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ABSTRACT

Cloud intelligence applications often perform iterative computa-
tions (e.g., PageRank) on constantly changing data sets (e.g., We-
b graph). While previous studies extend MapReduce for efficient
iterative computations, it is too expensive to perform an entirely
new large-scale MapReduce iterative job to timely accommodate
new changes to the underlying data sets. In this paper, we pro-
pose i?MapReduce to support incremental iterative computation.
We observe that in many cases, the changes impact only a very s-
mall fraction of the data sets, and the newly iteratively converged
state is quite close to the previously converged state. i2MapReduce
exploits this observation to save re-computation by starting from
the previously converged state, and by performing incremental up-
dates on the changing data. Our preliminary result is quite promis-
ing. i2MapReduce sees significant performance improvement over
re-computing iterative jobs in MapReduce.
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1. INTRODUCTION

Iterative computations are widely used in cloud intelligence ap-
plications, such as the well-known PageRank [4] algorithm in we-
b search engines, gradient descent [1] algorithm for optimization,
and many other iterative algorithms for applications including rec-
ommender systems [2] and link prediction [10]. In the era of “big
data”, iterative computations often process a large amount of da-
ta and take hours or even days to complete. As new data (e.g.,
changes to web graph) are being constantly collected, the previ-
ous iterative computation results (e.g., PageRank scores) become
stale and obsolete over time. It is thus desirable to periodically re-
fresh the iterative computation. The shorter the refresh period is,
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the more timely the results can reflect the fresh data, and thereby
the better the user experience is. For example, in this way, new
changes in the web graph can be quickly reflected in the computed
PageRank and hence web search results. Newly established friend-
ship on a social network can be immediately utilized for behavior
targeting and recommendation. Unfortunately, it is too expensive
to re-compute the entire iterative job from scratch on the up-to-date
data set. The ability to perform incremental processing on mutating
data sets is very important, which is the focus of this paper.

Today, MapReduce [6] is the most prominent platform for big
data analysis in the cloud. Several previous studies extend MapRe-
duce for efficient iterative computation [5, 7, 20]. However, our
preliminary result shows that starting a new iterative computation
from scratch is still extremely expensive. McSherry et al. proposed
Naiad [14] for incremental iterative computations based on differ-
ential dataflow, which is a new computation model that is drastical-
ly different from the MapReduce programming model. To the best
of our knowledge, for the most popular platform, MapReduce, no
solution has so far been demonstrated to be able to efficiently han-
dle incremental data changes for complex iterative computations.
A new MapReduce-compatible model that supports incremental it-
erative computation is desired.

In this paper, we propose i2MapReduce that extends the MapRe-
duce platform to support incremental iterative computations. We
introduce a Map-Reduce Bipartite Graph (MRBGraph) model to
represent iterative and incremental computations, which contains a
loop between mappers and reducers. A converged iterative compu-
tation means that the MRBGraph state is stable. We observe that
in many cases, only a very small fraction of the underlying data
set has changed, and the newly converged state is quite close to the
previously converged state. Based on this observation, we present
the design and implementation of iMapReduce to efficiently u-
tilize the converged MRBGraph state to perform incremental up-
dates. An existing MapReduce application needs only slight code
modification to take advantage of i°MapReduce.

The rest of the paper is structured as follows. Section 2 pro-
vides the necessary background. Section 3 describes our incremen-
tal processing approach on MRBGraph. We propose iMapReduce
in Section 4. Section 5 reviews the related work in the literature.
Finally, Section 6 concludes and outlines the future work.

2. PRELIMINARIES

Iterative Computation. An iterative algorithm typically performs
the same computation on a data set in every iteration, generating a
sequence of improving results. The computation of an iteration can
be represented by an update function F':

o' = F(" ! D),



where D is the input data set, and v is the result set being com-
puted. After initializing v with a certain v°, the iterative algorithm
computes an improved v* from v*~1 and D in the k-th iteration.
This process continues until it converges to a fixed point v*. In
practice, this means that the difference between the result sets of
two consecutive iterations is small enough. Then the iterative com-
putation will return the converged result v*. Note that while v is
updated in every iteration, D is static in the computation. We refer
to D as the static structure data, and v as the dynamic state data.
For example, the well-known PageRank algorithm [4] iteratively
computes the PageRank vector R that contains the ranking scores
of all pages in a web graph, using the following update function:
R® =dwR" Y 4 (1-d)E,
where W is a column-normalized matrix that represents the web
linkage graph, d is a damping factor, and E is a size-|V| vector
denoting each page’s preference. The PageRank score vector R is
updated iteratively, while the web linkage graph matrix W stays the
same across iterations. R is state data and W is structure data. The
typical convergence condition for PageRank is that the manhattan
distance between R® and R~V is less than a threshold. Then,
R™ is returned as the final result.

Iterative Computation in MapReduce. Using vanilla MapRe-
duce, a user has to submit a series of MapReduce jobs for an itera-
tive algorithm. An iteration often requires at least one MapReduce
job. The map function processes the state data v* ! as well as the
structure data D, while the reduce function combines the interme-
diate data to produce the updated state data v*, which will be stored
in the underlying distributed file system to be used as the input to
the next job that implements the next iteration. Since every job in-
curs significant overhead for job start-up and distributed file access,
MapReduce is known to poorly support iterative computation.

Previous studies [7, 5, 20] have extended MapReduce for effi-
cient iterative computation. The improvements mainly lie in two
aspects: (i) building an internal data flow within a single MapRe-
duce job by sending the reduce output directly to the map; and (ii)
caching iteration-invariant data (i.e., structure data D). The for-
mer reduces job start-up costs, while the latter avoids the cost of
re-reading D in every iteration.

3. INCREMENTAL ITERATIVE PROCESS-
ING ON MRBGRAPH

The structure data (e.g., the web graph) in the iterative computa-
tion often changes over time. Suppose D becomes D’ = D+ AD.
We would like to update the result v* to reflect this change period-
ically. The iterative update function becomes:

o" = F(u*', D+ AD).
In many cases, |AD| < |D|, i.e. the structure data is only slightly
changed. The converged fixed point v*' is often also only slightly
different from the previous fixed point v*. Therefore, it is a good
idea to start the incremental iterative computation on the changed
structure data from the previously converged state data v™ rather
than from an arbitrary initial point v°.

In the following, we introduce an MRBGraph model to represent
iterative computations on MapReduce, and describe our ideas to
realize incremental iterative processing using MRBGraph.

Map-Reduce Bipartite Graph. In order to implement the internal
loop in MapReduce, reducers’ outputs are sent back to the corre-
lated mappers. We model this behavior as a Map-Reduce Bipartite
Graph (MRBGraph) as shown in Figure 1a. A mapper operates on
a state data record v¥(¢) and a structure data record D (7). A re-
ducer operates on the intermediate data and produces the updated
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Figure 1: Map-Reduce bipartite graph.

state data records v*1 (i), which are sent back to the correlated
mappers or replicated to several mappers for the next iteration.

In an MRBGraph, there are two types of vertices, the mapper
vertices and the reducer vertices. The edges from mappers to re-
ducers (MR-Edge) represent the shuffled intermediate data, while
the edges from reducers to mappers (RM-Edge) represent the iter-
ated state data. The iterative computation continues to refine the
MRBGraph state iteratively, including the MR-Edge state and the
RM-Edge state. When the MapReduce iterative algorithm con-
verges, the MRBGraph state becomes stable. We will exploit the
converged MRBGraph state to perform incremental processing.

Incremental Iterative Processing on MRBGraph. As discussed
at the beginning of this section, starting from the previously con-
verged state data v™ will accelerate the incremental iterative com-
putation. In an MRBGraph, v™ is the converged RM-Edge state.

In the first iteration starting from v™*, since the input structure
data set D is only slightly changed with A D, we perform the nec-
essary computation only for the changes. AD may add new data,
remove data, and/or modify data in D. Therefore, we only perform
mappers for these changes, which will affect the MR-Edge state.
As illustrated in Figure 1b, the highlighted D(0) and D(2) are af-
fected by AD. Therefore, we only need to perform mapperO and
mapper2. Then, the reducers on the receiving end of the changed
MR-Edges (e.g., reducer0 in Figure 1b) will be performed. The af-
fected reducers may combine previously converged MR-Edge state
from the un-affected MR-Edges (e.g., from mapperl and mapper3
in Figure 1b) with the updated MR-Edge state. The first iteration
completes when the output of the reducers are sent back to the cor-
related mappers. In the next iteration, a portion of the dynamic
state data on RM-Edges may have changed from the previous it-
eration. Consequently, the mappers corresponding to the changed
RM-Edges need to be performed. As the iteration continues, the
number of the affected RM-Edges and MR-Edges will increase.
Finally, a new converged state v*’ is reached.

Intuitively, the process is like throwing a few pebbles (A D) into
a lake of still water (stable MRBGraph). The pebbles first affec-
t the lake surface where they drop (correlated MR-Edges). Then
they create ripples, which gradually propagate and affect more lake
surface (more RM-Edges and MR-Edges). After a short while, the
ripples are absorbed by the lake (in a new stable MRBGraph).

The above idea aims to reduce uncessary computation as much
as possible. A map function is performed only when its input state
data or structure data are different from the past iteration. A reduce
function is performed only when the state of an incoming MR-Edge
changes. The challenge is to efficiently preserve and utilize MRB-
Graph state to realize this idea, while minimizing modifications to
the MapReduce programming model to reduce users’ programming
efforts. We present the design of i?MapReduce in the following.



4. iMAPREDUCE

We describe our incremental iterative processing framework based
on Hadoop MapReduce.

MapReduce Extension for Building MRBGraph. In the vanilla
MapReduce, the life cycle of a map/reduce task ends when all its
input data has been processed. To build the loop in the MRBGraph,
iZMapReduce makes map/reduce tasks persistent during the itera-
tive computation. The system sends reduce tasks’ output back to
the correlated map tasks. When a map/reduce task consumes all
its currently assigned data, it goes into an idle waiting state until it
is waken up to process new data in subsequent iterations. In this
way, the constructed MRBGraph is capable of performing iterative
computation in even a single MapReduce job.

Moreover, the input arguments of a vanilla map function is a
key-value pair of (MK, MV'). For iterative computation, MV
contains both the state data (v) and the structure data (D). However,
the two types of data have very different characteristics. Therefore,
iZMapReduce distinguishes them by splitting the value argument
into two. Now, a map function takes (M K, DV, SV'), where DV
is the dynamic state value and SV is the structure value for the key
M K. Users are required to implement the new map interface.

MRBGraph State Preserving. In order to support incremental
processing, we first preserve the converged MRBGraph state, in-
cluding both the RM-Edge state and the MR-Edge state. The RM-
Edge state is the final reduce output, which is sent back and record-
ed at the correlated map tasks. i*“MapReduce records (M K, DV),
where DV is the converged dynamic state data and M K is the
mapper key.

The MR-Edge state is the intermediate results communicated
from map tasks to reduce tasks and is recorded at reduce tasks.
The intermediate results consist of key-value pairs (RK, RV)s,
where RK is the group-by key and determines the destination re-
ducer. Hadoop stores the intermediate results using an IFile for-
mat. In addition, MR-Edge state also requires the source mapper.
Therefore, i?MapReduce extends the Hadoop IFile format to record
(RK, MK, RV), where M K is the source mapper key.
Incremental Processing. After a period of time, part of the input
structure data D is changed. i?MapReduce performs incremental
processing starting from the converged state data.

MK, SV, - delete RK, MK, -
MK;  SVs update RKi MK; ™
MKs SV5' '+ RK;  MK; RVs'
MK; SV, '+ add RK; MK; RVy
RK, MK,
RK, MK; RV,
Delta structure ces

data input
Extended IFile
Figure 2: An examples input file and an example extended IFile in
incremental processing.

In the first iteration, i’MapReduce processes only the changed
structure data AD rather than the whole updated structure data
D’. As shown in Figure 2, the changes are specified with a delta
structure data input. ‘—’ denotes the deletion of a (M K, SV') and
‘+’ denotes a new (MK, SV). An update to an existing struc-
ture record can be specified with a (M K, SV,’—’) followed by a
(MK,SV,+’). For each MK in the delta structure data input,
i”MapReduce retrieves the corresponding (M K, DV') from the p-
reserved converged RM-Edge state, and calls the map function.
The map output fora (M K, SV,”—") will be the deleted MR-Edges
(in the form of (RK, M K,’—")), and that of a (M K, SV,”+) will

be the updated/new MR-Edges (in the form of (RK, M K, RV')).

After data shuffling, a reduce task receives the intermediate da-
ta that reflects insertion/deletion/update of MR-Edges, i.e., a set of
(RK, MK, —")s and (RK, MK, RV)s. i*MapReduce performs
reduce computation only for the RKs that appear in this set. Note
that for the other RKs, their MR-Edge state stays the same and
therefore the computed reduce output would be the same as the
previously preserved RM-Edge state. For a RK that appears, the
system retrieves and merges the preserved MR-Edges with the re-
ceived intermediate data as follows: i) the received deleted MR-
Edges are removed from the preserved MR-Edge set; ii) the re-
ceived new MR-Edges are added to the preserved MR-Edge set;
and iii) the received updated MR-Edges are used to replace the cor-
responding preserved MR-Edges. Then i*MapReduce updates the
preserved state with the merged MR-Edges, forms the intermediate
value list, and calls the reduce function. The reduce outputs, i.e.,
the changed RM-Edge state, will be sent back to correlated map
tasks.

Subsequent iterations work similarly as the first iteration. The
only difference is that i’MapReduce performs map computation
for M K that appears not only in the delta structure data input but
also in the changed RM-Edge state that is sent from reduce tasks.

Fine-grained Convergence Detection. Normally, convergence is
detected by computing the difference between the subsequent re-
duce outputs, e.g., when the Manhattan distance between R*) and
R*=Y ip PageRank is below a global threshold. However, portion-
s of the MRBGraph may converge faster. We propose an optimiza-
tion that allows fine-grained convergence detection per RM-Edge.
Users can specify a fine-grained filter threshold. If the difference
of the RM-Edge state between two iterations is smaller than the fil-
ter threshold, the RM-Edge is considered converged. For example,
in PageRank, the filter threshold can be set as the global threshold
divided by the number of pages. If the Mahattan distance between
two subsequent PageRank scores of a page is smaller than the filter
threshold, we consider the PageRank score for the page has con-
verged. The converged RM-Edge can be excluded from the next
iteration’s computation'.
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Figure 3: Incremental PageRank performance of i*MapReduce and
MapReduce both initialized with the previously converged state.

Preliminary Results. We have implemented the basic functional-
ities of i’MapReduce by extending Hadoop. Figure 3 shows pre-
liminary results in the context of the PageRank application. The
X-axis varies the number of nodes in web graphs. We generate
synthetic web graphs with the node in-degrees following the power-
law distribution. After PageRank converges, we randomly change
10 thousand edges in the synthetic web graphs. The Y-axis report-
s the performance of incremental processing on a 20-node cluster.
We compare i?MapReduce with MapReduce recomputation that is

"Note that as computation goes on, it is possible that a previously converged
RM-Edge sees larger changes than the filter threshold. When this occurs,
the RM-Edge state will be sent to mappers again.



also initialized with the previously converged state. We see that
i2MapReduce outperforms MapReduce recomputation by up to a
5X speedup. This shows that iMapReduce can effectively reduce
unnecessary computation to speed up incremental processing.

S. RELATED WORK

Iterative Processing. A series of distributed frameworks have re-
cently emerged for large-scale iterative computation in the cloud [17,
12, 13, 15, 8, 18, 19]. We discuss the frameworks that improve
MapReduce. HalL.oop [5], a modified version of Hadoop, improves
the efficiency of iterative computations by making the task sched-
uler loop-aware and by employing caching mechanisms. Twister [7]
employs a lightweight iterative MapReduce runtime system by log-

ically constructing a reduce-to-map loop. Our previous work, iMapRe-

duce [20], supports iterative processing by directly passing the re-
duce outputs to map and by distinguishing variant state data from
the static data. i?MapReduce builds upon iMapReduce to further
support incremental iterative processing.

One-time Incremental Processing. Several recent studies propose
techniques to support efficient incremental processing on one-time
computation in the cloud. Stateful Bulk Processing [11] was pro-
posed to address the need for stateful dataflow programs. It pro-
vides a flexible, groupwise processing operator that takes state as an
explicit input to support incremental analysis. Incoop [3] is a gener-
ic MapReduce framework for incremental computations. It detects
changes to the input and automatically updates the output by em-
ploying an efficient, fine-grained result re-use mechanism. IncM-
R [16] supports MapReduce incremental processing by combining
the old state with new data. Map tasks are created according to new
splits instead of entire splits while reduce tasks fetch their inputs
including the state and the intermediate results of new map tasks.
[9] recomputes MapReduce results in an incremental fashion by
adapting view maintenance techniques, which provides a general
solution for the incremental maintenance of MapReduce programs
that compute self-maintainable aggregates. Rather than one-time
computation, i2MapReduce addresses the challenge of supporting
incremental processing for iterative computation.

Incremental Iterative Processing. Naiad [14] is recently pro-
posed to support incremental iterative computations. It is based
on a new model called differential computation, which extends tra-
ditional incremental computation to allow arbitrarily nested itera-
tion. Naiad is designed as a dataflow system, while we extend the
popular MapReduce model for incremental iterative computation.
Existing MapReduce programs can be slightly changed to run on
i2MapReduce framework for incremental processing.

6. CONCLUSIONS AND OUTLOOK

In this paper, we described i?MapReduce, a MapReduce-based
framework for incremental iterative computations in the cloud. We
are currently fine tuning the implementation and investigating sev-
eral optimization techniques to further improve the performance.
First, the MRBGraph state is saved in disk files. Query and up-
date of MRBGraph state will result in large amount of disk I/Os,
which can become performance bottleneck of the system. We are
working on an efficient index structure for the MRBGraph state to
improve the I/O performance. Second, our current implementation
considers only one-to-one mapping between the state records and
the structure records (i.e., each mapper operates on a state record
and a structure record). There exist other types of mapping rela-
tionships. For example, In the K-means clustering algorithm, all
the structure records (e.g., points in K-means) are correlated to all
the state records (e.g., centroids in K-means). We are extending

iZMapReduce to support more complex state-to-structure relation-
ships. Last but not least, different iterative applications have dif-
ferent CPU requirements and will result in different I/O costs. A
one-size-fit-all execution plan might not be suitable for all appli-
cations. We are studying cost-aware execution optimization that
intelligently uses the MRBGraph state and selects the optimal exe-
cution strategy based on online cost analysis.
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