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Abstract

Fast indexing in time sequence databases for similarity searching has attracted a lot of
research recently. Most of the proposals, however, typically centered around the Euclidean
distance and its derivatives. We examine the problem of multi-modal similarity search in
which users can choose the best one from multiple similarity models for their needs.

In this paper, we present a novel and fast indexing scheme for time sequences, when the
distance function is any of arbitrary £, norms (p = 1,2,...,00). One feature of the proposed
method is that only one index structure is needed for all £, norms including the popular
Euclidean distance (L2 norm). Our scheme achieves significant speedups over the state of
the art: extensive experiments on real and synthetic time sequences show that the proposed

method is up to 10 times faster than the best competitor.

1 Introduction

Time sequences of real-values arise in many applications such as stock market, medicine/science,
and multimedia. Retrieval of these sequences is based on ‘similarity’ as opposed to exact equality.

For instance, a financial analyst may be interested in such queries as:
o “Find all stocks whose prices moved similarly to that of a company over the last two months.”

o “Find all companies which have similar patterns of revenue growth to that of another com-

pany for the last decade.”

o “Find all currencies whose prices w.r.t. US Dollar have changed similarly to the price of

gold for a specific period of time.

Results of the queries can be used for further analysis of the market trends and/or key factors

behind certain market events.



Similarity-based search in large collections of time sequences has attracted a lot of research
recently in database community, including [5, 14, 16, 3, 28, 35], to name just a few. Main focus
has been fast indexing techniques to improve performance when a particular similarity model is
given. Typically, sequences of fixed length are mapped to points in an N-dimensional Fuclidean
space and, then, multi-dimensional access methods such as R-tree family [18, 30, 6] can be used
for fast access of those points.

Since, however, time sequences are usually long, a straightforward application of the above
approach suffers from performance degradation due to a phenomenon known as ‘dimensionality
curse.” [7] To address the problem, several dimensionality-reduction techniques have been pro-
posed. Discrete Fourier Transform (DFT) was the most popular and used in [5, 14, 16, 28] and,
more recently, Discrete Wavelet Transform (DWT) was also proposed [21]. The basic idea is to
approximate original time sequences with a few transform coefficients and, hence, map them into
low-dimensional points. These methods guarantee that every qualifying sequence will be retrieved
(no false dismissals). Some non-qualifying sequences may be retrieved, but can be removed in
the post-processing stage. Other techniques include piece-wise constant approximation [12], and
FastMap [13, 35].

Another issue in the area has been the choice of similarity models. Fuclidean distance (L
norm) was the most heavily used one [5, 14, 16, 28]. Linear correlation coeff. [21] is closely
related to the normalized Euclidean distance [13]. We investigated the Time Warping distance
in [35]. Infinity norm (L.,) was proposed in [3] as part of a more complex similarity model. Other
similarity models are also possible and have been proposed, but due to the space limitation we
do not discuss them any further.

We note the following limitations in the previous approaches.

e Multi-Modality Support: No single model of similarity is suitable for every application.
Sometimes several similarity models may be required for the same database of sequences,
depending on different perspectives of different users. (Even a single user may want to
have multiple models.) No previous work has proposed a single framework to support
this multi-modal query processing for time sequences. To support it, we are forced to
implement different techniques for different models into a DBMS, which is not efficient and
only add complexity to the system, making it hard to build core DBMS components such as
query optimizer, since different techniques may require different access methods and storage

organizations etc.

e Feature Extraction: Proposed feature extraction (dimensionality reduction) methods are
either (a) only suitable for a particular similarity model, or (b) have other shortcomings. For

example, DFT as well as DWT has been shown very effective when the given distance func-



tion is Euclidean, but its effectiveness is questionable for other similarity models. FastMap
may be used for a wider class of models, but it does not guarantee ‘no false dismissal.’

Piece-wise constant approximation does not allow for indexing due to its irregularity.

In this paper, we address the above problems and propose a new similarity-based query processing
scheme for time sequences. We focus on arbitrary £, norms, since they have been widely used in
real applications and can be used as basic building blocks for more complex similarity models as
in [3].

We propose a new feature extraction method based on segmented means. We divide each time
sequence into a fixed number, say ‘s’, equal sized segments and take the mean of each segment
to form a feature vector. It has a very nice mathematical property so that we can dramatically
decrease the given search range without affecting the correctness of the query results. Moreover,

the proposed method provides a single unified framework in which,
e multiple similarity models are supported simultaneously,
e indexing for fast retrieval is supported, and,
e the same index structure can be re-used for different models.

We will demonstrate the efficiency of the method via extensive experiments based on whole-
sequence and subsequence matching queries against a stock price dataset as well as a synthetic

dataset.

Organization of the paper In Section 2, we survey related work. In Section 3, we present our
proposed method in detail as well as how to use existing techniques. Section 4 reports experimental
results to compare the proposed method and the competitors. Finally, Section 5 discusses the key
contributions of the paper. In Table 1, we list the symbols and their definitions that we use in

the rest of the paper.

2 Related Work

Similarity-based matching of time sequences has been studied extensively in the signal processing
area, and specifically in speech processing [27]. However, the usual assumptions are a small dataset
(e.g., a few tens of phonemes) so that the primary concern is precision rather than efficiency in
the presence of large datasets.

Performance is the main focus in the recent database work on sequence matching. They differ in

what type of distance function is used and what type of matching they aim at. In [5], Agrawal et

'In this paper, we focus only on a particular DWT called Discrete Haar Wavelet Transform.



Symbol Definition

DFT Discrete Fourier Transform
DWT | Discrete Wavelet Transform?
x a time sequence

x; the i-th value of & (1 <7< L)

|7 length of &

S number of segments

l length of each segment ( = [L/s])

pr the j-th segment of & (1 < j < s and |Pf| =)

Fr feature vector of &
€ search tolerance
w sliding window size for the subsequence matching

Table 1: List of symbols

al examined the whole matching problem when the given dissimilarity function is the Euclidean
distance, and suggest using the Discrete Fourier Transform (DFT). They argued that most of
real signals need only a few DFT coeflicients to approximate them. They proposed an indexing
mechanism called F-Index which takes a few of the first coeflicients and regards them as a point
in the Euclidean space. Hence it makes possible to use any of readily available multidimensional
access methods. The proposed method may allow a few false alarms which can be removed in
the post-processing stage, but guarantees no false dismissals. In [14], authors generalized the
approach for subsequence matching. Follow-up work by Goldin and Kanellakis [16] suggested
that we normalize the sequences first, to allow for differences in level and scale. Agrawal et al
[3] introduce a new distance function for time sequences, aiming to capture the intuitive notion
that two sequences should be considered similar if they have enough non-overlapping time-ordered
pairs of similar subsequences. The model allows the amplitude of one of the two sequences to be
scaled by any suitable amount and its offset adjusted appropriately. It also allows non-matching
gaps in the matching subsequences. Rafiei and Mendelzon [28] extend previous work by proposing
techniques to handle moving average and time scaling (i.e., globally stretching or shrinking of the
time axis), but not time warping. In [21], authors proposed a hierarchical scanning method based
on the linear correlation coefficient as a similarity measure. Faloutsos et al [12] proposed a generic
framework for similar time sequences. It takes advantage of piece-wise constant approximations
as signatures for fast comparison of sequences and allows for regional add transform. These

approaches are summarized in Table 2.

2Tt takes the cost of transformations into consideration.



‘ Reference H Distance Feature Matching | Indexability | Transformations

[5] Lo DFT whole yes none
[14] Ly DFT subseq yes none
[16] Ly DFT whole yes offset translation,
amplitude scaling
[3] Lo none subseq yes offset translation,
based amplitude scaling,

gaps allowed

[28] Ly DFT whole yes moving average,
time scaling
[21] Corr. DFT or subseq no offset translation,
Coeff. DWT amplitude scaling
[12] Ly piece-wise whole no regional add
variant? constant
[35] Time FastMap + whole yes none

Warping | lower-bounding

Table 2: Comparison of different approaches for similar time sequences

Data Mining [1] in general is also related, including association rule mining [2, 4, 25, 32] and
clustering [24, 11, 17]. Data mining techniques designed especially for time sequences have been
proposed. In [22], algorithms to find patterns in event sequences were presented. A compression
technique based on Singular Value Decomposition (SVD) was proposed in [19]. It reduces vastly
the storage requirement for large datasets of sequences in the data warehousing environments with
little loss in reconstruction errors. Techniques for finding causal relations among segments of time
sequences were presented in [8], based on the similarity between segments. In [34], we developed
scalable data mining methods suitable for large sets of indefinitely growing time sequences which

evolve concurrently, to allow for delayed /missing/future value estimation and quantitative mining,.

3 Indexing Time Sequences for £, Norms

Different dissimilarity measures have been discussed in the literature. Among others, £, norm is

the most popular class of dissimilarity measures and defined as follows:

L 5
Ly(T—9) = (Z |2 — y¢|p)
=1

It is called the city-block or the Manhattan norm when p = 1, and the Fuclidean norm when

p = 2. In the extreme case when p = oo, it is called the mazimum norm and can be reformulated



as follows:

P L
Loo(T = §) = max|z; — yi|

It is known that £, norm is optimal (in the Maximum Likelihood sense) when measurement
errors are additive, i.i.d. (independent, identically distributed) Gaussian [31]. It has been the
most popular dissimilarity measure in similar time sequence matching [5, 14, 16, 28]. Linear
correlation coefficient was used in [21], but it can be effectively converted to £3 norm without loss
of information [13].

L1 norm is optimal when measurement errors are additive, i.i.d. Laplacian (or Double Ex-
ponential), hence more robust against impulsive noise [31]. £; has been used in the context of
robust (parametric or non-parametric) regression [20, 29, 31] for many applications including time
sequences [20, 10]. More recently, it was also used in [15] for their hashing-based similarity search
technique.

Lo was used for atomic matching in a more complex dissimilarity measure in [3]. The measure
proposed in [3], however, only decides whether two sequences are similar or not and ranking of
query result is not possible.

Figure 1 illustrates the characteristics of different £, norms. All sequences are of length 32.
The original sequence is in (a). We added a single impulse of size 2.5 in (b), two impulses of size
1.51in (¢). In (d), we added and subtracted 0.5 alternately at each time spot. Then the closest
sequences to the sequence (a) with respect to £y, Lo, and L, are (b), (c), and (d), respectively.
This example clearly shows the different notion of similarity each norm offers.

Effective feature extraction functions such as DFT and DWT are available only for L5 because
they are rotation-based (orthonormal transformations) and do not preserve distance for £; and
Lo in the feature space. Thus, in case of L., they were forced to search in high dimensional
space [3], rather than low dimensional feature space as in [5, 14].

We believe the choice of appropriate dissimilarity measures is highly application dependent and
up to application engineers. Since, however, the perspectives of different users can vary even on
the same dataset, some form of multi-modality is required. In such an environment, a DBMS for

similarity-based retrieval of time sequences must provide a single unified framework in which,
e multiple similarity models are supported simultaneously,
e indexing for fast retrieval is supported, and,
e the same index structure can be re-used for different models.

In this regard, our first goal is to provide a general indexing scheme which can be used for any

of £, norms (p=1,2,...,00). We specifically support the following two types of queries.



10 10

Value
IS
>
1
Value

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time Time
(a) Original sequence (b) £4 nearest-neighbor
10 10
8| g 8| g
o 6 ] ] 6 ]
g, g,
2 b p 2 b E
0 Il Il Il Il Il Il 0 Il Il Il Il Il Il
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time
(¢) L2 nearest-neighbor (d) Lo nearest-neighbor

Figure 1: Nearest sequences with respect to £y, L5, and L., norms

Problem 3.1 (£,-based Whole Sequence Matching) Given a query sequence ¢ and a set of
sequences SEQ (|q] = ||, for all T € SEQ), find all sequences & in SEQ such that L,(7— ) <,

for any value of p=1,2,...,00.

Problem 3.2 (£,-based Subsequence Matching) Given a query sequence ¢ and a set of se-
quences SEQ (|1q] < ||, for all ¥ € SEQ), find all subsequences ¥ of all ¥ in SEQ such that
|q] = |7 and L,(7— %) <€, for any value of p=1,2,...,00.

While we are primarily concerned with whole and subsequence matching, we note that a fast
method for both types of matching is also essential for more complex matching such as the one
proposed in [3], in which atomic matching is in fact whole matching based on L.

Some transformations can be allowed before sequences are compared. These include offset
translation, amplitude scaling [16, 3, 21], and time scaling [28]. Offset translation subtracts/adds
a certain offset value (usually mean) from each element of a sequence. Amplitude scaling multiplies
a normalization factor to the element such that either the amplitude is within a fixed range or
the sample variance is 1. Time scaling is to enlarge the time axis by a certain amount so that two
sequences of different lengths can be matched. They provide a certain degree of flexibility in the

notion of similarity. Our next goal is to support these transformations in our scheme.

Problem 3.3 (Transformations) Support efficiently ‘offset translation’, ‘amplitude scaling’,

and ‘time scaling’ in our indexing scheme.
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Figure 2: Example of Segmented Means

3.1 Proposed Method — Segmented Means

Suppose we have a set of sequences of length L. The basic idea of our proposal consists of two
steps. First we partition each time sequence into s segments of equal length [. We assume I = sxl.
Otherwise, we add zeros at the end of sequences. Note that it does not affect query results. Next,
we extract simple features from each segment. We propose to use mean as a feature for all £,
norms.

Formally, let & = (z1,...,21) be asequence of length L. Let s and [ be two numbers such that
L = s« 1. Then & can be divided into s segments of length /. Let P denote the j-th segment of
z, i.e.,

Py =2 )15 Tj0)-

We define a feature vector of & as follows. (See Figure 2 for an example.)

Definition 3.1 (Segmented-Mean Feature) Given a sequence ¥ = (x1,...,x1) and the num-

ber of segments s > 0, define the feature vector 17_,;,95 of ¥ by,
Fy = (ff o J9) = (mean(PY), ... mean(P)))

The algorithm to compute F_,;x is fairly obvious and omitted in this paper. To avoid the possibility
of false dismissals, we must show that the distance between feature vectors lower-bounds that of

original sequences. It is not very hard to see that it is indeed the case, i.e., for all p=1,... o0,
Lp(F7) < Lp(7)

In practice, however, F_,;x is a poor approximation of Z, since it is essentially a down-sampling of
Z. Much of the information would be lost and, consequently, too many false alrams would occur.
Our goal is to find a way to compensate the loss of information so that we could reduce the

number of false alarms. More specifically, we seek a factor o, > 1 such that,

ap 'ﬁp(ﬁsx) < Ly(T)
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Figure 3: Illustration of convex function theorem

We claim that there exists such a factor, thanks to the nice mathematical property of F_;Q”7 and

we will take advantage of it for efficient query processing. There is a well-known mathematical

result on conver functions. We borrow the following theorem from [26, p.379].3

Theorem 3.1 Suppose that xy,...,x1 € R, and Ay, ..., A;, € R such that A; > 0 and (Ele i) =

1. If f is a convex function on 'R, then

JAzy 44+ Apzp) <A f(z) + -+ Apf(zr)

where R is the set of real numbers.

Proof: See [26, p.379]. Also see Figure 3 for an intuitive example. QED

It is clear that f(-) = |- |P is a convex function on R for 1 < p < oco. Hence, as a direct

consequence of Theorem 3.1 by taking A; = %, we have the following corollary.

Corollary 3.2 For any sequence ¥ = (z1,...,x1) and 1 < p < oo, the following holds.
L
L - |mean(Z)|P < Z | |P
=1

Or, equivalently, for each segment of &, we have, for 1 < j < s,
i
[ |mean(P})|” < Z | |P
i=(j—1)l+1

Now we have our main theorem as follows.

Theorem 3.3 For any sequence ¥ = (z1,...,x1) and 1 < p < oo, the following holds.

{/l_-ﬁp(]ix) < ﬁp(f)

#The definitions of convex sets and functions are beyond the scope of the paper and are found in [26, pp.373-376].
Note also that we modified it such that we only consider R rather than R¢.



Proof: We first consider when p # co. By the definitions of £, and F}’,
L ﬁp(ﬁsx)p
= - Z |mean (F})[”
7=1

By Corollary 3.2,

gl

S
> ST al?
=1

i=(j—1)l+1

IN

L
= > luif
=1
= Lp(¥)"
By taking p-th root of both sides, we prove the theorem. If p = oo, then
Loo(FF)

= max |mean ()]
J=1

Since ¥/I = 1, it completes the proof. QED

Query Processing Thanks to Theorem 3.3, we can efficiently handle e-range queries with
segmented-mean feature vectors. Suppose we are to compare two sequences & and if. By the
theorem, we know that £,(7 — ) < ¢ implies £, (F? — Fz’) < ¢/Y1. (The converse does not hold
in general.) Therefore, any £,-based e-range queries against a set of sequences & can be correctly
converted to L,-based (¢/ \’/l_)—range queries against a set of the corresponding feature vectors 15;,1’
without worrying about the possibility of false dismissals. This is an improvement to the plain
usage of the feature vectors, since we have reduced the search range by a factor of /1 .

We summarize a general strategy for the whole-sequence matching (Problem 3.1) as follows:

1. Extract feature vectors F_,;x for all ¥ € SEQ. The number of segments, s, is a system tun-
ing parameter as the number of Fourier coefficients in [5]. (Trailing zeros are padded if

necessary.)

2. Build an index structure on 15;,1’ using any of the readily available multi-dimensional access

methods such as the R-tree.

10



3. For each L,-based e-range query with a query sequence ¢, extract F_;? and convert the query

to an equivalent (e/{/l_)—range query with F_;? in the feature space, and perform search on

the index. (I =[L/s])
4. Filter out false alarms.

Processing subsequence matching queries (Problem 3.2) is more complex. The basic idea is
fairly the same as in [14]. We assume that all sequences including query sequences are longer
than a predetermined minimum length ‘w’. (In this case, however, the length of each individual

sequence can vary.) Then, our strategy is the following:

1. A sequence 7 is divided into (|Z| — w + 1) sliding windows of fixed length w and extract
the segmented-mean features from them. We use the same value of s as in the case of

whole-sequence matching.

2. The feature vectors form a trail in the s-dimensional feature space. To reduce the storage
overhead and enhance the system performance, we divide them into a few sub-trails based on

the ‘marginal cost’criterion defined in [14], and compute their minimum bounding rectangles

(MBRs).
3. We repeat the above steps for each ¥ € SEQ.

4. Build an index structure on the MBRs using any of the readily available multi-dimensional

access methods such as the R-tree.
5. For each £,-based e-range query with a query sequence ¢,

(a) Divide ¢ into p(= [|¢]/w]) non-overlapping subsequences, ¢i, 1 < k < p. (Note that
we can ignore the remaining (|¢] — p-w) elements without compromising the correctness

of the query results.)

(b) For each feature vector of ¢, perform (e/¥/I-p )-range search on the index and ‘OR’

the query results.

6. Filter out false alarms.
Transformations - Data Preprocessing We have shown how to efficiently process £,-based
queries using the proposed feature extraction method. We now turn to our next goal. As for

offset translation and amplitude scaling, let ¥ = a - & — b with ‘@’ for the scaling factor and ‘b’ for

the offset value. That is, 7/ is the translated and rescaled version of #. Then the feature vector of

11



Z can be computed as follows:

FYo= (mean(P}), ..., mean(P?))
= ((a-mean(Py) —b),...(a-mean(Py) — b))
= a-lix —b

Thus, once we have the feature vectors, it is almost straightforward to compute the translated
and rescaled versions.

As for time scaling, since extending time axis does not change the mean, the mean feature
vector is invariant under time scaling. Let Z'is an extended version of Z by ‘¢’ times for an integer

c. That is, z; = @p;/¢. Then,

—

Fz = (mean(Fy),...,mean(F;))
_ /c-mean(FY) c-mean(P7F)
_ (ementr) - emeantr))
_

S

Thus, we can reuse the same feature vector as-is for the time-extended version. We believe other

transformations such as moving-average [28] can be easily handled likewise.

3.2 An Alternative—How to use DWT

As an alternative, we can use the existing feature extraction methods based on orthogonal linear
transforms such as DWT and DFT. In this paper, we focus on DWT, especially ‘Haar’ DWT,
since it has been widely accepted as a state-of-the-art method for various database applications
recently [23, 33]. We present the algorithm to compute 1-d Haar wavelet coefficients in Figure 4.
(For the theory of wavelet, readers are referred to [9].)

Since DWT as well as DFT is an orthogonal linear transform, it rotates the data distribution
in a predetermined way. As such, £5 norm is perfectly preserved by the transform, since it is
invariant under rotations. Other £, norms for p # 2 are not preserved. Therefore, we can not
use the DWT-based feature vectors for arbitrary £,-based query processing.

One way to fix the problem is to adjust the search range such that all qualifying sequences are
included within the search boundary. Suppose ¥’ and § are the rotated versions of two sequences
# and 7 of length L, respectively. Then, it is not hard to see the following relations hold: (Figure 5
describes the idea in the 2-d plane, i.e., L = 2.)

Lq(

Lo@—§) <€ = L2 ~7)

) <e = L@ —7)

&)
I

€

VL e

IN

12



Algorithm HaarWaveletCoefficients
Input: X[1,...,L]1, L =2" for some n
Output: H[1,...,L], Haar wavelet coeff. for X[]

H[1,...,L] := X[1,...,L];
For (len := L; len >= 2; len := len/2) {
For (i :=1, j :=1; i < len; i := i+2, j := j+1) {
S[31 := (H[il + H[i+1]) / V2
D[] := (H[i] - H[i+1]) / V2;

}

For (i :=1; i <= len/2; 1 := i+1) {
H[i] := S[il;
H[i+(len/2)] := D[i];

}

}

Return HI[1,...,L];
End Algorithm

Figure 4: Algorithm to compute Haar wavelet coefficients

Similar rules are possible for £, norms for 3 < p < oo.

We convert each £1- and L..-based e-range queries to L3-based queries with search ranges
according the above conversion rules, and then perform search on the index built on top of the
DWT feature vectors. Note that, this way, we can guarantee no false dismissals would occur. As

we will see in the next section, however, it is not very efficient except for L2 norm.

Relationship between the Haar DWT and the Segmented Means Two types of feature
vectors produced by the proposed method and the Haar DWT are closely related to each other.

More specifically, we have the following theorem.

Theorem 3.4 Let H_}’ denote a feature vector of &, composed of the first s Haar wavelet coef-
ficients. We further assume |¥] = 2" (n > 0) and s = 2™ (n > m > 0). Then, the following
equality holds.

Lo(VI - F?) = Lo(H?)

where | = |Z|/s =2""".

13



(a) Before rotation (b) After rotation

Figure 5: Example of adjusting ranges for rotated points

Proof: By definition,

VI Fr = (V1 -mean(P?),...,VI - mean(P?) )
= <sum(Pf”)/\/l_,...,sum(Pf)/\/l_>

Note that, if we take the Haar DW'T of the above vector, we get H_}’ Since the Haar DWT is

invariant under L5, we have,

LoV -F?) = Ly(DWTWI - F2))
= Lo(HY)

Hence, the theorem holds. QED

Let Ss and Spwr be two feature spaces defined by \/l_lix and ﬁf, respectively. The above
theorem tells us that if the dimension of feature space is some power of 2 (i.e., s = 2™), then the
Ssu is a rotated version of Spwr and vice versa. In Figure 6, we present examples of Sgy and
Spwr of 100 time sequences (s = 2). We observe that they are indeed rotated versions of each
other. In terms of indexing, however, Spwr seems a little bit better since its minimum bounding
rectangle (MBR) is smaller as we can see in the example. Therefore, for L;-based queries, we
expect slightly better performance from Spwr and, as we will see later, the experimental results

prove this point.

4 Experimental Results

To verify the effectiveness of the proposed method, we performed experiments on real time se-

quences (daily stock prices) and synthetically generated time sequences. Our experiments were

14
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Figure 6: Examples of Sgyy and Spwr

based on e-range queries for both whole- and subsequence matching. We compared the proposed
method and the DWT-based method as well as the sequential scanning method as a sanity checker.
All methods were implemented in C programming language. For R-tree, we used DR-tree (v2.5)
library developed at the Univ. of Maryland with some modifications to handle £,-based search.
As a measure of success, we recorded wall clock time with UNIX ‘time’ command. All experi-
ments were performed on a dedicated Sun UltraSparc-1 workstation with a 143MHz CPU, 64MB
of memory and SCSI disks (Seagate ST410800N), running SunOS version 5.5 operating system.

We present more specific information on the experimental setting in the following subsection.

4.1 Experimental Setting

For the experiment, we prepared two datasets of sequences. Samples of these time sequences are

plotted in Figure 7.

e STOCK: The stock dataset contains 675 stocks, each with varying number of daily closing
prices. The average length is 1,187. For the whole-sequence matching, we generated fixed
length sequences with 128 samples each. The sample windows overlap by 1/3 of the window

size. For subsequence matching, we used the dataset as-is.

e SYNTH: Additional 30,000 synthetic sequences, with 128 samples each, were generated
using the random-walk model following [5]. More specifically, each sequence was generated
by the following formula.

Ty =Ty -2
where zg ~ U(2,10), 2z, ~ N(0,1), and & = 0.06, for t =1, ...,128.
We compared the following 3 methods:

e SM: Our proposed method based on the segmented means.

15
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Dataset | Num. of Seq. | (Avg.) Seq. Len. | Feature Dim.

STOCK 675 1,187 4
SYNTH 30,000 128 4

Table 3: Summary of the Experimental Setting

o DWT: The alternative method based on the Haar wavelet transform.
e SCAN: The naive sequential scanning method.

An important parameter is the dimension of the feature space, i.e., the length of feature vectors.
In general, the optimal value depends on the datasets, the feature extraction methods to use, and

the distance functions (£, norms). We fixed it as 4 because of the following two reasons:

e The value was good enough for both SM and DWT methods, a little more in favor of DWT,

regardless of the datasets.

e Since one of our goals is to re-use the same index structure for all £, norms, we need to fix

it for all values of p.

Table 3 summarizes the experimental setting.

4.2 Whole Sequence Matching Queries

We first performed £,-based whole-sequence matching queries. We took 100 sequences randomly
from each dataset and used them as the query sequences. We measured the average response time
(including both search time and post-processing time). Search ranges were chosen such that the
average selectivity of query results be 0.1%, 1%, 3%, and 7%, for each value of p = 1,2, 00 and

for each dataset.
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Figure 8: £4-based whole-sequence matching

The results of £1-based whole matching queries are presented in Figure 8. The proposed method
is the clear winner for both datasets. Interestingly, DWT method was even slower than the SCAN
method on the stock dataset. For the synthetic dataset, the proposed method achieved 10 time
speedup over the DWT method and 50 time speedup over the naive method at the selectivity of
0.1%.
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Figure 9: £;-based whole-sequence matching

In the case of Ly-based queries (see Figure 9), the DWT method was slightly faster than the
proposed method for the stock dataset. It is, however, expected because DWT is highly optimized
for L2 norm. For the synthetic dataset, it is almost impossible to distinguish between the proposed
method and the DWT method and they both scaled up very well.

Figure 10 presents the results from L..-based queries. Again, the proposed method is the
winner for both datasets, although the difference between the proposed method and the DWT
method is small in the stock dataset. For the synthetic dataset, they both scaled very well and

the proposed method consistently outperformed the competitor.
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Figure 10: L.,-based whole-sequence matching

As a summary, we conclude that the proposed method is the clear winner in all cases except
for Lo-based queries against the stock dataset. But the DWT method performed very poorly for

L1-based queries.

4.3 Subsequence Matching Queries

We next performed £,-based subsequence matching queries. For the stock dataset, we re-used
the same query sequences that had been used for the whole matching queries. For the synthetic
dataset, we used the first 64 values of the query sequences from the whole matching experiment.
Hence the ratios between the query length and the data length are 128:1187 for the stock dataset
and 64:128 for the synthetic dataset. The search ranges were chosen in the same way as in the

previous experiment.
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Figure 11: £;-based subsequence matching

In Figure 11, presented are the results from L;-based subsequence queries. We observed that,
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again, the proposed method is the clear winner for both datasets and it scales very well even at
the relatively hight selectivity (7%). The DWT performed poorly for both datasets. At highest

selectivity, it almost converged to the naive method.
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Figure 12: Lq-based subsequence matching

In Figure 12, Lo-based query results are shown. Yet gain, the DWT method performed slightly
better than the proposed method on the stock dataset, but the difference was small. For the
synthetic dataset, the proposed method outperformed the DWT method just a little after 1% of
selectivity. On both datasets, they scaled very well.
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Figure 13: L.,-based subsequence matching

In the case of L, (Figure 13), the results are not much different from the other cases and the

proposed method consistently outperformed the competitor.

Summary In Table 4, we present relative response time of the proposed method w.r.t. the
DWT-based method for the 3%-selectivity queries. For L£i-based queries, the proposed method
outperforms the DWT-based method by big margins, in all datasets. For Lj-based queries, the
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Whole Subsequence
Dataset I Ly r I Ly r
STOCK 0.23 1.1 0.93 0.43 1.05 0.88
SYNTH 0.12 1.03 0.7 0.18 0.95 0.74

Table 4: Summary: relative response time (T'sps/Tpwr) for 3%-selectivity queries

DWT-based is slightly faster as we anticipated. Note, however, the proposed method outperforms
in subsequence queries against the synthetic dataset. For £.,-based queries, the proposed method
consistently outperforms by the competitor by up to 30% margin. Overall, we conclude that the

proposed method is the winner in the competition.

5 Conclusion

The major contribution of the paper is two-folds:

e Multi-modality Support: No single model of similarity is suitable for every application.
Sometimes several similarity models may be required for the same database of sequences,
depending on the different perspectives of different users. We addressed this problem by
supporting arbitrary £, norms for any value of p =1,2,..., 00, because they are the most
popular class of dissimilarity measures and, also, they can be used as the building blocks
for more complex ones. No previous work has proposed a single framework to support this

multi-modal query processing for time sequences.

e Efficient Indexing: For efficient query processing, we proposed a new unified indexing
scheme which provides the following advantages over previous approaches.
— All £, norms are supported simultaneously.
— Indexing for fast retrieval is supported.
— The same index structure can be re-used for different £, norms.
— It is easy to incorporate such data preprocessing techniques as ‘offset translation’,

‘amplitude scaling’, and ‘time scaling’.

We showed the soundness of our method mathematically. We also explained in detail how to
efficiently process both the whole-sequence and the subsequence matching queries in our unified
indexing scheme. Through extensive experiments, we verified that our method is much more
efficient that the state of art. Our method achieved up to 10 time speedup over the state of the
art (DWT) and scaled up very well for all £, norms on both the real and the synthetic datasets.
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Further research will focus on extending the proposed method to a broader class of similarity

models.
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