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Abstract 

There exists a class of two-legged machines for which walking 
is a natural dynamic mode. Once started on a shallow slope, 
a machine of this class will settle into a steady gait quite 
comparable to human walking, without active control or en- 
ergy input. Interpretation and analysis of the physics are 
straightforward; the walking cycle, its stability, and its sensi- 
tivity to parameter variations are easily calculated. Experi- 
merits with a test machine verify that the passive walking 
effect can be readily exploited in practice. The dynamics are 
most clearly demonstrated by a machine powered only by 
gravity, but they can be combined easily with active energy 
input to produce efficient and dextrous walking over a broad 
range of terrain. 

1. Static vs. Dynamic Walking 

Research on legged locomotion is motivated partly by 
fundamental curiousity about its mechanics, and 
partly by the practical utility of machines capable of 
traversing uneven surfaces. Increasing general interest 
in robotics over recent years has coincided with the 
appearance of a wide variety of legged machines. A 
brief classification will indicate where our own work 
fits in. First one should distinguish between static and 
dynamic machines. The former maintain static equi- 
librium throughout their motion. This requires at least 
four legs and, more commonly, six. It also imposes a 
speed restriction, since cyclic accelerations must be 
limited in order to minimize inertial effects. Outstand- 
ing examples of static walkers are the Odex series 
(Russell 1983) and the Adaptive Suspension Vehicle 
(Waldron 1986). Dynamic machines, on the other 
hand, are more like people; they can have fewer legs 
than static machines, and are potentially faster. 
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2. Dynamics vs. Control 

Our interest is in dynamic walking machines, which 
for our purposes can be classified according to the role 
of active control in generating the gait. At one end of 
the spectrum is the biped of Mita et al. (1984), whose 
motion is generated entirely by linear feedback con- 
trol. At the end of one step, joint angles are com- 
manded corresponding to the end of the next step, 
and the controller attempts to null the errors. There is 
no explicit specification of the trajectory between 
these end conditions. Yamada, Funisho, and Sano 
(1985) took an approach that also relies on feedback, 
but in their machine it is used to track a fully specified 
trajectory rather than just to close the gap between 
start and end positions. Meanwhile the stance leg is left 
free to rotate as an inverted pendulum, which, as we 
shall discuss, is a key element of passive walking. Sim- 
ilar techniques are used in biped walkers by Takanishi 
et al. (1985), Lee and Liao (1988), and Zheng, Shen, 
and Sias (1988). 

By contrast the bipeds of Miura and Shimoyama 
(1984) generate their gait by feedforward rather than 
feedback; joint torque schedules are precalculated and 
played back on command. Again the stance leg is left 
free. However, the "feedforward" gait is unstable, so 
small feedback corrections are added to maintain the 
walking cycle. Most significantly, these are not applied 
continuously (i.e., for tracking of the nominal trajec- 
tory). Instead the "feedforward" step is treated as a 
processor whose output (the end-of-step state) varies 
with the input (the start-of-step state). Thus the feed- 
back controller responds to an error in tracking by 
modifying initial conditions for subsequent steps, and 
so over several steps the error is eliminated. In this 
paper you will see analysis of a similar process. Raibert 
(1986) has developed comparable concepts but with a 
more pure implementation, and applied them with 
great success to running machines having from one to 
four legs. - 

AH of these machines use active control in some 
form to generate the locomotion pattern. They can be 
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Fig. I .  A bipedal toy that 
walks passively down shal- 
low inclines. [Reprintedjiom 
(McMahon 1984).] 

Fig. 2. General arrangement 
of a 2D biped. It includes 
legs of arbitrary mass and 
inertia, semicircular feet, 
and a point mass at the hip. 

Side 

ordered according to the style of implementation, 
ranging from continuous active feedback to once-per- 
step adjustment of an actively generated but neverthe- 
less fixed cycle. This paper discusses a machine at the 
extreme end of the spectrum: gravity and inertia alone 
generate the locomotion pattern, which we therefore 
call "passive walking." 

3. Motivation for Passive Walking 

The practical motivation for studying passive walking 
is, first, that it makes for mechanical simplicity and 
relatively high efficiency. (The specific resistance of 
our test biped is "0.025 in a human-like walk.) Sec- 
ond, control of speed and direction is simplified when 
one doesn't have to worry about the details of generat- 
ing a substrate motion. Moreover, the simplicity pro- 
motes understanding. Consider an analogy with the 
development ofpowered Bight. The ~ r i g h t s ~ u t  their 
initial efforts into studying 'gliders, as did their prede- 
cessors Cayley and Lilienthal. Once they had a reason- 

able grasp of aerodynamics and control, adding a po- 
werplant was only a small change. (In fact, their engine 
wasn't very good even for its day, but their other 
strengths ensured their success.) Adding power to a 
passive walker involves a comparably minor modifica- 
tion (McGeer 1988). 

Actually passive walkers existed long before contem- 
porary research machines. My interest was stimulated 
by the bipedal toy shown in Figure 1; it walks all by 
itself down shallow slopes, while rocking sideways to 
lift its swing foot clear of the ground. A similar quad- 
ruped toy walks on level ground while being pulled by 
a dangling weight. I learned of such toys through a 
paper by Mochon and McMahon (1980), who showed 
how walking could be generated, at least in large mea- 
sure, by passive interaction of gravity and inertia. 
Their "ballistic walking" model is especially helpful 
for understanding knee flexion, which is discussed 
toward the end of the paper. 

Our discussion here is based on the model shown in 
Figure 2, which is no more than two stiff legs pin- 
jointed at the hip. It can be regarded as a two-dimen- 
sional version of the toy; its dynamics in the longitu- 
dinal plane are similar, but it doesn't rock sideways. 
This simplifies the motion, burit left us with new 
problems in building a test machine: how to keep the 
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Fig. 3. Biped used/or exper- 
iments on twodimensional 
gravity-powered walking. 
The outer legs are connected 
by a crossbar and alternate 
like crutches with the center 
leg. The feet are semicircular 
and haw roughened rubber 
treads. Toe-stubbing is pre- 

vented by small motors that 
fold the feet sideways during 
the swing phase. Apart from 
that, this machine, like the 
toy, walks in a naturally 
stable limit cycle requiring 
no active control. Leg length 
is 50 cm, and weight is 
3.5 kg. 

motion two-dimensional, and how to clear the swing 
foot. Figure 3 is a photo of our solution. Two-dimen- 
sionality is enforced by building the outer leg as a pair 
of crutches. Foot clearance is by either of two 
methods. Occasionally we use a checkerboard pattern 
of tiles, which in effect retract the ground beneath the 
swing feet. However, usually it is more convenient to 
shorten the Iegs; thus the machine can lift its feet via 
small motors driving leadscrew. 

The discussion here begins with two elementary 
models to illustrate the eneqetics and dynamics of 
passive waking. Next follow analyses of cyclic walking 
and stability for the general model of Figure 2, and 
comparison with experimental results. Then comes a 

survey of parametric effects, and finally some com- 
ments on extensions of the model. 

4. Reinventing the Wheel 

Imagine an ideal wagon wheel that can roll smoothly 
and steadily along a level surface, maintaining any 
speed without loss of energy. Its rolling seems quite 
different from walking (and on the whole more sensi- 
ble!), but in fact rolling can be transformed to walking 
by a simple metamorphosis. 

4.1. The Rimless Wheel 

Following Margaria (1976), remove the rim from the 
wagon wheel as in Figure 4, leaving, in effect, a set of 
legs. Unlike the original wheel, this device cannot roll 
steadily on a level surface; instead it loses some speed 
each time a new leg hits the ground. We treat each of 
these collisions as inelastic and impulsive. In that case 
the wheel conserves angular momentum about the 
impact point, and the loss in speed can be calculated 
as follows. Immediately before the collision the angular 
momentum is 

(Note that the wheel's radius of gyration is normalized 
by leg length /.) Immediately after the collision, the 
angular momentum is simply 

Equating these implies that 

All of our analysis is cast in dimensionless terms, with 
mass m, leg length 1, and time wg providing the base 
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units. To define what amounts to a dimensionless 
pendulum frequency (71, 

Then 

?j = 1 - 0-^I - cos 2%). (5)  

It follows from (3) that over a series of k steps 

Hence on a level surface the rimless wheel will decel- 
erate exponentially. However, on a downhill grade, 
say with slope y, the wheel can recoup its losses and so 
establish a steady rolling cycle. The equilibrium speed 
can be calculated from the differential equation for 
rotation about the stance foot. Over the range of angles 
used in walking, linearization for small angles is en- 
tirely justified, so the equation can be written as 

Here 0 is measured from the surface normal: thus the 
wheel has an unstable equilibrium at 0 = - y. 

One "step" begins with 6 = - q,, and rolling is 
cyclic if the initial speed, say Sly, repeats from one 
step to the next. Repetition of i& implies that each 
step must end with rotational speed Slo/q (6). Thus the 
steady step has the following initial and final states: 

Both Do and the steady step period in can be evaluated 
by applying these boundary conditions to the equation 
of motion (7). The results are 

Fig. 4. Removing the rim what comparable to walking 
from a wagon wheel allows a ofa passive biped (see Fig. 
simple illustration of walk- 6). The speed, here in wits  
ing energetics. On a level 61, is a function o f  the 
surface a rimless wheel slope, the inter-leg angle 
would grind to a halt; but on 2an, and the radius ofgyra- 
an incline it can establish a tion rw about the hub, 
steady rolling cycle some- 

SPIED 

0.3 

For small % the dimensionless forward speed is then 

Figure 4 includes plots of this d as a function of 
slope for various rimless wheels. These may be com- 
pared with speed versus slope in passive walking of a 
biped, which is plotted in Figure 6. The plots are qual- 
itatively similar and quantitatively comparable. As an 
example, take OQ = 0.3, which is typical of human 
walking. Our test machine achieves this stride on a 
slope of 2.596, and its forward speed is then 0.46 m/s, 
or 0.2 1 in units of 'fgl. This speed would be matched 
by a rimless wheel having r- sas 0.5. 

Of course the wheel need not always roll at its steady 
speed. However, it will converge to that speed follow- 
ing a perturbation. In fact, small perturbations decay 
according to 

We call this decay the "speed mode," which also ap- 
pears in bipedal walking. Incidentally, it is interesting 
to observe that convergence 65 a downhill slope (12) 
is twice as fast as deceleration on the level (6). 



Fig. 5. Walks like a biped; 
rolls like a wheel. It's a 
"synthetic wheel," made 
with two legs, two semidrcu- 
lar feet, and a pin joint at 
the hip. On each step the free 
foot swings forward to syn- 
thesize a continuous rim. I f  
supprt is transferred from 

trailing to leading foot when 
the leg angles are equal and 
opposite, then the walking 
cycle can continue without 
loss of energy. The period of 
the cycle (here normalized 
by the pendulum frequency of 
the swing leg) is independent 
of the step length. 

4.2. The Synthetic Wheel 

In view of the poor energetics that result, it seems that 
rim removal is not a veryprogressive modification of 
an ordinary wheel. But perhaps improvement might 
be realized by making cuts elsewhere. In particular, 
imaging splitting the rim halfway between each spoke. 
Then discard all but two of the spokes, leaving a pair 
of legs with big semicircular feet as shown in Figure 5. 
Put a pin joint at the hip, and ask the following ques- 
tion: could the dynamics be such that while one leg is 
rolling along the ground, the other swings forward in 
just the right way to pick up the motion where the 
first leg leaves off? 

In fact, one can devise a solution quite easily. Figure 
5 shows a cycle that will continue indefinitely on level 
ground. The legs start with opposite angles k CQ, and 
equal rotational speeds Go, as they did in the original 
wagon wheel. The appropriate value for q depends on 
Go, as we will show in a moment. Since the stance leg 
(subscripted C for "contact") is a section of wheel, it 
rolls along the ground at constant speed. (Here we 
presume that the wheel has a large point mass at the 
hip; otherwise motion of the swing leg would disturb 
the steady rolling.) The hip (like the hub of an ordi- 
nary wheel) therefore translates steadily parallel to the 
ground, and so the second leg (8' for "free") swings as 
an unforced pendulum. Then following the paths 

shown in Figure 5 the legs will reach angles k % with 
speeds again equal to Go. At that instant, support can 
roll seamlessly from one rim to the next. Thus a con- 
tinuous rim has been synthesized from two small pieces. 

Of course something must be done to clear the free 
leg as it swings forward, but we shall deal with that 
problem later. Also the cycle works only if the step 
angle (XQ is correct for the speed ftg; the relation is de- 
rived by matching boundary conditions. First, by in- 
spection of the stance trajectory in Figure 5, Do must 
satisfy 

r0 is determined by the swing leg, which behaves as a 
pendulum and so follows a sinusoidal trajectory. Its 
formula is 

a0 A@R(T) = 0:0 cos c(̂ ?T 4- - sin (U=T (14) 
co t  

The sinusoid passes through = -cQ,, with speed 
Sin, when 

Thus the step period for a synthetic wheel is about \ of 
the period for a full pendulum swing. Notice that this 
period is independent of %. The speed (1 3) is then 

Thus to change the speed of a synthetic wheel, change 
q, (i.e., the length of the step), while zo remains constant 
-determined solely by the leg's inertial properties 
and gravity g. 

Of course the synthetic wheel is contrived for conve- 
nient analysis, but the results have broader applica- 
tion. Our test machine has similar behavior. Figure 6 
shows that its step period is fairly insensitive to step 
length; moreover rn - 2.8 in unite of /̂JJg and oc = 
1.39, so ( u ~ T ~  = 3.9, which is quite close to the value 
given by (1 5). However, (1 5) is not so accurate for 
human walking; my 0% pendulum period, measured 
by standing on a ledge and dangling one leg, is 1.4 s, 
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Fig. 6. Step period ro (in 
units of q g ,  here 0.226 $1 
and angle a@ in p a s i ~ e  
wdking ofour test biped. 
Bars show q e ~ m m t a l  data 
from trials such us that 
plotted in Fig. 7q Continuous 
curves show analyticd re- 
sults, with uncertainty ban& 
cam*edforwardfiom meu- 
surement of the biped 3 

parameters as listed on the 
plot. The analysis matches 
experiment poorly $no 
ullowunce is made for rolling 
friction PC), but r e m o d l e  
consistency is realized ifthe 
f~ction is takm to be 
O.QQ7 mgl. With this level of 
>iction, w ~ l u n g  is calcu- 
lated to be unstable on dopes 
less than 0.8%. 

and my step period varies from -0.55 s at low speed 
to 4 - 5 0  s at high speed. Thus the ratio of step period 
to pnddum pried is -0.36 to -0.39, as opposed to 
0.65 for the wheel (1 5). I have siaifianQy more Me 
in my stride than either the wheel or our test biped! 

W e  Figure 5 shows that a synthetic wheel is possi- 
ble in theory, can its cycle actually be realized in p m -  
tice? This boils down to an issue of stability7 and it 
turns out that the synthetic wheel is just as stable as an 
ordinary wheel. That is7 both have neutrally stable 
"sped modes"; in the case of a synthetic wheel, a 
change in speed leads to a new % according to { 16). In 
addition, the synthetic wheel has two other ':stepto- 
step" modes that prove to be stable; these are discussed 
in section 8. 

5. Steady Waking of a General 2D Biped 

The biped of Figure 2 is s i m h  to the synthetic wheel 
but allows for broader v&ation of parameters. Adjust- 
able parameters include 

1. Foot radius R 
radius of gyration rw 

3. k g  mnter of mass height c 
4. Fore/& center of mass offset w 
5. Hip mass fraction mH 

We will examine the effects of varying each parameter. 
Our calculations of @t and stability rely on stepto- 

step (S-to-S) analysis, which is explaided as follows. At 
the start of a step, say the k*, the legs have equal and 
opposite angles k ah and rotational speeds Qa, Cia. 
The motion proceeds roughly as for the synthetic 
wheel, with appropriate arrangements to prevent toe- 
stubbing at mid-stride. The step ends when leg angles 
are again equal and opposite, but in generd different 
(say ak+l)  from ak. At that point the swing foot hits 
the ground, and the leg speeds change instantaneoudy 
to their initial values for the following step Q,-k+l, 
Qfi+l. We will formulate equations relating 
(ak, a C k 2  to {%+ 1 Y QCk+ 1, Q#k+ 1 1. we then 
use these to find naturally repeating initial conditions 
(i.e., passive cycles) and to examine how 
evolve fiom step to step. 

5.1. Start- to End-of-Step Fquations 

During the step the machine is s u p p d d  on one foot, 
and its state is specified by the two Ieg angles aC2 OF, 
and the speeds aCy a?. In general the equations of 
motion are nonlinear UI these variables, but since in 
walking the legs remain near the vertical and the 
speeds remain small ( -K @), linearization is justi- 
fied. Thus the l i n e  equations are 

The inertia matrix Mo is derived in the appendix 
(65). T lists the torques about the stance foot and hip. 
It can include fi&on or control inputs, but for our 
machine the principal torque is gravitationat 

The stifkess matrix K and eqabfium position A& 
are also derived in the appenh [eqs. [52), {53), {54)]. 



A0 is the rotation from the surface normal. For small 
y, A$= can be written as 

By way of explanation you can imagine that if the feet 
were points (i.e., zero foot radius) then the equilib- 
rium position would be legs-vertical, which means that 
both elements of b would be - 1. However with non- 
zero f6ot radius the stance leg would have to rotate 
past the vertical to put the overall masscenter over the 
contact point, so b, < - I. Also moving the legs' mass 
centers fore and aft from the leg axes (i.e., nonzero w, 
Fig. 2) would make for nonvertical equilibrium even 
on level ground, and this is handled by Affir. 

Putting the gravitational torque (1 8) into the equa- 
tions of motion (1 7) leaves a fourth-order linear sys- 
tem. This can be solved to jump from the start-of-step 
to any later time, via a 4 X 4 transition matrix D: 

The elements of D for a given l&, K, and rk arc calcu- 
lated by standard methods for linear systems. For 
transition to the end-of-step, T,, must be chosen so that 
the elements of Aftrn) are equal and opposite. Thus 
define 

Then 

5.2. Support Transfer 

When (23) is satisfied, foot strike occurs, which as for 
the rimless wheel we treat as an inelastic collision. In 

this case two conditions apply: 

1. Conservation of angular momentum of the 
whole machine about the point of collision, as 
for the rimless wheel (3). 

2. Conservation of angular momentum of the 
trailing leg about the hip. 

These are expressed mathematically as 

where "-" and "+" respectively denote pre- and post- 
support transfer. The inertia matrices M- and M+ 
depend on the leg angles at foot strike, as discussed in 
the appendix [eqs. (651, (6811. The ordering ofQ, may 
be confusing, since the stance and swing legs exchange 
roles at support transfer. We adopt the convention 
that the first element of O refers to the post-transfer 
stance leg. Hence the prc-transfer indexing must be 
flipped: 

From (24), then, the initial speeds for step k + 1 are 

Qfc+i = Mi-'M-Fn(rk) = An(rk), (26) 

5.3. "S-to-S" Equations 

Combining the start- to end-of-step equation (20) with 
the foot strike conditions [eqs. (221, (23), (26)] pro- 
duces the S-to-S equations. It is convenient to break D 
in (20) into 2 X 2 submatrices, so the system is written as 

Bear in mind that while formulation of this set has. 
been simple, evaluation is not quite so straightforward. 
Given initial conditions (Qic, Qk), the time rk (which 
determines D} at which the leg angles are next equal 
and opposite must be determined. Then ai,+, (27) 
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Fig. 7. Step period and angle 
measured at heel strike in 
trials of the test biped. The 
machine was started by 
hand on a 5.5-m ramp in- 
dined at 2.5% downhill, and 
after a few steps settled into 
a fairly steady gait. Dots 

show the mean value, and 
bars the scatter recorded 
over six trials. Lengths are 
normalized by Ie length I. 
and periods by -f I , .  "C" 
denotes start-ofstance on the 
center leg; "0" on the outer 
legs. 

determines A (26), which in turn allows evaluation of 
Q k + i  (28). 

5.4. Solution for the Walking Cycle 

For cyclic walking, initial conditions must repeat from 
step to step: 

Imposing these conditions on S-to-S equations (27) 
and (28) leads to a compact solution . for . the walking 
cycle. First solve for fro using (28): , 

Then substitute for Sir, in (27); the end result can be 
written as follows. Define 

Then (27) can be written as 

0 = [D' - F]& - [Dr - I]AOE 
= [ D f  - F]Aoo - [Dr - l][AOW + by]. (33) 

The last line follows from (19). This is the steady-cycle 
condition, with two equations in three variables %, 
T,, , and y. Usually we specify % and solve for the other 
two. Equation (33) then has either two solutions or 
none. If two, then one cycle has 4. E, and is in- 
variably unstable. The other corresponds to a synthetic- 
wheel-like cycle with coFrO between TI and 3n/2. This 
is the solution of interest. Thus we use the synthetic- 
wheel estimate (1 5) to start a Newton's method search 
for ro, and if a solution exists, then convergence to 
five significant figures requires about five iterations. 

6.  Steady Walking of the Test Machine 

The analytical solution for steady walking is compared 
with experiment in Figure 6. Experimental data were 
obtained by multiple trials as shown in Figure 7; in 
each trial our test biped was started by hand from the 
top of a ramp, and after a few steps it settled into the 
steady gait appropriate for the slope in use. (Notice, 
incidentally, that the rate of convergence is a measure 
of stability; we will pursue this analytically in the next 
section.) Several trials were done on each slope, and 
means and standard deviations for c&i and ro were 
calculated over all data except those from the first few 
steps of each trial. 

Our predictive ability to compare with analysis was 
limited by uncertainty in the machine's parameters. 
Each leg's center-of-mass height c was measured to 
about 1 mm by balancing each leg on a knife edge; w 
to about 0.5 mm by hanging each leg freely from the 
hip; and rm to about 2.5 mm by timing pendulum 
swings. The center and outer legs were ballasted to 
match within these tolerances and differed in mass by 
only a few grains (i.e., ~ 0 . 0 0 1  m). 

When these parameters were put into (33) wi found 
(as Figure 6 indicates) that the observed cadence was 
slower than predicted. We suspected that the discrep 
ancy was caused by rolling friction on the machine's 
rubber-soled feet. Hence we added a constant to the 
first element of T in (17), which modified AOnÃ in (19). 
A value of -0.007 brought the analytical results into 
line with observation. In dimensional terms this is 
equivalent to 25 gm-force applied at the hip. We could 



not devise an independent measurement of rolling 
friction, but this figure is credible. 

However, after adjusting friction for a reasonable fit, 
we still found a discrepancy in that the observed step 
period is less sensitive to speed than the analysis indi- 
cates. We therefore suspected that the inelastic model 
for foot strike was imprecise, and in fact there was a 
bit of bouncing at high speed. But in any case the 
residual discrepancy is small, so our current S-to-S 
equations (27) and (28) apparently form a sound basis 
for further investigation, in particular of stability and 
parametric variations. 

Here the efficiency of biped walking should be 
noted. For comparison with other modes of transport, 
we measure efficiency by specific resistance: 

resistive force- mechanical work done 
SR = - 

weight weight X distance travelled 

For a vehicle powered by descending a slope, SR is 
just equal to y, or about 2.5% for our machine using 
tq, = 0.3, which is comfortable for humans. This fig& 
would be terrible for a car, but it is very good in com- 
parison with other rough-terrain vehicles such as mul- 

d crawlers and bulldozers (Waldmn 1984). 

7. Linearized Step-tostep Equations 

A cyclic solution is a necessary but not quite sufficient 
condition for practical passive walking. The walking 
cycle must also be stable. Stability can be assessed by 
linearizing eqs. (27) and (28) for small perturbations 
on the steady gait. The transition matrix D and the 
support transfer matrix A can be approximated for this 
purpose as follows: 

QA 
A(tÃˆk4-i - A(%) + - a,). (35) 

After substituting these into (27) and (28) and mani- 

Table 1. S-to-S Eienvectors of the Test Machine on a 
2.5% Slope 

Mode Speed Swing Totter 

Eigenvalue, z 0.70 -0.05 -0.83 
a-On 1 1 1 

flc - "co 1.1 1.1 0.12 
f t ~ - f t i  0.30 7.3 -0.03 

pulating to collect terms, we are left with the following 
approximate form of the S-to-S equations: 

The formula for S is given in the appendix [eqs. (691, 
(701, and (7211. The important point here is that S is 
the transition matrix of a standard linear difference 
equation, so the eigenvalues of its upper 3 X 3 block 
indicate stability [the equation for (tk - is ancil- 
lary]. If all have magnitude less than unity, then the 
walking cycle is stable; the smaller the magnitude, the 
faster the recovery from a disturbance. (If, however, 
the walking cycle is unstable, then linearized S-to-S 
equations are helpful for design of a stabilizing control 
law. This was in essence the approach of Miura and 
Shimoyama (1984). See also McGeer (1989) for active 
stabilization of a passive cycle.) 

8. S-to-S Modes of the Test Machine 

/ 

Results of stability analysis for our test biped are listed 
in Table 1. Similar results are found over a wide range 
of parameter variations, so the modes can be consid- 
ered typical for passive walking. 

The "speed mode" is analogous to the transient 
behavior of a rimless wheel, with z corresponding to 
q2 in (1 2). The eigenvalue is linked to energy dissipa- 
tion at support transfer.Thus for the synthetic wheel, 
z = 1 in this mode (i.e., stability is neutral with respect ! 
to speed change), as we noted earlier. 
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The "swing mode" is so named because the eigen- 
vector is dominated by Sip. The eigenvalue of this 
mode is usually small, and in fact reduces to zero in 
the synthetic wheel, which means that a "swing" per- 
turbation is eliminated immediately at the first sup- 
port transfer. Physically this occurs because the post- 
transfer speed of the synthetic wheel's legs is 
determined entirely by the momentum of the large hip 
mass; the pretransfer Dp is irrelevant. 

Finally, the "totter mode" is distinguished by a 
negative eigenvalue, which means that perturbations 
alternate in sign from one step to the next. Again the 
synthetic wheel offers an easily understood special 
case. Since the wheel cannot dissipate energy, it retains 
its initial rolling speed for all time. If the initial step 
angle is not appropriate to the initial speed as specified 
by (1 3), then the angle must accommodate through 
some sort of transient, which turns out to be the totter 
mode. The eigenvalue can be found analytically by 
generalizing the swing trajectory formula (14) for a,, # 
Of,: 

Q o  - cii,,. , = a,, cos m=rk + - sin cofrk. (37) 
(0s 

Meanwhile the generalized stance trajectory [cf. (13)] is 

Now differentiate eqs. (37) and (38) with respect to a,,: 

Solving for the derivatives and evaluating at ro gives 

da,,+1- - -- 4 k s  uF~o - upto sin myto 
=-0.20, (41) 

da,. 2 + 2 cos mFTo - wfio sin COPTo 

It follows from (41) that perturbations converge expo- 
nentially according to 

a,̂  - ~ Â ¥  - - 0.2 in the totter mode (43) 

In summary then, and with some oversimplification 
for clarity, the "speed" mode in passive walking is a 
monotonic convergence to the speed appropriate for 
the slope in use. The "swing" mode is a rapid adjust- 
ment of the swing motion to a normal walking pattern. 
The "totter" mode is an oscillatory attempt to match 
step length with forward speed. An arbitrary perturba- 
tion will excite all three modes simultaneously. Of the 
three, the totter mode differs most between the syn- 
thetic wheel and our test biped (z = -0.2 vs. -0.83), 
and our parametric surveys indicate that it bears 
watching. We will show examples of parameter choices 
that make the totter mode unstable. 

9. Larger Perturbations 

The preceding analysis applies only for small perturba- 
tions, but an obvious question is, "How small is 
small?" There is a limit: if the machine were started 
just by standing the legs upright and letting go, it 
would fall over rather than walk! Thus starting requires 
a bit more care. In general, the machine could be re- 
leased with arbitrary leg angles and speeds, and it 
would be nice to know the "convergence zone" in the 
four-dimensional state space. Unfortunately the 
boundary of a 4D volume is rather difficult to map, so 
we have restricted attention to finding the maximum 
tolerable perturbation in the initial Or or OF. This is 
done by serial evaluation of the nonlinear S-to-S equa- 
tions (27) and (28). The results show that Qp can vary 
over wide limits (e.g., <0  to > + 150% of the cyclic 
value). However, Qc is sensitive; many passive walkers 
can only tolerate an error of a few percent in the start- 
ing speed. Still this is not so exacting as it sounds; 
manual starting (by various techniques) is quite natu- 
ral, and success is achievable with little or no practice. 
Furthermore, the boundaries ofthe convergence zone 
are sharp, and if the machine starts even barely inside 



the edge it settles to the steady cycle very nearly as 
suggested by the small-perturbation analysis. 

An alternative to the convergence-zone measure of 
robustness is resistance to jostling. Thus we calculated 
transients produced by disrupting the steady gait with 
a horizontal impulse, applied at the hip just as the legs 
passed through A0 = 0. As an intuitive standard of 
reference, we compared the walker with a similar ma- 
chine resting with legs locked at Â±% It turns out that 
a passive walker can tolerate a useful fraction of the 
impulse required to topple the locked machine; the 
level varies widely with choice of machine parameters, 
but 25% (forward or backward) is representative. The 
calculation has to be done carefully, since bands of 
tolerable and intolerable impulse magnitudes are in- 
terspersed. Twenty-five percent is a typical upper 
bound for the first tolerable band. More aggressive 
jostling would have to be countered by active control. 

The jostling calculation was particularly helpful in 
dispelling the inclination to associate robustness'with 
rapid convergence from small perturbations. In fact, a 
biped with a slowly convergent or even slightly unsta- 
ble totter mode may well tolerate a stronger midstride 
jostle than a machine with better totter stability. Thus 
a practical biped designer might be willing to accept a 
requirement for "weak" active stabilization of the 
steady cycle in return for better resistance to knock- 
downs. 

Fig. 8. Step period and slope mass center and inertia are 
for passive walking of bipeds held constant while R is 
having various foot sizes. varied. The slope (and so the 
The step angle is specified to resistance) is zero with R = 
be 0.3, which is typical inI. as for the synthetic wheel. 
human walking, and the 

m, I, or g). Quite simply, changing m scales the forces 
but doesn't change the gait. Chan g 2 scales the step r period by l/d, and the speed by l Changing g scales 
both period and speed by 4. A noteworthy conse- 
quence was experienced by the lunar astronauts in 
l/6th Earth's gravity. Apparently they had a sensation 
of being in slow motion, and indeed walking could 
achieve only 40% of normal d. Rather than accept 
that, they hopped instead (McMahon 1984). 

10.2. Foot Radius 
10. Effect of Parameter Variations 

We now embark on a brief survey of the effect of de- 
sign variables on walking performance. Our purpose is 
twofold: first, to outline the designer's options, and 
second, to illustrate that walking cycles can be found 
over a wide range of variations on the 2D biped theme. 

10.1. Scale 

Before discussing variation of dimensionless parame- 
ters we should note the effect of scale (i.e., changing 

Figure 8 shows an example of the effect of foot radius 
on steady walking. Most notable is the improvement 
in efficiency as the foot changes from a point to a 
section of wheel. Thus with R = 0 we have a biped 
that, like the rimless wheel, needs a relatively steep 
slope, and with R = 1 we have a synthetic wheel rolling 
on the level. 

Figure 9 shows the locus of S-to-S eigenvalues as a 
function of R. The speed eigenvalue increases from 
z = 0.2 with a point foot to z = 1 (i.e., neutral speed 
stability) with a wheel; this is associated with the im- 
provement in efficiency and is consistent with (12). 
Meanwhile the totter and swing modes are well sepa- 
rated with a point foot, but coupled with mid-sized 

The International Journal of Robotics Research 



Fig. 9. Locus of the three the unit circle ifthe feet are 
step-to-step eigenvalues for very small; this indicates 
the walking cycles plotted in that passive walking is un- 
Fig. 8, with foot radius as stable. However, with other 
the parameter. In this exam- choices for c and rmr, walk- 
pie one eigenvalue (for the ing is stable even on point 
"totter mode") lies outside feet. 

Fig. 10. Variation of the 
walking cycle with c, the 
height of the leg's mass 
center. \z\ is the magnitude of 
the totter mode eigenvalue; 
here it indicates that passive 
walking is unstable for 
bipeds with c too low or too 
high. (The kinks appear 

complex plane, as in Fig. 9.) 
The high-c problem arises 
because of excessively long 
swing-pendulum periods, 
while the low-c problem is 
caused by inefficient support 
transfer. The latter can be 
remedied by adding mass at 
the hip. In this example, mH 

feet so that the two eigenvalues form a complex pair. 
Then with larger foot radius they separate again, and 
R = 1 puts the totter eigenvalue near z = - 1. [A true 
synthetic wheel has z = - 0.2 (43), but its hip mass is 
much larger than specified in this example.] The big- 
footed bipeds in this example thus have relatively 
weak totter stability, but it still turns out that their 
resistance to jostling is better than with small feet. 

We should mention that the semicircular foot is a 
mathematical convenience rather than a physical ne- 
cessity; doubtless other arrangements are feasible. For 
example, a flat foot could be used on which support 
would transfer impulsively from heel to toe at mid- 
stride. Walking would be less efficient than with a 
curved foot, but apart from that we would expect a 
similar passive gait. For comparison with a circular 
foot, the key feature is translation of the support point 
during stance, which is 2 q,R.  Thus a human, with 
heel-to-ball distance of = 0.2 1 and a typical stride 
angle of q, = 0.3, has an "equivalent radius" of =O.3. 

10.3. Leg Inertia and Height of t h e ~ a s s  Center 

Leg radius of gyration and center-of-mass height have 
similar effects, as illustrated in Figures 10 and 1 1. 
Increasing rW, or raising c with rW held constant, 
lengths the pendulum period and so slows the cadence 
(15). If the mass center is too close to the hip, then the 

where z branches into the is zero. 

swing leg can't come forward in time to break the fall 
of the stance leg, and the walking cycle vanishes. On 
the other hand, lowering rw or c causes a different 
problem: support transfer becomes inefficient accord- 
ing to (5). [Note that % in (5) is the angle subtended 
by the feet, at the overall mass center.] If the efficiency 
is too poor, then the cycle becomes unstable or even 
vanishes entirely, as in the example of Figure 1 1. 
However, the situation can be retrieved by adding 
mass at the hip, which raises the overall mass center 
and thus improves efficiency. A human has about 70% 
of body mass above the hip; this is sufficient to make 
support transfer efficient regardless of leg properties. 

10.4. Hip Mass 

Figure 12 illustrates the effect of adding point mass at 
the hip. Efficiency improves, and it turns out that 
jostling resistance improves as well. Still more advan- 
tage can be gained if the mass is in the form of an 
extended torso. For example, the torso can be held in 
a backward recline, reacting against the stance leg; the 
reaction provides a braking torque that allows a steep 
descent. Analysis of this scheme and other roles of the 
torso is reported by McGeer (1988). 



Fig. 11. Leg inertia and c Fig. 12. Our test biped is 
have similar effects on the just a pair of legs, but passive 
walking cycle, as indicated walking also works while 
by comparing this plot with carrying a "payload" at the 
Fig. 10. The effects here are hip. Actuallv the added mass 
a60 mediatedby the swing improves efficiency o f  the 
pendulum frequency and by walking cycle. 
the efficiency of support 
transfer. 
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10.5. Hip Damping and Mass Offset 

The last few examples have indicated that passive 
walking is robust with respect to parametric variations. 
However, it is not universally tolerant, and the hip 
joint is particularly sensitive. As shown in Figure 13, 
introducing only a small amount of friction makes the 
cyclic solution vanish. Consequently, in our test biped 
we use ball bearings on the hip axle, and these keep 
the friction acceptably low. However, alternative me- 

Fig. 13. Passive walking is 
forgiving of most parameter 
variations, but even a small 
amount offnetion in the hip 
joint can destroy the cycle. 
However, walking can be 
restored by moving the legs' 
mass centers backward from 

the leg axes (w < 0, Fig. 181 
as long as the friction is only 
moderate. For this example 
we have wed a viscous 
model for friction, which is 
measured by the damping 
ratio for pendulum oscilla- 
tions of the swing leg. 

0 0.0s 0.1 0.13 
SUMS MHriHC IOTIO 

chanical arrangements, for instance those made by 
bone and cartilage, may not be quite as good. Fortu- 
nately, compensation can be made by lateral offset (w) 
of the legs' mass centers from the axes. Thus, as Figure 
13 indicates, if the joint has significant friction, then 
the designer should shift the leg mass backward from 
the line between hip and foot center of curvature (i.e., 
w < 0). 

Actually w is a powerful remedy for a variety of 
similar ailments (McGeer 1988; 1989). But like any 
powerful medicine it must be treated with some care. 
Figure 14 shows that for any given set of machine 

eters, w must be set within narrow limits if pas- 
sive walking is to work. Experiments bring the point 
home; changing w by only a few millimeters has a 
very noticeable effect on the feel of manual starting. 
The power of w makes it attractive not only as a design 
parameter but also as a dynamically adjusfable control 
variable; it might be used, for example, to modulate 
the gait from one step to the next. 

10.6. Leg Mismatch 

To close this section on parametric effects, we present 
a curiosity that may have some implication for the 
study of gait pathology. Since our biped's legs could 
not be matched precisely, we were concerned about the 1 

sensitivity to differences between them. By way of 
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Fig. 14. Experiments con- fact sustained for the full 
firm the powerful effect of length of three six-foot tables 
mass offset w on the walking are calculated to be unstable. 
cycle. (w was adjusted by Taking Tc to be zero gives a 
shifting the feet relative to better match to the observed 
the legs.) With each setting stability, but leaves relatively 
we did a series of trials as in large discrepancies in a<i and 
Fig. 7. q and Â¥t are well T ~ .  We suspect that our 
matched by calcdations i f  support transfer model is 
Tc is taken to be - 0.007, imprecise, but in any case 
but then walks that were in the sensitivity to w is clear. 

investigation we calculated walking cycles with legs of 
different mass. The steady-walking solution (33) 
doesn't apply with mismatched legs, so instead we did 
serial calculations with S-to-S equations (27) and (28) 
until a steady gait emerged. With a small mismatch, 
the cycle repeats in two steps (as would be expected). 
But with larger mismatch, the stable cycle repeats in 
four steps, as plotted in Figure 15. Here, then, is an 
example of frequency jumping, which is not uncom- 
mon in nonlinear systems. 

11. Fully Passive Walking 

We mentioned earlier that our 2D, stiff-legged model 
allows simple analytical treatment of walking, but it 
forces resort to inelegant methods of clearing the swing 
foot. Fully passive foot clearance would be preferable; 
we will discuss two options. 

1 1.1. Rocking 

The toy of Figure 1, and its quadrupedal cousins, clear 
swing feet by lateral rocking. The frontal view shows 

Fig. 15. The stable cycle similar to that of a synthetic 
calcutated for a biped having wheel, but the cycle repeats 
legs with a 10% mass mis- , over four steps rather than 
match. is the mass of the one. (With smaller mismatch 
stance leg. Each step is the cycle repeats in two steps.) 

the key design feature, which is that the feet are a p  
proximately circular in lateral as well as longitudinal 
section, and have approximately coincidental centers 
of curvature. The center of curvature is above the 
center of gravity, which makes lateral rocking a pen- 
dulum oscillation. 

We have analyzed the combination of rocking with 
2D synthetic wheel dynamics, under the approxima- 
tion of zero yaw (Le., that the hip axle remains normal 
to the direction of motion). This is exactly true for 
quadrupedal toys and seems fairly accurate for the 
biped. The rocking frequency must be tuned to the 
swing frequency, such that half a rocking cycle is com- 
pleted in one step. Hence the ratio of swing to rocking 
frequencies, from (1 5), should be 

If this condition is satisfied, then rocking and swinging 
naturally phase-lock at the first support transfer, and 
thereafter walking is non-dissipative. However, if the 
condition is not satisfied, then the phasing must be 
"reset" on each step; this entails an energy loss. If the 
mistuning is too large, then there is no cycle at all. 

An additional problem arises if the feet have non- 
zero lateral separation. Then support transfer bleeds 
energy out of the rocking motion via the rimless-wheel 
mechanism (3). But it turns out that, at least in the 



zero yaw approximation, only a small amount of en- 
ergy can be regained from forward motion (i.e., by 
descending a steeper hill). Hence passive walking can- 
not be sustained unless the foot spacing is quite small. 

These constraints of frequency tuning and lateral 
foot spacing mluce the designer's options, and more- 
over produce a machine that is inevitably rather tippy 
from side to side. Hence rocking is unattractive for a 
practical biped, but it remains a wonderful device for 
the toy. 

11.2. Knees 

Of course we humans rock as we walk, but only for 
lateral balance; for foot clearance we rely on knee 
flexion. Mochon and McMahm (1980) demonstrated 
that this motion might well be passive. The key result 
of the study is that if a stance leg and knee- 
jointed swing leg are given initial conditions in an 
appropriate range, then they will shift ballistically from 
start- to end-of-step angles. Recently we have found 
that support transfer can then regenerate the start-of- 
step conditions, thus producing a closed passive cycle. 

A full discussion of passive walking with knees must 
be left for a future report, but here we will review one 
example as shown in Figure 16. The model is still a 
2D biped, but with pin-jointed knees and mechanical 
stops, as in the human knee, to prevent hyperexten- 
sion. As in ballistic walking, the stance knee is specified 
to remain locked against the stop throughout the step, 
while the swing knee is initially free and flexes pas- 
sively as plotted in Figure 16. Then it re-extends and 
hits the stop. (As always we treat the collision as im- 
pulsive and inelastic.) Thereafter both knees remain 
locked until foot strike. 

Parametric studies of this knee-jointed model have 
produced these results: 

1. Passive cycles are found over parameter ranges 
more limited than those in stiff-legged walking, 
but still quite broad. 

2. With proper choice of parameters, naturally 
arising torques keep the stance and swing knees 
locked through the appropriate phases of the 
cycle. 

Fig. 16. Our test biped has 
rigid legs, but passive walk- 
ing also works with knees. 
The parameters here are 
quoted according to the con- 
vention of Fig. 18 and are 
similar to those of a human 
(including ma = 0.676). 
(A) Flexure of the swing 
knee takes care of foot clear- 
ance (although just barely). 
Meanwhile a naturally gen- 
erated torque holds the 

stance knee locked agawt a 
mechanical stop. (eK is the 
angle from the locked knee to 
the foot's center ofcurva- 
ture.) (B) The motion is 
obviously similar to human 
walking, but it is slower; the 
period of this cycle would be 
= 0.85 sfor a biped with I'm 
leg length. There is also a 
faster cycle, but we prefer the 
slower because it turns out to 
be stable and more efficient. 

3 . 6  
0 0.5 1 1.5 2 2.3 

Dlimisimiss Tin tm 
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A passive cycle with knee joints is possible 
only if the foot is displaced forward relative to 
the leg, as shown in Figure 16. The implication 
is that humans might have difficulty if their 
feet didn't stick out in front of their legs. 
A large fraction ofthe swing leg's kinetic en- 
ergy is dissipated at knee lock, and therefore 
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Icnee-jointed walking is less efficient than stiff- 
legged walking. To keep the penalty small, the 
swing leg's energy must be small compared 
with the total enemy of motion. This implies 
that most of the mass should be above the hip. 

On the last point it might be argued that foot clear- 
ance with knees seems inefficient, whereas active re- 
traction can in principle consume no enemy at all. 
However, in practice economical food retraction may 
be hard to achieve. Our test biped has a "fundamen- 
tat" dissipation {from Figure 6) of -0.2 J per step, 
while the tiny motors that lift its feet waste "3 J per 
step! Some goes into friction in the leadscrews, and 
some into switching transistors. At this rate, passive 
knee flexion is a bargain, and moreover a small active 
intervention at the right time may reduce the knee- 
lockingloss substantially. 

12. Action on Passive Walking 

Having surveyed the physics of passive walking, our 
next objective must be exploitation of the effect to 
make machines with some practical capability. We see 
developments proceeding as follows: 

1. "Powered" passive walking on shallow up- 
and downhill slopes in 2D 

2. Step-to-step gait modulation over unevenly- 
spaced footholds in 2D 

3. Walking on steep slopes, stairs, and 2D rough 
terrain 

4. Lateral balance and steering 

We are presently building a machine to test the first 
two developments. It will be similar to the first biped, 
but with 1-m leg length and a tomo. Power will be 
provided by pushing with the trailing leg as it leaves 
the ground. (This is analogous to plantar flexion in 
humans, but the implementation is quite different.) 
Gait modulation is to be done by applying torques 
between the legs and torso. McGeer (1988) presents 
the analytical basis for this machine, as well as alterna- 
tive options for applying power and control. S-to-S 
treatment is a key principle; thus control laws look at 
the state of the machine only once per step. This ap- 

proach proves attractively simple, both mathematically 
and mechanically. 

We have yet to proceed to the next problem of 
walking with steep changes in elevation. One promis- 
ing strategy is to seek passive forelaft leg swinging that 
can proceed in synchrony with actively cycled varia- 
tion in leg length. This approach works on shallow 
slopes, with the length adjustments serving as a source 
of energy (McGeer 1988). However, further results 
await reformulation of equations of motion (1 7) and 
(18), since the linearization used here is invalid on 
steep slopes. 

Finally, we expect that lateral balance will have to 
be done actively. One possibility is to control as when 
standing still (i.e., by leaning in appropriate direc- 
tions). Another scheme more in line with the "S-to-S 
principle" is once-per-step adjustment of lateral foot 
placement; this has been analyzed by Townsend 
(1985). Turning, at least at low rates, can be done by 
the same mechanism. 

Much of this discussion and development strategy 
can also apply to running. Running is of practical 
interest because walking has a fundamental speed limit 
of order Â¥fs at higher speeds centrifugal effect would 
lift the stance leg off the ground. It turns out that by 
adding a torsional spring at the hip and translational 
springs in each leg, the model of Figure 2 becomes a 
passive runner, with the same features of simplicity, 
efficiency, and ease of control that make passive walk- 
ing attractive. Passive running has been described by 
McGeer (19891, and Thompson and Raibert (1989) 
have independently found similar behavior with both 
monoped and biped models. Investigation thus far has 
been limited to shallow slopes; as in walking, we have 
yet to do the steep-terrain and 3D investigations. 

We hope that'passive models will provide much 
insight into the dynamics and control of legged ma- 
chines, but ultimately we must admit that this is only 
the easy part of the design problem. Legged locomo- 
tion is not competitive on smooth terrain, therefore 
practical machines must be capable of finding foot- 
holds and planning paths through difficult surround- 
ings. Yet contemporary robots are hard pressed even to 
pick their way along paved highways and across flat 
floors! Thus it appears that the demands of a legged 
automaton must stimulate research for some years to 
come. 

McGeer 



Fig. 1 7. Notation for an 
N-link, two-dimensional 
open chain with rolling sup 
port. 

N-LINK 2-D CHAIN 
WITH ROLLING SUPPORT 

Appendix A. Dynamics of an N-Link Cham 

Although we are interested in a machine with only 
two rigid links, there is little extra effort involved in 
generalizing to N links, and the more general result is 
needed for a knee-jointed machine like that in Figure 
16. The dynamics can be expressed in N second-order 
equations of the form 

where H. is the angular momentum and T,, the torque 
about the nth joint. In the case of n = 1, the "joint" is 
the instantaneous point of contact. Simplification will 
be afforded by subtracting equations for successive 
joints, so that (45) becomes 

The torque is produced by gravity, and amounts to 

Figures 17 and 18 provide the necessary notation. Then 

where grin is the vector from joint n to the mass center 
of link n, and /Ã the vector from joint n to joint n + 1. 
For link 1 

4 and & are unit vectors fixed in link 1, as illustrated 
by Figure 18. 

For walking analysis we linearize the torque for 
small Aff, y. Thus from (18) and (19) we have 

where (KAOw), is the value of (48) at A0 = 0, y = 0; 
(Kb)- is the derivative of (48) with respect to y, evalu- 
ated at A& = 0, y = 0; and Knm is the derivative of (48) 
with respect to Qm, evaluated at A& = 0, y = 0. For a 
two-link chain with a point hip mass % the results 
are as follows: 

Note that according to the convention of Figure 17, a 
biped with matched legs has 

m p m , ,  - 

c c  l l  - cn 

w,=-w,.  
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Fig. 18. Notation for individ- 
ual links of the chain. 

Now to work on the angular momentum terms in the 
equations of motion (46). Hn is 

Therefore 

Equation (58) should be recognized as the angular 
momentum about a stationary point that is instanta- 
neously coincident with joint n. Therefore, for the 
equations of motion (46) only Sl, and are differen- 
tiated: 

The kinematics of the chain are such that 

where the 32. vector is directed into the page of Figure 
17. This is differentiated for (60) as follows: 

The last term comes from differentiating F, (491, and 
accounts for rolling of the contact point. Substituting 
into (60) leaves (after ntial but straightforward 
simplification) 



In matrix terms, as in (17), this can be expressed as For our machine, in matrix form, this is 

In stiff-leffied walking the rotational speeds arc small, 
so the Q2 term (centrifugal effect) can be neglected. 
(This approximation, however, is not valid for knee- 
jointed walking as in Figure 16). M is the inertia ma- 
trix; for a two-link biped 

Appendix B. Step-to-Step Transition Matrix 

The S-to-S transition (36) has been derived by 
McGeer (1988); here we present only the final formula. 

In equation of motion (1 7), M is linearized, thus Mn 
is found by evaluating (65) with A0 = 0. However, for 
support transfer M+ (24) is evaluated with Ai? = h (22). 

Support transfer also involves the pre-transfer inertia 
matrix M-, which is calculated as follows. Equation 
(59) still holds for the angular momentum, but (61) is 
no longer correct for the velocity, since prior to 
transfer the chain is rolling about link N rather than 
link 1. Thus recasting (6 1) gives 

where 

-- aDw Ma, 3i 

Inserting this into (59) and collecting terms leaves 

With the torque given by (1 8), the time derivative of 
Dis 
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Appendix C. Explanation of Symbols 

Roman 
b derivative of static equilibrium w.r.t. slop 

Greek 

c Figs. 2, 18 
D start- to end-of-step transition matrix (20) 

DM, s u b m a ~ m  of start- to 
Dm, end-of-step transition matrix 
Dm, (271, (28) 

F index exchanger (25) 
g gravitational acceleration, Fig. 2 

H angular momentum 
I 2 X 2 identity matrix 
K stance stiffness matrix (54) 
Z leg length, Figs. 2, 18 
I joint-to-joint vector (50), Fig. 18 

M inertia matrix (65), (68) 
Mn M for A8 = 0 (1 7), (65) 
m mass, Figs. 2,17 
mH hip mass fraction 

R foot radius. Fig. 2 
F joint-to-mass center vector (49, Fig. 17 

re radius of gyration 
S step-to-step transition matrix (36), (69) 
T torque 
V linear velocity 
w offset from leg axis to leg mass center (Fig. 2) 

2, f unit vectors, ~igs.  17, 1 8 
z eigenvalue of step-to-step equations (36) 

ie (19), (53) a leg angle at support transfer (22), Rgs. 4, 5 
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