation power of supportive
EUD approaches must correspond to the supported (primary) EUD approach in order to be useful.

3.1 General Considerations

Before discussing the EUD approaches of Table 1 in detail, we want to focus briefly on approaches,
which are more on a meta-level, but should be considered for the design of end user adaptable IS as
well. The whole design process should follow an appropriate model, like the SER model (Seeding,
Evolutionary Growth, Reseeding Model) of Fischer et al. (1994). SER is a process model for the in-
cremental development of collaborative design environments, enabling users to design modifications
of the current realization of the domain itself. Costabile et al. (2006) propose Software Shaping Work-
shops (SSWs) for including end users in the design process. SSWs have the objective of designing
software environments that enable domain experts as end users to become co-designers of tools. The
commonly used language, signs, notations and metaphors of user domains are very important for the
design of EUD mechanisms, as those domains may differ herein to a great extent (e.g. consider the
usage of an application in an educational environment and in a business environment). Therefore
Sieckenius et al. (2006) focus on semiotic aspects (signs and signification, including processes of rep-
resentation) of designing technology that meets the needs of users.

3.2 EUD Approaches

In this section we will discuss the EUD approaches we have found in the literature, starting at the level
of customization for non-programmers (according to Table 1). One widespread and well-known type
of EUD approaches is interface customisation. Those customisation mechanisms can be found in
most of today’s software systems. As an example, many modern applications offer users the possibil-
ity to apply themes or skins to change the look and feel or to adapt the used toolbars to change the di-
rectly accessible functionality. One of the older systems, which allowed interface customisations is the
tailoring architecture Buttons of MacLean et al. (1990). “Buttons” provided basic modifications, like
changing the placement of a button on the desktop or changing the label and icon of a button. As men-
tioned before, MacLean et al. recognized the importance of a “gentle slope of complexity” and there-
fore provided not only such basic adaptation functions, but supplemented the “Buttons” system with
more advanced concepts that are described later on. A second very popular EUD approach is the
parameterisation of an application, for instance by providing an options menu, enabling users to ad-
just certain settings according to their needs (e.g. by setting individual security options in a web
browser). As an ongoing example, the “Buttons” system also provided the possibility of influencing a
button’s functionality by setting parameters. The two approaches, interface customisation and parame-
terisation are comparatively easy to use and allow the customisation of applications in a way that has
been anticipated by its developers.

Programming by demonstration (PBD), also called Programming by Example (PBE), enables end
users to demonstrate algorithms to the computer, just by using the computer like they are used to. The
computer tracks and records all actions of the user and allows re-executing them. The “Buttons” sys-
tem provided a macro recording function, and allowed the assignment of recorded actions to a button
placeable anywhere on the desktop. Today, PBD mechanisms are used in many applications, like Mi-
crosoft Excel, where users are able to record actions as macros to automate recurring tasks. The book
Watch What I Do: Programming by Demonstration (Cypher, 1993) provides a good overview of PBD
approaches. Smith et al. (2001) state, that a basic problem of PDB approaches “[…] has always been
how to represent a recorded program to users. It’s no good allowing users to create a program easily
and then require them to learn a difficult syntactic language to view and modify it, as with most PBD
systems.” The book Your Wish Is My Command: Programming by Example (Lieberman, 2001) con-
tains many different examples, how research tried to overcome such criticism of PBD. Lieberman pre-
sents more flexible PBD approaches, being able to adjust re-execution by providing different input
parameters. A “Goal Oriented Web Browser” (Faaborg & Lieberman, 2006), being a PDB system for
the web that allows users to create general-purpose procedures just by giving a single example, dem-
onstrates further improvement of flexibility. Another recent approach in this field is called Sloppy Pro-
gramming and is based on interpretation of pseudo-natural language instructions, instead of formal

syntactic statements (Little et al., 2007), thus increasing adaptability of code for non-programmers. A
powerful but fuzzy EUD approach related to improving the handling and cognitive perception of in-
formation is what we call the accountants paradigm. This paradigm utilizes the fact that many people
understand without any precedent explanation a tabular representation of data. Spreadsheet applica-
tions utilise this paradigm as the main interaction model of the user interface. The paradigm is well
understood by many people – not only accountants – because it was already used for centuries for cal-
culations. Therefore inexperienced end users can “write programs” by using formulas that establish
relations between different data cells easily (Nardi & Miller, 1990). The last EUD paradigm, for non-
programmers, we describe on the level of integration is the integrated tailoring interface. Integrated
tailoring interfaces integrate the design-time and runtime view of an application seamlessly. Spread-
sheet applications are a smart way of integrating both views into one, as no formal modelling is re-
quired prior to the usage of a spreadsheet. The program logic of the spreadsheet can be modified at
any time by changing or creating formulas, providing instantly visible results to the user, without the
need to switch between a design-time and a runtime. Spreadsheet systems are one of the most popular
applications in EUD research, as they use many different EUD approaches simultaneously (Lieberman
et al., 2005; Nardi & Miller, 1990).

Leaving the group of non-programmers, we now focus on local developers. On the integration level
there are two EUD approaches mentionable for local developers. The first one is component swap-
ping at runtime. This approach is based on the ability of users of a component-based information sys-
tem to change the composition of its components at runtime or add and remove components from the
composition. System functionality composed from components needs to be visualised at the user inter-
face as an understandable model for local developers. An example for a system using such an ap-
proach is the FreEvolve platform (Won et al., 2006). It serves as a tailoring environment that allows
users to adapt their system during use time. It is based on an enhanced JavaBeans component model
called FlexiBeans model, which particularly improves easy adaptation and exchange of components
during run-time. More recent implementations of this design principle are Mashup tools like Yahoo!
Pipes. In this case users compose applications by connecting services, which are available on the web.
The visualisation of the functionality is usually realized by a second EUD approach, which can be de-
scribed as separated tailoring interfaces. Separated tailoring have in contrast to integrated tailoring
interfaces a separated design-time and runtime. As an example, FreEvolve provides a tailoring inter-
face, where users can switch easily to the tailoring mode, apply adaptations and switch back to the use
mode, where they can use their modifications instantly. The tailoring mode looks only slightly differ-
ent than the use mode of the system. All tailorable components of the user interface can be moved or
deleted and additional components can be dragged to the user interface. The control flow and data
flow of the system can be changed by simply connecting data input ports and output ports of compo-
nents with wires. Such adaptation possibilities provide a powerful way of enabling advanced adapta-
tions of the system, even for users with little technical knowledge.

Besides those approaches, local developers could also use two more powerful concepts, natural pro-
gramming and scripting, that are located at the extension level. Natural programming aims at creat-
ing programming languages and environments that are more “natural”, which means they are closer to
the way users think about their tasks, ideally enabling them to formally express their ideas in the same
way as they think about them (Myers et al., 2004). Programming can be seen as the process of trans-
forming a mental plan described by familiar terms into one compatible with a computer. The closer a
language is to the one in which the original plan is expressed in, the easier this transformation process
will be. Myers et al. studied the language and structure, which are used for problem solving, before
users have been exposed to programming, to analyse which fundamental paradigms of computing are
the most natural ones for users. Results reveal, that users often use event-based or rule-based struc-
tures or aggregate operators (acting on a set of objects all at once instead of iterating through a set).
Boolean expressions are rarely used and are likely to be defined incorrectly. According to their results,
Myers et al. developed the HANDS system for highly interactive graphical programs. HANDS uses an
event-based language that features a new model for computation, provides queries and aggregate op-
erators, has high visibility of program data, and domain-specific features for the creation of interactive

animations and simulations. The HANDS system has been developed for children, as one example of a
group of beginners. As user studies show, ten-year-olds are able to learn the HANDS system during a
three-hour session, indicating that the effort of developing a more natural design environment pays off
in the sense of achieved complexity reduction. More common than natural programming approaches is
to offer users a scripting language within an application for adaptation purposes. Scripting languages
are less complex than programming languages (e.g. they do not require strong typing) but therefore
also limited in their adaptation power (e.g. they just offer the usage of predefined objects instead of
creating new ones). Spreadsheet applications offer in many cases the possibility to use scripting lan-
guages to extend the functionality or to use the spreadsheet within other applications. A popular ex-
ample is the utilization of Visual Basic for Applications (VBA) to program small applications that use
parts of Microsoft Excel.

Leaving the group of local developers and remaining at the level of extension, there is only one ap-
proach left, which is more sophisticated: Programming. There is not much to say about that, except
that programming could be a good supplement at the top of the complexity slope, as it was demon-
strated in the “Buttons” systems, where programmers could put Lisp code inside a button.

3.3 Supportive EUD Approaches

In this section we want to focus on supportive EUD approaches, which are helpful to support users in
using the previously described approaches. The supportive approaches are separated in testing support,
community support and appropriation support, with a focus on testing. Question-based testing is an
approach allowing users to ask questions in order to debug their code. User studies concerning debug-
ging revealed that approximately one third of the questions asked during debugging are “why did”
questions, which assume the occurrence of an unexpected runtime action. About two thirds are “why
didn’t” questions, which assume absence of an expected runtime action (Myers et al., 2004). With re-
gard to this, Myers et al. developed the WhyLine debugging approach prototyped in the Alice UI,
which directly allows users to ask “why did” and “why didn’t” questions. The studies of Myers et al.
showed a significantly decreased debugging time, using the WhyLine approach in their example of
debugging a Pac Man game. The metaphor What You See Is What You Test (WYSIWYT) was util-
ised by Burnett et al. (2004) to construct a testing system under the same name. The WYSIWYT sys-
tem was build for spreadsheet applications, seamlessly integrated in their already tightly integrated
design-time and runtime. Users can test spreadsheets incrementally by simply validating cell values as
correct (given the current inputs) by checking off the cell. As different input values in certain cells
might be needed to cause other dependencies between formulas, the difficult generation of suitable
input variables needed to increase test coverage is supported by a Help-Me-Test button. User studies
revealed that the use of the described debugging methodology leads to a significantly increased effec-
tiveness in debugging spreadsheet formulas for inexperienced users. The utilisation of integrity
checks helps users to verify created compositions by exposing semantic errors and helps them to gain
a better understanding of composition correctness. Won (2004) describes three interactive integrity
check approaches, which were designed for the FreEvolve platform: constraint integrity, restricted
solution integrity and event flow integrity. Constraints refer to local properties of a component and
lead to a violation of the integrity, if they are not met. The restricted solution integrity is based on this,
but provides recommendations, how the integrity can be re-established. The event flow integrity
analyses message flows within a composition to ensure that generated messages are consumed as well.
If important messages are ignored, the integrity of the composition is violated. The evaluation of the
integrity system showed an increased usefulness of tailoring interfaces, because inexperienced users
were enabled to validate their compositions. The testing approach exploration environments, is an
in-between approach between testing and community support. Exploration environments allow users
of a system to experiment securely with its functionality and do adaptations, without damaging the
system or influencing the work of other users (Wulf, 2000). Powerful variants of such environments
could furthermore allow users to switch their user interface to the user interface of a different user,
enabling them to explore the system from different angles. The evaluation of an exploration environ-

ment approach in a groupware system presented by Wulf proved that exploration environments allow
individual users to better experiment with groupware functions, but seem to be best suited for those
users who already have a certain skill level in handling computers.

Configuration files as a mechanism of storing and exchanging adaptations can be used as a EUD ap-
proach, which supports user communities to perform their adaptations collaboratively. Different tech-
nical skills and different positions within an organisation lead to collaborations. Several empirical
studies confirmed that adaptation activities are typically carried out collaboratively (Mackay, 1990;
Nardi, 1993). Within such communities, the different user groups benefit from each other. For exam-
ple, technically more experienced or motivated users can help technically inexperienced or less moti-
vated users to do adaptations. User groups can be supported by different technical mechanisms, like
integrated repositories and integrated mailing functions. Both mechanisms allow users to exchange
their adaptation configurations, either by storing them in an integrated repository, or by sending them
via email to other users. The FreEvolve platform allows users to store their individual adaptations to
the system in configuration files and submit these to a central repository, accessible by all users and
thus enabling exchange of adaptations.

The last category is called appropriation support, which “[…] covers all measures to support ap-
propriation activities as creative and collaborative processes of user-user interaction to fit a technol-
ogy into an application field.” (Pipek, 2005). It covers for instance articulation support, decision sup-
port, observation support and explanation support. Concrete tools in this context could be for example
a forum system or a help system. For a detailed discussion of the topic we refer to Pipek (2005).

4 RECOMMENDATIONS FOR THE UTILIZATION OF END USER
DEVELOPMENT APPROACHES

After the introduction of the EUD approaches, we will provide recommendations, how the design
principles can be used conjointly, to develop embedded design environments for end users. By this we
will contribute to the knowledge pool and support designers in their design decisions. The recommen-
dations can only be fuzzy, because they do not consider the domain or context of the system. As they
are based on our literature review, they may sound naïve from a practical perspective, but should
rather serve as a general guideline for developers and show them, how the combination of EUD ap-
proaches can lead to a higher flexibility of information systems. So far we cannot support this thesis
by empirical evidence, but will work on it in the future. Figure 3 depicts the structure of an embedded
design environment, which has an idealized gentle slope of complexity. The division of the X-axis
(Adaptation Power of Design Principle) and of the Y-axis (Complexity of Design Principle) follow our
categorisation schema. In the center of the figure are different EUD design principles that are building
upon each other to generate the idealized gentle slope of complexity of the system. It was not possible
to identify an example of a combination of the previously presented EUD approaches, which would
lead to such an optimal slope, which indicates that more research is necessary. Therefore we just
named the design principles 1 to 6. The slope shows how users of the system could advance over time,
starting as non-programmers doing customisations and ending as programmers implementing exten-
sions to the system. The additional complexity that has to be handled in order to be able to use a more
sophisticated design principle is limited due to the gentle slope, thus reducing learning efforts and fa-
cilitating the usage of advanced tools. The two grey rectangles at the two sides of the figure represent
the supportive EUD approaches, which could be seen as helpful “equipment to climb the slope”. We
have stated in the general considerations section that there are EUD approaches which describe a user-
centered design process. Starting from this, we recommend the design of a set of building blocks for
solutions within a participatory design process together with domain experts. Users should be allowed
to use these domain-related building blocks or components later on to develop or refine their individ-
ual system. The goal of this approach is not to build one unique solution for a single problem, but to
develop components, which can be combined to create a variety of solutions for a domain.

Figure 3: Embedded EUD Design Environment with an idealised gentle slope of complexity

The development of effective EUD mechanisms requires a high degree of understanding the end users
and to know which concepts are familiar to them. We recommend design environments to be as
“natural” as possible for the addressed end user group and domain, enabling users to formally ex-
press their ideas in the same way as they think about them. Design environments, using domain spe-
cific (visual) languages, which consider empirically identified semiotic aspects of the domain, are an
example. The complexity reduction achievable by this design principle correlates with its relatedness
to the domain and the “natural” problem solving strategies of users. The HANDS system developed by
Myers et al. (2004) is an example of a design environment build upon the knowledge of what was
“natural” for the addressed user group. As a result, using the system required a short training period
and enabled users to achieve design results fast. As already stressed in the introduction, the develop-
ment of EUD mechanisms following a gentle slope of complexity is a basic paradigm for the design of
end user adaptable information systems. Avoiding steep slopes of complexity ensures that end users
can learn the additional skills, needed to use an advanced design principle, with reasonable effort.
Given the example of an IS offering reporting functionality, the IS should not only offer a design prin-
ciple suitable for database experts. To flatten the complexity slope, a design principle for end users
should be introduced as well. The system should enable users for example to create new reports, by
selecting and combining predefined data building blocks of their domain in a simplified way. This
could be complemented by an advanced design principle for developing building blocks. Continuing
this chain of more and more advanced design principles may lead to a final design principle only suit-
able for experts, but users do not need to be experts to use the design principle at the beginning of the
complexity slope. Realizing a chain of design principles following a gentle slope of complexity can be
seen as a crucial precondition for building end user adaptable information systems. If users should be
enabled to extend the functionality of a system, we recommend programming by example as a power-
ful approach to avoid the need for formal modelling or traditional programming. Recording the ac-
tions of users in the form of macro recording is a practical example for this. Allowing users not only to
record and replay their actions, but also to modify them at a reasonable level of complexity, to extend
or generalize their solution is an important option to unfold the real power of this approach. The use of
programming by example can build an effective bridge to traditional programming or modelling as
shown in the “Buttons” architecture (MacLean et al., 1990). More advanced approaches, helping users
to generalize their recorded solutions and reuse them in other contexts by automatically changing rele-
vant input parameters and addressed objects are in their infancy, but follow a promising idea and
should be considered where applicable. Lieberman’s goal-oriented web browser is a good example for
such a system (Faaborg & Lieberman, 2006). Design principles, offered to end users, should avoid the

need to switch to a design environment, which follows a fundamentally different paradigm than the
one at use time. If for example a user would modify a visual form, switching to the source code would
not be an appropriate design option for an end user design environment. We recommend designing the
design time as similar to the runtime as possible. In the form example, the design time could show the
form exactly as in runtime, but allow modifications by interaction possibilities already known to the
user, like drag and drop to add visual components from a component catalogue. To be able to evaluate
the success of design actions, results should be instantly visible and usable. A good example for inte-
grating design time and runtime are the previously stressed spreadsheet applications, which allow us-
ers to experience the results of their activity by directly manipulating and interacting with the artefact.
If direct manipulation is not possible, the options to tailor a software artefact should be indicated con-
sistently (Won et al., 2006). Spreadsheet applications are very successful in enabling even inexperi-
enced users to get started with data processing. We recommend the use of the “accountants paradigm”
for design environments in a business context to get inexperienced users started quickly. Basic reasons
for that are the very simple sets of design rules a user has to follow as well as the long tradition of us-
ing spreadsheets for accounting tasks. Spreadsheets do not need to be modelled in advance in a formal
way in a design process to be usable at the runtime. Although the spreadsheet paradigm is very simple,
it cannot be easily transferred to fundamentally different design tasks than the one it was intentionally
built for (calculation). But when thinking of the existing advanced solutions developed with spread-
sheet applications or the basement of whole reporting solutions on spreadsheets, we encourage consid-
ering advanced usage scenarios for spreadsheets, to simplify the access for a broad user base.

Having a look at the supportive EUD approaches, we recommend designing the debugging tools of the
system as natural as possible, making it easier for end users to understand how artefacts work. The
WhyLine approach is a good example for this, because it allows users to formulate “Why” and “Why
didn’t” questions to find errors in the code. Furthermore the verification or debugging mechanisms of
the system should be integrated as close as possible into the runtime and design time environment of
the system, making it possible for users to find errors quickly, as realised in the WYSIWYT approach.
This paradigm can also be found in professional software development environments, like the Eclipse
platform, where programmers can already see error indicators in their source code editor (indicated as
small red bars), without explicitly running a debugger. Sophisticated user support mechanisms could
provide end users with information on how detected errors could be corrected, like in the restricted
solution integrity approach. A helpful extension for testing is the integration of an exploration envi-
ronment into the system. It allows end users to test and explore a modified application and allows users
to learn how to use this system and what effects adaptations cause, without having to fear a damage of
the system. Henderson and Kyng (1991) support this recommendation as they demand that systems
should have an exploratory mode, in which users can experiment in a safe way. Adaptations are usu-
ally done by groups of different users as indicated by Nardi and Miller (1990). Therefore we recom-
mend that end user development tools support their community of users. The tools should allow them
to store and share their adaptations with other users, like in the case of the FreEvolve platform, where
users are able to exchange component configurations that are stored in files. Additionally, the ex-
change of problem related information and help is an important support mechanism within a group of
differently skilled users. Furthermore we recommend to actively support the education of local devel-
opers, like Gantt and Nardi proposed (Gantt & Nardi, 1992). Local developers often serve as transla-
tors between the users of a company and the programmers of an information system. This lowers po-
tential misunderstandings between these groups, shortening the realization time and costs of
adaptations, which can only be done by programmers.

5 CONCLUSIONS AND FURTHER RESEARCH

In this paper we provided an overview of the state-of-the-art in the field of End User Development,
considering the different approaches from the perspective of information systems research. We classi-
fied the approaches by the two dimensions “complexity of design principle” and “adaptation power of

design principle” and derived general recommendations on how to make information systems more
adaptable by end users. The recommendations are fuzzy and have to be selected and adapted in accor-
dance to the demands of a specific domain and context. The combination of different recommenda-
tions allows the construction of information systems, which have a gentle slope of complexity. As us-
ers with different technical skills can adapt these systems with different mechanisms, the approach can
lead to a higher flexibility of the whole system. Likewise, systems with a gentle slope of complexity
allow users to advance over time and acquire more technical and adaptation knowledge, by providing
an improved learning curve of available adaptation mechanisms. The construction of information sys-
tems, which are designed for a constant re-design by end users, have economical potential, because
their overall costs (accumulated over the whole life-cycle) are lower, than the costs of comparable sys-
tems, which are not adaptable by end users. Re-designable systems are easier and faster to adapt to
frequently changing requirements and can be used over a longer time period. Reduced efforts and
costs coincide with increased effectiveness due to a better fit of the needed functionality and the func-
tionality provided by the system. As organizational and technological development are closely corre-
lated, the inability of users to adapt the technical systems used, is limiting the organizational develop-
ment possibilities of organizations as well. Better adaptation mechanisms thus create better premises
for being innovative and differentiate from competitors. Form a vendor’s perspective the increased
costs and effort in building such systems could pay off, as EUD approaches allow to offer less special-
ized products to a broader customer base by leaving the “last mile” of customization and development
to a higher extent to the individual customers. For the development of constantly re-designable sys-
tems, it should be considered to integrate end user development as a part of the whole evolutionary,
participative design cycle of a software system, as stated in (Wulf & Rohde, 1995). Although end user
development approaches offer powerful methods for end users to adapt their information systems,
there are some limitations of these approaches that should be kept in mind. One of the biggest prob-
lems of end user development was expressed by Repenning in an elegant way: “End-user development
environments cannot turn the intrinsically complex process of design into a simple one by employing
clever interfaces no matter how intuitive they claim to be.” (Repenning & Ioannidou, 2006). Another
mentionable issue is raised by Henderson and Kyng, stating that adapted systems are not uniform any
more, making it hard for users to use the system of another person, because the system may look com-
pletely different (Henderson & Kyng, 1991). Other aspects comprise potentially harmful effects
caused by errors in user-generated solutions, or a reduced execution speed/responsiveness of systems
using a strongly layered architecture to include several adaptation mechanisms. As there are only few
studies about such effects, more research is needed to investigate EUD approaches in real enterprise
scenarios. To be able to support our recommendations empirically and investigate observable effects,
we currently build an embedded design environment for enterprise systems, which will be evaluated in
a real enterprise setup. Following the recommendations given in this paper, we are focusing on estab-
lishing a gentle slope of complexity and simplifying the adaptation processes for different types of
users (mainly non-programmers and local developers).

6 ACKNOWLEDGEMENTS

We thank our reviewers for their valuable feedback and constructive suggestions. The research was
funded by the German “Federal Ministry of Education and Research” (BMBF, project EUDISMES,
number 01 IS E03 C).

References
Brancheau, J. C. and Brown, C. V. (1993). The Management of End-User Computing: Status and Di-

rections. ACM Computing Surveys, 25 (4), pp. 437-482.
Brooks, F. P. J. (1987). No silver bullet: essence and accidents of software engineering. Vol. 20 IEEE

Computer Society Press, pp. 10-19.

Burnett, M., Cook, C. and Rothermel, G. (2004). End-user software engineering. Communications of
the ACM, 47 (9), pp. 53-58.

Costabile, M. F., Fogli, D., Mussio, P. and Piccinno, A. (2006). End-User Development: The Software
Shaping Workshop Approach. In End User Development, Springer, pp. 195- 217.

Cypher, A. (1993). Watch What I Do: Programming by Demonstration. MIT Press.
Faaborg, A. and Lieberman, H. (2006). A Goal-Oriented Web Browser. Proceedings of the CHI '06,

ACM Press, pp. 51 - 760.
Fischer, G., McCall, R., Ostwald, J., Reeves, B. and Shipman, F. (1994). Seeding, evolutionary growth

and reseeding: supporting the incremental development of design environments. Proceedings of the
CHI '94, ACM Press, pp. 292 - 298.

Gantt, M. and Nardi, B. A. (1992). Gardeners and gurus: patterns of cooperation among CAD users.
Proceedings of the CHI '92, ACM Press, pp. 107 - 117.

Henderson, A. and Kyng, M. (1991). There's no place like home: continuing design in use. In Design
at Work: Cooperative Design of Computer Systems, Lawrence Erlbaum, pp. 219 - 240.

Lieberman, H. (2001). Your Wish Is My Command: Programming by Example. Morgan Kaufmann.
Lieberman, H., Paternò, F. and Wulf, V. (2006). End User Development. Springer, Dordrecht, The

Netherlands.
Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M. and Kandogan, E. (2007). Koala: capture,

share, automate, personalize business processes on the web. Proceedings of the CHI '07, ACM
Press, pp. 943 - 946.

Mackay, W. E. (1990). Patterns of sharing customizable software. Proceedings of the CSCW '90,
ACM Press, pp. 209 - 221.

MacLean, A., Carter, K., Lövstrand, L. and Moran, T. (1990). User-tailorable systems: pressing the
issues with buttons. Proceedings of the CHI '90, ACM Press, pp. 175 - 182.

Mørch, A. (1997). Method and Tools for Tailoring of Object-oriented Applicatios: An Evolving Arti-
facts Approach. PhD Thesis, University of Oslo, Oslo.

Myers, B. A., Pane, J. F. and Ko, A. (2004). Natural programming languages and environments.
Commun. ACM, 47 (9), pp. 47 - 52.

Nardi, B. A. (1993). A small matter of programming: perspectives on end user computing. MIT Press.
Nardi, B. A. and Miller, J. R. (1990). An ethnographic study of distributed problem solving in spread-

sheet development. Proceedings of the CSCW '90, ACM Press, pp. 197 - 208.
Pipek, V. (2005). From Tailoring to Appropriation Support: Negotiating Groupware Usage. PhD the-

sis, Department of Information Processing Science, University of Oulu, Oulu.
Repenning, A. and Ioannidou, A. (2006). What makes End-User development Tick? 13 Design Guide-

lines. In End User Development, Springer.
Sieckenius, C., Souza, D. and Barbosa, S. D. J. (2006). A Semiotic Framing for End-User Develop-

ment. In End User Development, Springer, pp. 405 - 431.
Smith, D. C., Cypher, A. and Tesler, L. (2001). Novice Programming Comes of Age. In Your Wish Is

My Command: Programming By Example, Morgan Kaufmann.
Stiemerling, O., Kahler, H. and Wulf, V. (1997). How to make software softer - designing tailorable

applications. Proceedings of the DIS '97, ACM Press.
Won, M. (2004). Interaktive Integritätsprüfung für komponentenbasierte Architekturen. PhD thesis,

Mathematisch-Naturwissenschaftliche Fakultät, Universität Bonn, Bonn, Germany, pp. 171.
Won, M., Stiemerling, O. and Wulf, V. (2006). Component-based Approaches to Tailorable Systems.

In End User Development, Springer, pp. 127-153.
Wulf, V. (2000). Exploration Environments: Supportung Users to Learn Groupware Functions. Inter-

acting with Computers, 13 (2), pp. 265-299.
Wulf, V. and Jarke, M. (2004). The economics of end-user development. Commun. ACM, 47 (9), pp.

41-42.
Wulf, V. and Rohde, M. (1995). Towards an integrated organization and technology development.

Proceedings of the DIS '95, ACM Press, pp. 55 - 64.

