
Analysis of the Clustering Properties ofthe Hilbert Space-Filling Curve�Bongki Moon H.V. Jagadish Christos Faloutsos Joel H. SaltzAbstractSeveral schemes for linear mapping of a multidimensional space have been proposed for variousapplications such as access methods for spatio-temporal databases and image compression. In theseapplications, one of the most desired properties from such linear mappings is clustering, which meansthe locality between objects in the multidimensional space being preserved in the linear space. It iswidely believed that the Hilbert space-�lling curve achieves the best clustering [1, 14]. In this paper,we analyze the clustering property of the Hilbert space-�lling curve by deriving closed-form formulasfor the number of clusters in a given query region of an arbitrary shape (e.g., polygons and polyhedra).Both the asymptotic solution for the general case and the exact solution for a special case generalizeprevious work [14]. They agree with the empirical results that the number of clusters depends on thehyper-surface area of the query region and not on its hyper-volume. We also show that the Hilbertcurve achieves better clustering than the z curve. From a practical point of view, the formulas givenin this paper provide a simple measure that can be used to predict the required disk access behaviorsand hence the total access time.Index Terms: locality-preserving linear mapping, range queries, multi-attribute access methods,data clustering, Hilbert curve, space-�lling curves, fractals.1 IntroductionThe design of multidimensional access methods is di�cult compared to one-dimensional cases becausethere is no total ordering that preserves spatial locality. Once a total ordering is found for a given spatial�This work was sponsored in part by National Science Foundation CAREER Award IIS-9876037, and grants IRI-9625428 and DMS-9873442, by the Advanced Research Projects Agency under contract No. DABT63-94-C-0049. It wasalso supported by NSF Cooperative Agreement No. IRI-9411299, and by DARPA/ITO through Order F463, issued byESC/ENS under contract N66001-97-C-851. Additional funding was provided by donations from NEC and Intel. Theauthors assume all responsibility for the contents of the paper.1



or multidimensional database, one can use any one-dimensional access method (e.g., B+-tree), whichmay yield good performance for multidimensional queries. An interesting application of the orderingarises in a multidimensional indexing technique proposed by Orenstein [19]. The idea is to develop asingle numeric index on a one-dimensional space for each point in a multidimensional space, such thatfor any given object, the range of indices, from the smallest index to the largest, includes few pointsnot in the object itself.Consider a linear traversal or a typical range query for a database where record signatures are mappedwith multi-attribute hashing [24] to buckets stored on disk. The linear traversal speci�es the order inwhich the objects are fetched from disk as well as the number of blocks fetched. The number of non-consecutive disk accesses will be determined by the order of blocks fetched. Although the order ofblocks fetched is not explicitly speci�ed in the range query, it is reasonable to assume that the set ofblocks fetched can be rearranged into a number of groups of consecutive blocks by a database server ordisk controller mechanism [25]. Since it is more e�cient to fetch a set of consecutive disk blocks ratherthan a randomly scattered set in order to reduce additional seek time, it is desirable that objects closetogether in a multidimensional attribute space also be close together in the one-dimensional disk space.A good clustering of multidimensional data points on the one-dimensional sequence of disk blocks mayalso reduce the number of disk accesses that are required for a range query.In addition to the applications described above, several other applications also bene�t from a linearmapping that preserves locality:1. In traditional databases, a multi-attribute data space must be mapped into a one-dimensionaldisk space to allow e�cient handling of partial-match queries [22]; in numerical analysis, largemultidimensional arrays [6] have to be stored on disk, which is a linear structure.2. In image compression, a family of methods use a linear mapping to transform an image into a bitstring; subsequently, any standard compression method can be applied [18]. A good clusteringof pixels will result in a fewer number of long runs of similar pixel values, thereby improving thecompression ratio.3. In geographic information systems (GIS), run-encoded forms of image representations are ordering-sensitive, as they are based on representations of the image as sets of runs [1].4. Heuristics in computational geometry problems use a linear mapping. For example, for the trav-eling salesman problem, the cities are linearly ordered and visited accordingly [2].2



5. Locality-preserving mappings are used for bandwidth reduction of digitally sampled signals [4]and for graphics display generation [20].6. In scienti�c parallel processing, locality-preserving linearization techniques are widely used fordynamic unstructured mesh partitioning [17].Sophisticated mapping functions have been proposed in the literature. One based on interleavingbits from the coordinates, which is called z-ordering, was proposed [19]. Its improvement was suggestedby Faloutsos [8], using Gray coding on the interleaved bits. A third method, based on the Hilbertcurve [13], was proposed for secondary key retrieval [11]. In the mathematical context, these threemapping functions are based on di�erent space-�lling curves: the z curve, the Gray-coded curve and theHilbert curve, respectively. Figure 1 illustrates the linear orderings yielded by the space-�lling curvesfor a 4�4 grid.
z curve Gray-coded curve Hilbert curveFigure 1: Illustration of space-�lling curvesIt was shown that under most circumstances, the linear mapping based on the Hilbert space-�llingcurve outperforms the others in preserving locality [14]. In this paper, we provide analytic results of theclustering e�ects of the Hilbert space-�lling curve, focusing on arbitrarily shaped range queries, whichrequire the retrieval of all objects inside a given hyper-rectangle or polyhedron in multidimensionalspace.For purposes of analysis, we assume a multidimensional space with �nite granularity, where eachpoint corresponds to a grid cell. The Hilbert space-�lling curve imposes a linear ordering on the gridcells, assigning a single integer value to each cell. Ideally, it is desirable to have mappings that resultin fewer disk accesses. The number of disk accesses, however, depends on several factors such as thecapacity of the disk pages, the splitting algorithm, the insertion order and so on. Here we use the3



average number of clusters, or continuous runs, of grid points within a subspace representing a queryregion, as the measure of the clustering performance of the Hilbert curve. If each grid point is mappedto one disk block, this measure exactly corresponds to the number of non-consecutive disk accesses,which involve additional seek time. This measure is also highly correlated to the number of disk blocksaccessed, since (with many grid points in a disk block) consecutive points are likely to be in the sameblock, while points across a discontinuity are likely to be in di�erent blocks. This measure is used onlyto render the analysis tractable, and some weaknesses of this measure were discussed in [14].
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(a) (b)Figure 2: Illustration of: (a) two clusters for the z curve, (b) one cluster for the Hilbert curveDe�nition 1.1 Given a d-dimensional query, a cluster is de�ned to be a group of grid points inside thequery that are consecutively connected by a mapping (or a curve).For example, there are two clusters in the z curve (Figure 2(a)) but only one in the Hilbert curve(Figure 2(b)) for the same 2-dimensional rectangular query Sx�Sy . Now, the problem we will investigateis formulated as follows:Given a d-dimensional rectilinear polyhedron representing a query, �nd the average numberof clusters inside the polyhedron for the Hilbert curve.The de�nition of the d-dimensional rectilinear polyhedron is given in Section 3. Note that in thed-dimensional space with �nite granularity, for any d-dimensional object such as spheres, ellipsoids,quadric cones and so on, there exists a corresponding (rectilinear) polyhedron that contains exactlythe same set of grid points inside the given object. Thus, the solution to the problem above will4



cover more general cases concerning any simple connected object of arbitrary shape. The rest of thepaper is organized as follows. Section 2 surveys historical work on space-�lling curves and other relatedanalytic studies. Section 3 presents an asymptotic formula of the average number of clusters for d-dimensional range queries of arbitrary shape. Section 4 derives a closed-form exact formula of theaverage number of clusters in a 2-dimensional space. In Section 5, we provide empirical evidence todemonstrate the correctness of the analytic results for various query shapes. Finally, in Section 6, wediscuss the contributions of this paper and suggest future work.2 Historical Survey and Related WorkG. Peano, in 1890, discovered the existence of a continuous curve which passes through every point of aclosed square [21]. According to Jordan's precise notion (in 1887) of continuous curves, Peano's curveis a continuous mapping of the closed unit interval I = [0; 1] into the closed unit square S = [0; 1]2.Curves of this type have come to be called Peano curves or space-�lling curves [28]. Formally,De�nition 2.1 If a mapping f : I ! En(n � 2) is continuous, and f(I) the image of I under f haspositive Jordan content (area for n = 2 and volume for n = 3), then f(I) is called a space-�lling curve.En denotes an n-dimensional Euclidean space.Although G. Peano discovered the �rst space-�lling curve, it was D. Hilbert in 1891 who was the �rstto recognize a general geometric procedure that allows the construction of an entire class of space-�llingcurves [13]. If the interval I can be mapped continuously onto the square S, then after partitioning Iinto four congruent subintervals and S into four congruent subsquares, each subinterval can be mappedcontinuously onto one of the subsquares. If this is carried on ad in�nitum, I and S are partitioned into22n congruent replicas for n = 1; 2; 3; � � � ;1. Hilbert demonstrated that the subsquares can be arrangedso that the inclusion relationships are preserved, that is, if a square corresponds to an interval, thenits subsquares correspond to the subintervals of that interval. Figure 3 describes how this process isto be carried out for the �rst three steps. It has been shown that the Hilbert curve is a continuous,surjective and nowhere di�erentiable mapping [26]. However, Hilbert gave the space-�lling curve, ina geometric form only, for mapping I into S (i.e., 2-dimensional Euclidean space). The generation ofa 3-dimensional Hilbert curve was described in [14, 26]. A generalization of the Hilbert curve, in ananalytic form, for higher dimensional spaces was given in [5].In this paper, a d-dimensional Euclidean space with �nite granularity is assumed. Thus, we use thek-th order approximation of a d-dimensional Hilbert space-�lling curve (k � 1 and d � 2), which maps5



(a) First step (b) Second step (c) Third stepFigure 3: The �rst three steps of Hilbert space-�lling curvean integer set [0; 2kd � 1] into a d-dimensional integer space [0; 2k � 1]d.Notation 2.1 For k � 1 and d � 2, let Hdk denote the k-th order approximation of a d-dimensionalHilbert space-�lling curve, which maps [0; 2kd � 1] into [0; 2k � 1]d.The drawings of the �rst, second and third steps of the Hilbert curve in Figure 3 correspond to H21, H22and H23, respectively.Jagadish [14] compared the clustering properties of several space-�lling curves by considering only2�2 range queries. Among the z curve (2.625), the Gray-coded curve (2.5) and the Hilbert curve (2), theHilbert curve was the best in minimizing the number of clusters. The numbers within the parenthesesare the average number of clusters for 2�2 range queries. Rong and Faloutsos [23] derived a closed-formexpression of the average number of clusters for the z curve, which gives 2.625 for 2�2 range queries(exactly the same as the result given in [14]) and in general approaches one third of the perimeterof the query rectangle plus two thirds of the side length of the rectangle in the unfavored direction.Jagadish [16] derived closed-form, exact expressions of the average number of clusters for the Hilbertcurve in a 2-dimensional grid, but only for 2�2 and 3�3 square regions. This is a special case of themore general formulae derived in this paper.Abel and Mark [1] reported empirical studies to explore the relative properties of such mappingfunctions using various metrics. They reached the conclusion that the Hilbert ordering deserves closerattention as an alternative to the z curve ordering. Bugnion et al. estimated the average numberof clusters and the distribution of inter-cluster intervals for 2-dimensional rectangular queries. Theyderived the estimations based on the fraction of vertical and horizontal edges of any particular space-�lling curve. However, those fractions were provided only for a 2-dimensional space and without any6



calculation or formal veri�cation. In this paper, we formally prove that, in a d-dimensional space,the d di�erent edge directions approach the uniform distribution, as the order of the Hilbert curveapproximation grows into in�nity.Several closely related analyses for the average number of 2-dimensional quadtree nodes have beenpresented in the literature. Dyer [7] presented an analysis for the best, worst and average case of a squareof size 2n�2n, giving an approximate formula for the average case. Sha�er [27] gave a closed formula forthe exact number of blocks that such a square requires when anchored at a given position (x; y); he alsogave a formula for the average number of blocks for such squares (averaged over all possible positions).Some of these formulae were generalized for arbitrary 2-dimensional and d-dimensional rectangles [9, 10].3 Asymptotic AnalysisIn this section, we give an asymptotic formula for the clustering property of the Hilbert space-�llingcurve for general polyhedra in a d-dimensional space. The symbols used in this section are summarizedin Table 1. The polyhedra we consider here are not necessarily convex, but are rectilinear in the sensethat any (d-1)-dimensional polygonal surface is perpendicular to one of the d coordinate axes.De�nition 3.1 A rectilinear polyhedron is bounded by a set V of polygonal surfaces each of which isperpendicular to one of the d coordinate axes, where V is a subset of Rd and homeomorphic 1 to a(d-1)-dimensional sphere Sd�1.For d = 2 the set V is, by de�nition, a Jordan curve [3], which is essentially a simple closed curve in R2.The set of surfaces of a polyhedron divides the d-dimensional space Rd into two connected components,which may be called the interior and the exterior.The basic intuition is that each cluster within a given polyhedron corresponds to a segment of theHilbert curve, connecting a group of grid points in the cluster, which has two endpoints adjacent to thesurface of the polyhedron. The number of clusters is then equal to half the number of endpoints of thesegments bounded by the surface of the polyhedron. In other words,Remark 3.1 The number of clusters within a given d-dimensional polyhedron is equal to the number ofentries (or exits) of the Hilbert curve into (or from) the polyhedron.1Two subsets X and Y of Euclidean space are called homeomorphic if there exists a continuous bijective mapping,f : X ! Y , with a continuous inverse f�1 [12]. 7



Thus, we expect that the number of clusters is approximately proportional to the perimeter or hyper-surface area of the d-dimensional polyhedron (d � 2). With this observation, the task is reduced to�nding a constant factor of a linear function.Our approach to derive the asymptotic solution largely depends on the self-similar nature of theHilbert curve, which stems from the recursive process of the curve expansion. Speci�cally, we shallshow in the following lemmas that the edges of d di�erent orientations are uniformly distributed in ad-dimensional Euclidean space. That is, approximately one d-th of the edges are aligned to the i-thdimensional axis for each i (1 � i � d). Here we mean by edges the line segments of the Hilbert curveconnecting two neighboring points. The uniform distribution of the edges provides key leverage forderiving the asymptotic solution. To show the uniform distribution, it is important to understand� how the k-th order approximation of the Hilbert curve is derived from lower order approximations,and� how the d-dimensional Hilbert curve is extended from the 2-dimensional Hilbert curve, which wasdescribed only in a geometric form in [13]. (Analytic forms for the d-dimensional Hilbert curveswere presented in [5].)In a d-dimensional space, the k-th order approximation of the d-dimensional Hilbert curve Hdk isderived from the 1-st order approximation of the d-dimensional Hilbert curve Hd1 by replacing eachvertex in the Hd1 by Hdk�1, which may be rotated about a coordinate axis and/or reected abouta hyperplane perpendicular to a coordinate axis. Since there are 2d vertices in the Hd1, the Hdk isconsidered to be composed of 2d Hdk�1 vertices and (2d�1) edges, each connecting two of them.Before describing the extension for the d-dimensional Hilbert curve, we de�ne the orientations ofHdk . Consider Hd1, which consists of 2d vertices and (2d�1) edges. No matter where the Hilbert curvestarts its traversal, the coordinates of the start and end vertices of the Hd1 di�er only in one dimension,meaning that both vertices lie on a line parallel to one of the d coordinate axes. We say that Hd1 isi-oriented if its start and end vertices lie on a line parallel to the i-th coordinate axis. For any k (k > 1),the orientation of Hdk is equal to that of Hd1 from which it is derived.Figure 4 and Figure 5 illustrate the processes that generateH3k fromH2k , andH4k fromH3k, respectively.In general, when the d-th dimension is added to the (d-1)-dimensional Hilbert curve, each vertex ofHd�11(i.e., Hd�1k�1) is replaced by Hdk�1 of the same orientation except in the 2d�1-th one (i.e., the end vertexof Hd�11 ), whose orientation is changed from 1-oriented to d-oriented parallel to the d-th dimensionalaxis. For example, in Figure 5, the orientations of the two vertices connected by a dotted line have been8
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Symbol De�nitiond Number of dimensions(x1; :::; xd) Coordinates of a grid point in a d-dimensional grid spaceHdk k-th order approximation of the d-dimensional Hilbert curve'i Number of i-oriented Hdk�1 vertices in a Hdk"i;k Number of i-oriented edges in a d-oriented HdkS+i Number of interior grid points which face i+-surfaceS�i Number of interior grid points which face i�-surfacep+i Probability that the predecessor of a grid point is its i+-neighborp�i Probability that the predecessor of a grid point is its i�-neighborSq Total surface area of a given d-dimensional rectilinear polyhedral query qNd Average number of clusters within a given d-dimensional rectilinear polyhedronTable 1: De�nition of SymbolsThe following lemma shows that the edges of d di�erent orientations approach the uniform distributionas the order of the Hilbert curve approximation grows into in�nity.Notation 3.2 Let "i;k denote the number of i-oriented edges in a (d-oriented) Hdk.Lemma 2 In a d-dimensional space, for any i and j (1 � i; j � d), "i;k="j;k approaches unity as kgrows to in�nity.Proof. We begin by deriving recurrence relations among the terms "i;k and 'i. As we mentionedpreviously, the fundamental operations involved in expanding the Hilbert curve (i.e., from Hdk�1 to Hdk)are rotation and reection. During the expansion of Hdk , the orientation of a Hdk�1 vertex in a quantizedsubregion is changed only by rotation; a set of subregions of an orientation are replicated from oneof the same orientation, which leaves the directions of their edges unchanged. Consequently, any twodistinct Hdk�1 vertices of the same orientation contain the same number of edges "i;k�1 for each directioni (1 � i � d). Therefore, the set of the 1-oriented edges in the Hdk consists of 2d�1 connection edges(in Hd1), d-oriented edges of the 1-oriented Hdk�1 vertices, (d-1)-oriented edges of the 2-oriented Hdk�1vertices, (d-2)-oriented edges of the 3-oriented Hdk�1 vertices and so on.By applying the same procedure to the other directions, we obtain"1;k = '1"d;k�1 + '2"d�1;k�1 + � � �+ 'd"1;k�1 + 2d�110



"2;k = '2"d;k�1 + '3"d�1;k�1 + � � �+ '1"1;k�1 + 2d�2"3;k = '3"d;k�1 + '4"d�1;k�1 + � � �+ '2"1;k�1 + 2d�3 (2)..."d;k = 'd"d;k�1 + '1"d�1;k�1 + � � �+ 'd�1"1;k�1 + 1The initial values are given by "i;1 = 2d�i, and the values of 'i are in Lemma 1. The constants in thelast terms being ignored, the recurrence relations are completely symmetric. From the symmetry, it canbe shown that for any i and j (1 � i; j � d), limk!1 "i;k"j;k = 1:The proof is complete.Now we consider a d-dimensional grid space, which is equivalent to a d-dimensional Euclidean in-teger space. In the d-dimensional grid space, each grid point y = (x1; : : : ; xd) has 2d neighbors. Thecoordinates of the neighbors di�er from those of y by unity only in one dimension. In other words, thecoordinates of the neighbors that lie in a line parallel to the i-th axis must be either (x1; : : : ; xi+1; : : : ; xd)or (x1; : : : ; xi�1; : : : ; xd). We call them the i+-neighbor and the i�-neighbor of y, respectively.Butz showed that any unit increment in the Hilbert order produces a unit increment in one of the dcoordinates and leaves the other d�1 coordinates unchanged [5]. The implication is that, for any gridpoint y, both the neighbors of y in the linear order imposed by the Hilbert curve are chosen from the2d neighbors of y in the d-dimensional grid space. Of the two neighbors of y in the Hilbert order, theone closer to the start of the Hilbert traversal is called the predecessor of y.Notation 3.3 For a grid point y in a d-dimensional grid space, let p+i be the probability that the predeces-sor of y is the i+-neighbor of y, and let p�i be the probability that the predecessor of y is the i�-neighborof y.Lemma 3 In a su�ciently large d-dimensional grid space, for any i (1 � i � d),p+i + p�i = 1d:Proof. Assume y is a grid point in d-dimensional space and z is its predecessor. Then the edge yzadjacent to y and z is parallel to one of the d dimensional axes. From Lemma 2 and the recursivede�nition of the Hilbert curve, the probability that yz is parallel to the i-th dimensional axis is d�1 for11



any i (1 � i � d). This implies that the probability that z is either i+-neighbor or i�-neighbor of y isd�1.For a d-dimensional rectilinear polyhedron representing a query region, the number, sizes and shapesof the surfaces can be arbitrary. Due to the constraint of surface alignment, however, it is feasible toclassify the surfaces of a d-dimensional rectilinear polyhedron into 2d di�erent kinds: for any i (1 � i �d), � If a point y is inside the polyhedron and its i+-neighbor is outside, then the point y faces ani+-surface.� If a point y is inside the polyhedron and its i�-neighbor is outside, then the point y faces ani�-surface.For example, Figure 6 illustrates grid points which face surfaces in a 2-dimensional grid space. Theshaded region represents the inside of the polyhedron. Assuming that the �rst dimension is verticaland the second dimension is horizontal, grid points A and D face a 1+-surface, and grid point B (on theconvex) faces both a 1+-surface and a 2+-surface. Although grid point C (on the concave) is close to theboundary, it does not face any surface because all of its neighbors are inside the polyhedron. Conse-quently, the chance that the Hilbert curve enters the polyhedron through grid point B is approximatelytwice that of entering through grid point A (or D). The Hilbert curve cannot enter through grid pointC.
A B

C DFigure 6: Illustration of grid points facing surfacesFor any d-dimensional rectilinear polyhedron, it is interesting to see that the aggregate area ofi+-surface is exactly as large as that of i�-surface. In a d-dimensional grid space, we mean by sur-face area the number of interior grid points that face a given surface of any kind.12



Notation 3.4 For a d-dimensional rectilinear polyhedron, let S+i and S�i denote the aggregate numberof interior grid points that face i+-surface and i�-surface, respectively.Before proving the following theorem, we state without proof an elementary remark.Remark 3.2 Given a d-dimensional rectilinear polyhedron, S+i = S�i for any i (1 � i � d).Notation 3.5 Let Nd be the average number of clusters within a given d-dimensional rectilinear polyhe-dron.Theorem 1 In a su�ciently large d-dimensional grid space mapped by Hdk, let Sq be the total surfacearea of a given rectilinear polyhedral query q. Then,limk!1Nd = Sq2d (3)Proof. Assume a grid point y faces an i+-surface (or an i�-surface). Then, the probability that theHilbert curve enters the polyhedron through y is equivalent to the probability that the predecessor of yis an i+-neighbor (or an i�-neighbor) of y. Thus, the expected number of entries through an i+-surface(or an i�-surface) is S+i p+i (or S�i p�i ). Since the number of clusters is equal to the total number ofentries into the polyhedron through any of the 2d kinds of surfaces (Remark 3.1), it follows thatlimk!1Nd = dXi=1(S+i p+i + S�i p�i )= dXi=1 S+i (p+i + p�i ) (by Remark 3.2)= dXi=1 S+i 1d (by Lemma 3)= Sq2d:The proof is complete.Theorem 1 con�rms our early conjecture that the number of clusters is approximately proportionalto the hyper-surface area of a d-dimensional polyhedron, and provides (2d)�1 as the constant factor ofthe linear function. In a 2-dimensional space, the average number of clusters for the z curve approachesone third of the perimeter of a query rectangle plus two thirds of the side length of the rectangle in theunfavored direction [23]. It follows that the Hilbert curve achieves better clustering than the z curve,because the average number of clusters for the Hilbert curve is approximately equal to one fourth ofthe perimeter of a 2-dimensional query rectangle. 13



Corollary 1 In a su�ciently large d-dimensional grid space mapped by Hdk, the following propertiesare satis�ed:(i) Given an s1�s2�� � ��sd hyper-rectangle, limk!1Nd = 1dPdi=1( 1si Qdj=1 sj).(ii) Given a hypercube of side length s, limk!1Nd = sd�1.For a square of side length 2, Corollary 1(ii) provides 2 as an average number of clusters, which isexactly the same as the result given in [14].4 Exact Analysis : A Special CaseTheorem 1 states that as the size of a grid space grows in�nitely, the average number of clustersapproaches half the surface area of a given query region divided by the dimensionality. It does notprovide an intuition as to how rapidly the number of clusters converges to the asymptotic solution.To address this issue, in this section, we derive a closed-form, exact formula for a 2-dimensional �nitespace. We can then measure how closely the asymptotic solution reects the reality in a �nite space,by comparing it with the exact formula. Speci�cally, we assume that a �nite 2k+n�2k+n grid space ismapped by H2k+n and a query region is a square of size 2k�2k. We �rst describe our approach and thenpresent the formal derivation of the solution in several lemmas and a theorem. Table 2 summarizes thesymbols used in this section.4.1 Basic conceptsRemark 3.1 states that the number of clusters within a given query region is equal to the number ofentries into the region made by the Hilbert curve traversal. Since each entry is eventually followed byan exit from the region, an entry is equivalent to two cuts of the Hilbert curve by the boundary of thequery region. We restate Remark 3.1 as follows:Remark 4.1 The number of clusters within a given query region is equal to half the number of edges cutby the boundary of the region.Here we mean by edges the line segments of the Hilbert curve connecting two neighboring grid points.Now we know from Remark 4.1 that deriving the exact formula is reduced to counting the number ofedge cuts by the boundary of a 2k�2k query window at all possible positions within a 2k+n�2k+n gridregion. Then the average number of clusters is simply obtained by dividing this number by twice thenumber of possible positions of the query window.14
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Figure 7: H2k+n divided into nine subregionsNotation 4.1 Let N2(k; k+ n) be the average number of clusters inside a 2k�2k square window in a2k+n�2k+n grid region.The di�culty of counting the edge cuts lies in the fact that, for each edge within the grid region, thenumber of cuts varies depending on the location of the edge. Intuitively, the edges near the boundaryof the grid region are cut less often than those near the center. This is because a smaller number ofsquare windows can cut the edges near the boundary. Thus, to make it easier to count the edge cuts,the grid region H2k+n is divided into nine subregions, as shown in Figure 7. The width of the subregionson the boundary is 2k. Then the 2k+n�2k+n grid region (H2k+n) can be considered as a collection of22n H2k approximations each of which is connected to one or two neighbors by connection edges. Fromnow on, we mean by an internal edge one of the 22k � 1 edges in a H2k , and by a connection edge onethat connects two H2k subregions. For example, subregion F includes only one H2k and is connected tosubregions B and D by a horizontal and a vertical connection edge, respectively. Subregion B includes(2n � 2) H2k approximations each of which is connected to its two neighbors by connection edges.Consider an edge (internal or connection) near the center of subregion A, and a horizontal edge insubregion B. An edge in subregion A can be cut by 2k+1 square windows whose positions within theregion are mutually distinct. On the other hand, a horizontal edge in subregion B can be cut by adi�erent number of distinct windows, depending on the position of the edge. Speci�cally, if the edge insubregion B is on the i-th row from the topmost, then it is cut 2 � i times. The observations we have15



made are summarized as follows:A1. Every edge (either horizontal or vertical) at least one of whose end points resides in subregion Ais cut 2k+1 times.A2. Every vertical edge in subregions B and C is cut 2k times by the top or bottom side of a window.A3. Every horizontal edge in subregions D and E is cut 2k times by the left or right side of a window.A4. Every connection edge in subregions fB,F,Hg is horizontal and resides in the 2k-th row from thetopmost, and is cut 2k+1 times by the left and right sides of a window. Similarly, every connectionedge in subregions fC,G,Ig is horizontal and resides in the 2k-th row from the topmost, and iscut twice by the left and right sides of a window.A5. Every connection edge in subregions fD,F,Gg is vertical and resides in the �rst column from theleftmost, and is cut twice by the top and bottom sides of a window. Every connection edge insubregions fE,H,Ig is vertical and resides in the �rst column from the rightmost, and is cut twiceby the top and bottom sides of a window.A6. Every horizontal edge in the i-th row from the topmost of subregion B is cut 2� i times by boththe left and right sides of a window, and every horizontal edge in the i-th row from the topmostof subregion C is cut 2k+1 � 2� i+ 2 times by both the left and right sides of a window.A7. Every vertical edge in the i-th column from the leftmost of subregion D is cut 2� i times by boththe top and bottom sides of a window, and every vertical edge in the i-th column from the leftmostof subregion E is cut 2k+1 � 2� i+ 2 times by both the top and bottom sides of a window.A8. Every horizontal edge in the i-th row from the topmost of subregions fF,Hg is cut i times by eitherthe left or right side of a window.A9. Every horizontal edge in the i-th row from the topmost of subregions fG,Ig is cut 2k� i+1 timesby either the left or right side of a window.A10. Every vertical edge in the i-th column from the leftmost of subregions fF,Gg is cut i times byeither the top or bottom side of a window.A11. Every vertical edge in the i-th column from the leftmost of subregions fH,Ig is cut 2k� i+1 timesby either the top or bottom side of a window.A12. Two connection edges through which the Hilbert curve enters into and leaves from the grid regionare cut once each.From these observations, we can categorize the edges in the H2k+n grid region into the following �vegroups: 16



(i) E1: a group of edges as described in observation A1. Each edge is cut 2k+1 times.(ii) E2: a group of edges as described in observations A2 and A3. Each edge is cut 2k times.(iii) E3: a group of edges as described in observations A4 and A5. Each connection edge on the topboundary (i.e., subregions fB,F,Hg) is cut 2k+1 times, and any other connection edge is cut twice.(iv) E4: a group of edges as described in observations A6 and A7. Each edge is cut 2i or 2(2k � i+ 1)times if it is in the i-th row (or column) from the topmost (or leftmost).(v) E5: a group of edges as described in observations A8 to A11. Each edge is cut i or 2k� i+1 timesif it is in the i-th row (or column) from the topmost (or leftmost).Notation 4.2 Ni denotes the number of edge cuts from an edge group Ei.In a H2k+n grid region, the number of all possible positions of a 2k�2k window is (2k+n � 2k + 1)2.Since there are two more cuts from observation A12, in addition to N1; : : : ; N5, the average number ofclusters N2(k; k+ n) is given byN2(k; k+ n) = N1 +N2 +N3 +N4 +N5 + 22(2k+n � 2k + 1)2 : (4)In the next section, we derive a closed-form expression for each of the edge groups N1; : : : ; N5.4.2 Formal derivation
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Axis 1 (a) 1+-oriented (b) 1�-oriented (c) 2+-oriented (d) 2�-orientedFigure 8: Four di�erent orientations of H22We adopt the notion of orientations of Hdk given in Section 3 and extend so that it can be used toderive inductions.Notation 4.3 An i-oriented Hdk is called i+-oriented (or i�-oriented) if the i-th coordinate of its startpoint is not greater (or less) than that of any grid point in the Hdk.17



Symbol De�nitiontn Number of connection edges in the top boundary of a 2+-oriented H2k+nbn Number of connection edges in the bottom boundary of a 2+-oriented H2k+nsn Number of connection edges in the side boundary of a 2+-oriented H2k+nEi A group of edges between grid pointsNi Number of edge cuts from an edge group Ei fRgi+;n Number of i+-oriented H2k approximations in the subregion R of a 2+-oriented H2k+n fRgi�;n Number of i�-oriented H2k approximations in the subregion R of a 2+-oriented H2k+nHk Number of horizontal edges in a 2-oriented H2kVk Number of vertical edges in a 2-oriented H2khk(i) Number of horizontal edges in the i-th row from the topmost of a 2+-oriented H2kvk(i) Number of vertical edges in the i-th column from the leftmost of a 2+-oriented H2kN2(k; k+ n) Exact number of clusters covering a 2k�2k square in a 2k+n�2k+n grid regionTable 2: De�nition of SymbolsFigure 8 illustrates 1+-oriented, 1�-oriented, 2+-oriented and 2�-oriented H22 approximations. Note thateither of the two end points can be a start point for each curve.We begin by deriving N1 and N3. It appears at the �rst glance that the derivation of N1 is simplebecause each edge in E1 is cut 2k+1 times. However, the derivation of N1 involves counting the numberof connection edges crossing the boundary between subregion A and the other subregions, as well asthe number of edges inclusive to subregion A. We accomplish this by counting the number of edges inthe complementary set E1 (that is, fedges in H2k+ng � E1). Since E1 consists of edges in 4(2n � 1)H2k approximations in boundary subregions B through I and connection edges in E3, jE1j is equal to4(2n � 1) � (22k � 1) + jE3j . To �nd the number of connection edges in E3, we de�ne the numberof connection edges in di�erent parts of the boundary subregions. In the following, without loss ofgenerality, we assume that the grid region is 2+-oriented H2k+n .Notation 4.4 Let tn, bn and sn denote the number of connection edges in the top boundary (i.e., sub-regions fB,F,Hg), in the bottom boundary (i.e., subregions fC,G,Ig), and in the left or right boundary(i.e., subregions fD,F,Gg or fE,H,Ig) of a 2+-oriented H2k+n, respectively.Note that the number of connection edges in subregions fD,F,Gg and the number of connection edges18



in subregions fE,H,Ig are identical, because the 2+-oriented H2k+n is vertically self-symmetric.Lemma 4 For any positive integer n,tn = 2n�1 and bn + 2sn = 2(2n � 1): (5)Proof. Given in Appendix A.From Lemma 4, the number of connection edges inclusive to the boundary subregions (i.e., E3) isgiven by tn + bn + 2sn = 5� 2n�1 � 2. From this, we can obtain the number of edges in E1 as well asE3 and hence the number of cuts from E1 and E3. The results are presented in the following lemma.Lemma 5 The numbers of edge cuts from E1 and E3 areN1 = 2(2n � 2)223k + 3(2n � 2)2k (6)N3 = 2n+k + 4(2n � 1) (7)Proof. Given in Appendix A.All that we need to derive N2 is then to count the number of vertical edges in subregions fB,Cgand the number of horizontal edges in subregions fD,Eg. No connection edges in these subregions areinvolved. Since the number of horizontal (or vertical) edges in a H2k is determined by its orientation, itis necessary to �nd the number of H2k approximations of di�erent orientations in subregions fB,C,D,Eg.In the following, we give notations for the number of horizontal and vertical edges in a H2k, and thenumber of H2k approximations of di�erent orientations in the boundary subregions in Figure 7.Notation 4.5 Let Hk and Vk denote the number of horizontal and vertical edges in a 2-oriented H2k,respectively.By de�nition, the numbers of horizontal and vertical edges in a 1-orientedH2k are Vk andHk , respectively.Notation 4.6 For a set of subregions fR1; R2; : : : ; Rjg in Figure 7, let  fR1;R2;:::;Rjgi+;n and  fR1;R2;:::;Rjgi�;ndenote the number of i+-oriented and i�-oriented H2k approximations in those subregions, respectively.Lemma 6 Given a 2+-oriented H2k+n as depicted in Figure 7, fBg2+;n = 2n � 2 (8) fDg1+;n +  fEg1�;n +  fCg2+;n = 2n � 2 (9) fCg1+;n +  fCg1�;n +  fD;Eg2+;n +  fD;Eg2�;n = 2(2n � 2): (10)19



Proof. Given in Appendix A.From Lemma 6, a closed-form expression of N2 is derived in the following lemma.Lemma 7 The number of edge cuts from E2 isN2 = 2(2n � 2)23k � 2(2n � 2)2k: (11)Proof. Given in Appendix A.Now we consider the number of cuts from E4 and E5. The edges in these groups are cut di�erentnumbers of times depending on their relative locations within the H2k which they belong to. Conse-quently, the expressions for N4 and N5 include such terms as i� vk(i) and i� hk(i). The de�nitions ofvk(i) and hk(i) are given below. We call H2k approximations having such terms gradients.Notation 4.7 Let hk(i) be the number of horizontal edges in the i-th row from the topmost, and vk(i) bethe number of vertical edges in the i-th column from the leftmost of a 2+-oriented H2k.
(a) u-gradient2 (b) d-gradient2 (c) s-gradient2Figure 9: Three di�erent gradients and cutting windowsTo derive the closed-form expressions for N4 and N5, we �rst de�ne di�erent types of gradients.Consider the 2+-oriented H2k approximations in subregions fB,C,D,Eg. From observations A6 and A7,the number of cuts from the horizontal edges in a 2+-orientedH2k in subregion B isP2ki=1 2ihk(i). Likewise,the number of cuts from the horizontal edges in a 2+-oriented H2k in subregion C isP2ki=1 2(2k�i+1)hk(i),and the number of cuts from the vertical edges in a 2+-oriented H2k in subregion D or E is P2ki=1 2ivk(i).The number of cuts from vertical edges is the same in both subregions D and E, because a 2+-orientedH2k is vertically self-symmetric. Based on this, we de�ne three types of gradients for a 2+-oriented H2k:20



De�nition 4.1 (i) A 2+-oriented H2k is called u-gradientk if each of its horizontal edges in the i-th rowfrom the topmost is cut i or 2i times.(ii) A 2+-oriented H2k is called d-gradientk if each of its horizontal edges in the i-th row from thetopmost is cut 2k � i+ 1 or 2(2k � i+ 1) times.(iii) A 2+-oriented H2k is called s-gradientk if each of its vertical edges in the i-th column from eitherthe leftmost or rightmost is cut i or 2i times.Figure 9 illustrates the three di�erent gradients (u-gradient2, d-gradient2 and s-gradient2) and thecutting boundaries of a sliding window. These de�nitions can be applied to the H2k approximationsof di�erent orientations as well, by simply rotating the directions. For example, a 1+-oriented H2k insubregion D is d-gradientk, and a 2�-oriented H2k in subregion D is s-gradientk.Lemma 8 Let �k =P2ki=1 ihk(i), �k =P2ki=1(2k � i+ 1)hk(i) and k =P2ki=1 ivk(i). Then,�k + �k = (2k + 1)Hk and k = 12(2k + 1)Vk (12)Proof. Given in Appendix A.Next, we need to know the number of gradients of each type in the boundary subregions B throughI so that we can derive N4 and N5. For H2k approximations in subregions fB,C,D,Eg,� Every 2+-oriented H2k in B is u-gradientk.� Every 2+-oriented H2k in C, 1+-oriented H2k in D, and 1�-oriented H2k in E is d-gradientk.� Every 1+-oriented or 1�-oriented H2k in C, and 2+-oriented or 2�-oriented in fD,Eg is s-gradientk.The H2k approximations in subregions fF,G,H,Ig are dual-type gradients. In other words,� Each of the 2+-oriented H2k approximations in fF,Hg is both u-gradientk and s-gradientk .� The H2k in G is both d-gradientk and s-gradientk because the subgrid is either 2+-oriented or1+-oriented.� The H2k in I is both d-gradientk and s-gradientk because the subgrid is either 2+-oriented or1�-oriented. 21



Thus, in subregions fB,C,D,Eg, the number of u-gradientk approximations is  fBg2+;n, the number ofd-gradientk approximations is  fCg2+;n +  fDg1+;n +  fEg1�;n, and the number of s-gradientk approximations is fD;Eg2+;n + fD;Eg2�;n +  fCg1�;n +  fCg1+;n. In subregions fF,G,H,Ig, the number of u-gradientk approximationsis two, the number of d-gradientk approximations is two, and the number of s-gradientk approximationsis four. From this observation, and Lemma 6 and Lemma 8, it follows thatLemma 9 The numbers of edge cuts from E4 and E5 areN4 = 2(2n � 2)(2k + 1)(22k � 1) (13)N5 = 2(2k + 1)(22k � 1) (14)Proof. Given in Appendix A.Finally, in the following theorem, we present a closed-form expression of the average number ofclusters.Theorem 2 Given a 2k+n�2k+n grid region, the average number of clusters within a 2k�2k querywindow is N2(k; k + n) = (2n � 1)223k + (2n � 1)22k + 2n(2k+n � 2k + 1)2 (15)Proof. From Equation (4),N2(k; k+ n) = (N1 +N2 +N3 +N4 +N5 + 2)=2(2k+n � 2k + 1)2= ((2n � 1)223k + (2n � 1)22k + 2n)=(2k+n � 2k + 1)2:For increasing n, N2(k; k+ n) asymptotically approaches a limit of 2k, which is the side length of thesquare query region. This matches the asymptotic solution given in Corollary 1(ii) for d = 2.5 Experimental ResultsTo demonstrate the correctness of the asymptotic and exact analyses presented in the previous sections,we carried out simulation experiments for range queries of various sizes and shapes. The objectiveof our experiments was to evaluate the accuracy of the formulas given in Theorem 1 and Theorem 2.Speci�cally, we intended to show that the asymptotic solution is an excellent approximation for generald-dimensional range queries of arbitrary sizes and shapes. We also intended to validate the correctnessof the exact solution for a 2-dimensional 2k�2k square query.22



5.1 Arrangements of experimentsTo obtain exact measurements of the average number of clusters, it was required that we average thenumber of clusters within a query region at all possible positions in a given grid space. Such exhaustivesimulation runs allowed us to validate empirically the correctness of the exact formula given in Theorem 2for a 2k�2k square query.
S

S S

S/2

S/2

S/2 S

S

S

S

S

S

S/2

S/2

S(a) square (b) polygon (c) circle (d) cube (e) polyhedronFigure 10: Illustration of sample query shapesHowever, the number of all possible queries is exponential on the dimensionality. In a d-dimensionalN�N�: : :�N grid space, the total number of distinct positions of a d-dimensional k�k�: : :�k hypercubicquery is (N � k + 1)d. Consequently, for a large grid space and a high dimensionality, each simulationrun may require processing an excessively large number of queries, which in turn makes the simulationtake too long. Thus, we carried out exhaustive simulations only for relatively small 2-dimensional and3-dimensional grid spaces. Instead, for relatively large or high dimensional grid spaces, we did statisticalsimulation by random sampling of queries.For query shapes, we chose squares, circles and concave polygons for 2-dimensional cases, and cubes,concave polyhedra and spheres for 3-dimensional cases. Figure 10 illustrates some of the query shapesused in our experiments. In higher dimensional spaces, we used hypercubic and hyperspherical queryshapes because it was relatively easy to identify the query regions by simple mathematical formulas.5.2 Empirical validationThe �rst set of experiments was carried out in 2-dimensional grid spaces with two di�erent sizes. Thetable in Figure 11(a) compares the empirical measurements with the exact and asymptotic formulasfor a 2k�2k square query. The second column of the table contains the average numbers of clustersobtained by an exhaustive simulation performed on a 1024�1024 grid space. The numbers in the thirdand fourth columns were computed by the formulas in Theorem 1 and Theorem 2, respectively. The23



query empirical asymptotic exact21�21 1.998534 2 2091524/104652922�22 3.996328 4 4165936/104244123�23 7.992257 8 8266304/103428924�24 15.984206 16 16273216/101808125�25 31.967807 32 31521824/986049(a) Exhaustive simulation (grid: 1024�1024) 0
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(b) Statistic simulation (grid: 32K�32K)Figure 11: Average number of clusters for 2-dimensional queriesnumbers from the simulation are identical to those from the exact formula ignoring round-o� errors.Moreover, by comparing the second and third columns, we can measure how closely the asymptoticformula reects the reality in a �nite grid space.Figure 11(b) compares three di�erent 2-dimensional query shapes: squares, circles and concave poly-gons. The average number of clusters were obtained by a statistical simulation performed on a 32K�32Kgrid space. For the statistical simulation, a total of 200 queries were generated and placed randomlywithin the grid space for each combination of query shape and size. With a few exceptional cases,the numbers of clusters form a linear curve for each query shape; the linear correlation coe�cients are0.999253 for squares, 0.999936 for circles, and 0.999267 for concave polygons. The numbers are almostidentical for the three di�erent query shapes despite their covering di�erent areas. A square covers s2grid points, a concave polygon 3s2=4 grid points and a circle approximately �s2=4 grid points.However, this should not be surprising, as the three query shapes have the same length of perimeterfor a given side length s. For a circular query of diameter s, we can always �nd a rectilinear polygonthat contains the same set of grid points as the circular query region. And it is always the case thatthe perimeter of the rectilinear polygon (as shown in Figure 10(c)) is equal to that of a square of sidelength s. In general, in a 2-dimensional grid space, the perimeter of a rectilinear polygon is greater thanor equal to that of the minimum bounding rectangle (MBR) of the polygon. This justi�es the generalapproach of using a minimum bounding rectangle to represent a 2-dimensional range query, becausethe use of an MBR does not increase the actual number of clusters (i.e., the number of non-consecutivedisk accesses).A similar set of experiments was carried out in higher dimensional grid spaces. The results in24
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than s2. The reason is that, unlike in the 2-dimensional case, the surface area of a concave polyhedronor a sphere is smaller than that of its minimum bounding cube. For example, the surface area of thepolyhedron illustrated in Figure 10(e) is 112 s2, while that of the corresponding cube is 6s2. For a sphereof diameter s = 16, the surface area (i.e., the number of grid points on the surface of the sphere)is 1248. This is far smaller than the surface area of the corresponding cube, which is 6�162. Notethat the coe�cients of the quadratic terms in fpoly(s) and fsphere(s) are fairly close to 1112 = 0:9166 � � �and 12486�322 = 0:8125, respectively. This indicates that, in a d-dimensional space (d � 3), accessing theminimum bounding hyper-rectangle of a given query region may incur additional non-consecutive diskaccesses, and hence supports the argument made in [15] that the minimum bounding rectangle may notbe a good approximation of a non-rectangular object.5.3 Comparison with the Gray-coded and z curvesIt may be argued that it is not convincing to make a de�nitive conclusion that the Hilbert curve isbetter or worse than others solely on the basis of the average behaviors, because the clustering achievedby the Hilbert curve might have a wider deviation from the average than other curves. Therefore, itis desirable to perform a worst-case analysis to determine the bounds on the deviation. A full-edgedworst-case analysis, however, is beyond the scope of this paper. Instead, we measured the worse-casenumbers of clusters for the Hilbert curve, and compared with those for the Gray-coded and z curves inthe same simulation experiments.Figure 13 and Figure 14 show the worst-case and average numbers of clusters, respectively. Each�gure presents the results from an exhaustive simulation performed on a 1K�1K 2-dimensional spaceand a statistical simulation performed on a 32K�32K�32K 3-dimensional space. The Hilbert curveachieves much better clustering than the other curves in both the worst and average cases. For example,for a 2-dimensional square query, the Hilbert curve signi�cantly reduced the numbers of clusters, yieldingan improvement of up to 43 percent for the worst-case behaviors, and 48 percent for the average cases.For a 3-dimensional spherical query, the Hilbert curve achieved an improvement of up to 28 percentfrom the z curve and 18 percent from the Gray-coded curve for the worst cases, and up to 31 percentfrom the z curve and 22 percent from the Gray-coded curve for the average cases.Although it is not the focus of this paper, it is worth noting that the Gray-coded curve was notalways better than the z curve, which is in contrast to a previous study [14] that the Gray-coded curveachieves better clustering than the z curve for a 2-dimensional 2�2 square query. In particular, for2-dimensional circular queries (Figure 13(b) and Figure 14(b)), the Gray-coded curve was worse than26
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(c) 3-dimensional cubic queries (d) 3-dimensional spherical queriesFigure 13: Worst-case number of clusters for three di�erent space-�lling curvesthe z curve in both the worst and average cases. On the other hand, for 2-dimensional square queries,the Gray-coded curve was better than the z curve for the average clustering only by negligible amounts(the two measurements were almost identical, as shown in Figure 14(a)). Furthermore, it was surprisingthat both the Gray-coded and z curves performed exactly the same for the worst-case clustering (the twomeasurements were completely identical, as shown in Figure 13(a)). In a 3-dimensional space, however,the Gray-coded curve was clearly better than the z curve for both types of queries in both the worstand average cases.5.4 SummaryThe main conclusions from our experiments are:� The exact solution given in Theorem 2 matches exactly the experimental results from exhaustivesimulations for the square queries of size 2k�2k. (See Figure 11(a).)27
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(c) 3-dimensional cubic queries (d) 3-dimensional spherical queriesFigure 14: Average number of clusters for three di�erent space-�lling curves� The asymptotic solutions given in Theorem 1 and Corollary 1 provide excellent approximationsfor d-dimensional queries of arbitrary shapes and sizes. (See Figure 11(b) and Figure 12.) Forexample, the relative errors did not exceed 2 percent for d-dimensional (2 � d � 10) hypercubicqueries.� Assuming that blocks are arranged on disk by the Hilbert ordering, accessing the minimum bound-ing rectangles of a d-dimensional (d � 3) query region may increase the number of non-consecutiveaccesses, whereas this is not the case for a 2-dimensional query.� The Hilbert curve outperforms the z and Gray-coded curves by a wide margin for both the worstand average case clustering. (See Figure 13 and Figure 14.)� For 3-dimensional cubic and spherical queries, the Gray-coded curve outperformed the z curve forboth the worst-case and average clustering. However, the clustering by the Gray-coded curve was28



almost identical to that by the z curve for 2-dimensional square queries (in Figure 13(a) and Fig-ure 14(a)), and clearly worse for 2-dimensional circular queries (in Figure 13(b) and Figure 14(b)).6 ConclusionsWe have studied the clustering property of the Hilbert space-�lling curve as a linear mapping of amultidimensional space. Through algebraic analysis, we have provided simple formulas that state theexpected number of clusters for a given query region, and also validated their correctness throughsimulation experiments. The main contributions of this paper are:� Theorem 2 generalizes the previous work done only for a 2�2 query region [14], by providing anexact closed-form formula for 2k�2k square queries for any k (k � 1). The asymptotic solutiongiven in Theorem 1 further generalizes it for d-dimensional polyhedral query regions (d � 2).� We have proved that the Hilbert curve achieves better clustering than the z curve in a 2-dimensional space; the average number of clusters for the Hilbert curve is one fourth of theperimeter of a query rectangle, while that of the z curve is one third of the perimeter plus twothirds of the side length of the rectangle in the unfavored direction [23]. Furthermore, by simula-tion experiments, we have shown that the Hilbert curve outperforms both the z and Gray-codedcurves in 2-dimensional and 3-dimensional spaces. We conjecture that this trend will hold evenin higher dimensional spaces.� We have shown that it may incur extra overhead to access the minimum bounding hyper-rectanglefor a d-dimensional non-rectangular query (d � 3), because it may increase the number of clusters(i.e., non-consecutive disk accesses).The approaches used in this paper can be applied to other space-�lling curves. In particular, the basicintuitions summarized in Remark 3.1 and Remark 4.1 are true for any space-�lling curves.From a practical point of view, it is important to predict and minimize the number of clusters becauseit determines the number of non-consecutive disk accesses, which in turn incur additional seek time.Assuming that blocks are arranged on disk by the Hilbert ordering, we can provide a simple measurethat depends only on the perimeter or surface area of a given query region and its dimensionality. Themeasure can then be used to predict the required disk access behaviors and thereby the total accesstime. 29



The full-edged analysis of the worst-case behaviors for the Hilbert curve is left for future research.Future work also includes the extension of the exact analysis for d-dimensional spaces (d � 3), and theinvestigation of the distribution of distances between clusters.A Appendix: ProofsProof of Lemma 4: A 2+-oriented H2k+n approximation is composed of four H2k+n�1 approximations(two on the top and two on the bottom) and three connection edges. The two H2k+n�1 approximationson the top half are 2+-oriented and the two H2k+n�1 approximations on the bottom half are 1+-orientedon the left and 1�-oriented on the right. Among the three edges connecting the four H2k+n�1 approxi-mations, the horizontal edge is not included in the boundary subregion of the H2k+n, because the edgeresides on the 2k+n�1-th row from the topmost of the H2k+n. The other two vertical connection edgesare on the leftmost and rightmost columns and included in the boundary subregion of the H2k+n . Thus,the main observations are:(i) The number of connection edges in the top boundary subregion of the 2+-oriented H2k+n is thesum of those in the top boundary subregions of the two 2+-oriented H2k+n�1 approximations.(ii) The number of connection edges in the bottom boundary subregion of the 2+-oriented H2k+n isthe sum of those in the bottom boundary subregions of the 1+-oriented H2k+n�1 and 1�-orientedH2k+n�1 approximations.(iii) The number of connection edges in the left (or right) boundary subregion of the 2+-oriented H2k+nis the sum of those in the left (or right) boundary subregions of the 2+-oriented H2k+n�1 and1+-oriented (or 1�-oriented) H2k+n�1 approximations, plus one for a connection edge.Since the bottom boundary subregion of a 1+-oriented H2k+n�1 is equivalent to the right boundarysubregion of a 2+-oriented H2k+n�1 and so on, it follows thattn = 2� tn�1bn = 2� sn�1sn = sn�1 + bn�1 + 1:Since t1 = 1; b1 = 0 and s1 = 1, we obtain tn = 2n�1 and bn + 2sn = 2(bn�1 + 2sn�1) + 2, which yieldsbn + 2sn = 2(2n � 1). 30



Proof of Lemma 5: TheH2k+n andH2k approximations contain 22(k+n)�1 and 22k�1 edges, respectively.Since there are a total of 4(2n� 1) H2k approximations in the boundary subregions, the total number ofedges in E1 is given by(22(k+n) � 1)� 4(2n � 1)(22k � 1)� (5� 2n�1 � 2) = 22k(2n � 2)2 + 3(2n�1 � 1):Because each edge in E1 is cut 2k+1 times, it follows thatN1 = 2k+1(22k(2n � 2)2 + 3(2n�1 � 1)) = 2(2n � 2)223k + 3(2n � 2)2k:Among the 5�2n�1 � 2 edges in E3, tn edges are cut 2k+1 times, and the other bn + 2sn edges are cuttwice. Therefore, N3 = 2k+1tn + 2(bn + 2sn) = 2n+k + 4(2n � 1):Proof of Lemma 6: Consider a 2+-oriented H2k+n , which is composed of four H2k+n�1 approximationsand three connection edges. The number of 2+-oriented H2k approximations in the top subregions (i.e.,fB,F,Hg) of the 2+-oriented H2k+n is twice the number of 2+-oriented H2k approximations in the topsubregions of the 2+-oriented H2k+n�1. This is because the top half of the 2+-oriented H2k+n consistsof two 2+-oriented H2k+n�1 approximations. Thus the recurrence relation is  fB;F;Hg2+;n = 2 �  fB;F;Hg2+;n�1 .Since  fB;F;Hg2+;1 = 2, we obtain  fB;F;Hg2+;n = 2n:The bottom half of the 2+-oriented H2k+n consists of a 1+-oriented H2k+n�1 and a 1�-oriented H2k+n�1.In the bottom boundary subregions fC,G,Ig, each 1�-oriented H2k in the 1+-oriented H2k+n�1 approx-imation becomes a 2+-oriented H2k in the 2+-oriented H2k+n approximation; each 1+-oriented H2k inthe 1�-oriented H2k+n�1 approximation becomes a 2+-oriented H2k in the 2+-oriented H2k+n approxima-tion. No other than the 1�-oriented and 1+-oriented H2k approximations in the H2k+n�1 approximationsbecomes a 2+-oriented H2k in the H2k+n . Thus, it follows that fC;G;Ig2+;n =  fC;G;Ig1�;n�1 +  fC;G;Ig1+;n�1 :Since there exist no 2�-oriented H2k approximations in the bottom boundary subregions,  fC;G;Ig2�;n = 0.Thus,  fC;G;Ig2+;n +  fC;G;Ig1�;n +  fC;G;Ig1+;n = 2n:31



Similarly, on the left boundary subregion, we obtain the following recurrence relations. fD;F;Gg1+;n =  fD;F;Gg2+;n�1 +  fD;F;Gg2�;n�1 fD;F;Gg1+;n +  fD;F;Gg2+;n +  fD;F;Gg2�;n = 2n:Then, from the above four recurrence relations, fC;G;Ig2+;n + 2 fD;F;Gg1+;n = (2n�1 �  fC;G;Ig2+;n�1 ) + 2(2n�1 �  fD;F;Gg1+;n�1 )= (2n�2 +  fC;G;Ig2+;n�2 ) + 2(2n�2 +  fD;F;Gg1+;n�2 )= 3� 2n�2 + ( fC;G;Ig2+;n�2 + 2 fD;F;Gg1+;n�2 ):Since  fC;G;Ig2+;1 + 2 fD;F;Gg1+;1 = 2 and  fC;G;Ig2+;2 + 2 fD;F;Gg1+;2 = 4, we obtain fC;G;Ig2+;n + 2 fD;F;Gg1+;n = 2n:From  fE;H;Ig1�;n =  fD;F;Gg1+;n due to the self-symmetry of the 2+-oriented H2k+n, it follows that fC;G;Ig2+;n +  fD;F;Gg1+;n +  fE;H;Ig1�;n =  fC;G;Ig2+;n + 2 fD;F;Gg1+;n = 2n:Now consider subregions fF,G,H,Ig. The H2k approximations in F,H are always 2+-oriented, the H2kin G is either 2+-oriented or 1+-oriented, and the H2k in I is either 2+-oriented or 1�-oriented. Thus, fF;Hg2+;n = 2 and  fG;Ig2+;n +  fG;Ig1+;n +  fG;Ig1�;n = 2. Therefore, fBg2+;n =  fB;F;Hg2+;n �  fF;Hg2+;n = 2n � 2 fCg2+;n +  fDg1+;n +  fEg1�;n = ( fC;G;Ig2+;n +  fD;F;Gg1+;n +  fE;H;Ig1�;n )� ( fG;Ig2+;n +  fG;Ig1+;n +  fG;Ig1�;n )= 2n � 2:So far we have derived the �rst two equations given in this lemma.Finally, to derive the third equation, consider subregions fB,C,D,Eg. Since the total number of H2kapproximations in those subregions is 4(2n � 2), fB;C;D;Eg2+;n +  fB;C;D;Eg2�;n +  fB;C;D;Eg1�;n +  fB;C;D;Eg1+;n = 4(2n � 2):There exist no 2�-oriented H2k in fB,Cg, no 1�-oriented H2k in fB,Dg, and no 1+-oriented H2k in fB,Eg.That is,  fB;Cg2�;n =  fB;Dg1�;n =  fB;Eg1+;n = 0. Therefore, fD;Eg2+;n +  fD;Eg2�;n +  fCg1�;n +  fCg1+;n = 4(2n � 2)� ( fB;Cg2+;n +  fB;Cg2�;n +  fB;D;Eg1�;n +  fB;D;Eg1+;n )= 4(2n � 2)� ( fB;Cg2+;n +  fEg1�;n +  fDg1+;n)= 2(2n � 2):32



Proof of Lemma 7: Every H2k approximation in subregion B is 2+-oriented, and there exists no 2�-oriented H2k approximation in subregion C. Thus, the number of vertical edges in subregions fB,Cg isthe sum of  fB;Cg2+;n Vk and ( fCg1+;n +  fCg1�;n)Hk. Likewise, the number of horizontal edges in subregionsfD,Eg is the sum of ( fD;Eg2+;n + fD;Eg2�;n )Hk and ( fDg1+;n+ fEg1�;n)Vk, because there exist no 1�-oriented H2kin subregion D and no 1+-oriented H2k in subregion E. Thus, the total number of edges in E2 is given by( fB;Cg2+;n +  fDg1+;n +  fEg1�;n)Vk + ( fCg1+;n +  fCg1�;n +  fD;Eg2+;n +  fD;Eg2�;n )Hk= 2(2n � 2)(Hk + Vk) (by Lemma 6).Each edge in E2 is cut 2k times and Hk + Vk = 22k � 1. Therefore,N2 = 2(2n � 2)(22k � 1)2k = 2(2n � 2)23k � 2(2n � 2)2k:Proof of Lemma 8: First, �k + �k =P2ki=1 ihk(i) +P2ki=1(2k � i+ 1)hk(i) =P2ki=1(2k + 1)hk(i). Fromthe de�nition of Hk, Hk =P2ki=1 hk(i). Therefore,�k + �k = (2k + 1)Hk:Second, k =P2k�1i=1 ivk(i) +P2ki=2k�1+1 ivk(i) =P2k�1i=1 ivk(i) +P2k�1i=1 (2k�1 + i)vk(2k�1 + i). Since 2-oriented H2k approximations are vertically self-symmetric, vk(2k � i+ 1) = vk(i) holds for any i (1 � i �2k�1): Thus, k =P2k�1i=1 ivk(i)+P2k�1i=1 (2k�1+i)vk(2k�1 � i+ 1) =P2k�1i=1 ivk(i)+P2k�1i=1 (2k�i+1)vk(i).From the de�nition of Vk and self-symmetry, Vk = 2P2k�1i=1 vk(i). Therefore,k = 2k�1Xi=1 (2k + 1)vk(i) = 12(2k + 1)Vk:Proof of Lemma 9: In E4, the number of horizontal cuts from a single u-gradientk is 2 � �k, thenumber of horizontal cuts from a single d-gradientk is 2 � �k, and the number of vertical cuts from asingle s-gradientk is 2� k. Thus,N4 = 2�k fBg2+;n + 2�k( fCg2+;n +  fDg1+;n +  fEg1�;n) + 2k( fD;Eg2+;n +  fD;Eg2�;n +  fCg1�;n +  fCg1+;n)= 2�k(2n � 2) + 2�k(2n � 2) + 4k(2n � 2) (by Lemma 6)33
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