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Fast Time Sequence Indexing for Arbitrary Lp NormsByoung-Kee YiDept. of Computer ScienceUniversity of Marylandkee@cs.umd.edu Christos FaloutsosDept. of Computer ScienceCarnegie Mellon Universitychristos@cs.cmu.eduAbstractFast indexing in time sequence databases for similarity searching has attracted a lot ofresearch recently. Most of the proposals, however, typically centered around the Euclideandistance and its derivatives. We examine the problem of multi-modal similarity search inwhich users can choose the best one from multiple similarity models for their needs.In this paper, we present a novel and fast indexing scheme for time sequences, when thedistance function is any of arbitrary Lp norms (p = 1; 2; : : : ;1). One feature of the proposedmethod is that only one index structure is needed for all Lp norms including the popularEuclidean distance (L2 norm). Our scheme achieves signi�cant speedups over the state ofthe art: extensive experiments on real and synthetic time sequences show that the proposedmethod is up to 10 times faster than the best competitor.1 IntroductionTime sequences of real-values arise in many applications such as stock market, medicine/science,and multimedia. Retrieval of these sequences is based on `similarity' as opposed to exact equality.For instance, a �nancial analyst may be interested in such queries as:� \Find all stocks whose prices moved similarly to that of a company over the last two months."� \Find all companies which have similar patterns of revenue growth to that of another com-pany for the last decade."� \Find all currencies whose prices w.r.t. US Dollar have changed similarly to the price ofgold for a speci�c period of time.Results of the queries can be used for further analysis of the market trends and/or key factorsbehind certain market events. 1



Similarity-based search in large collections of time sequences has attracted a lot of researchrecently in database community, including [5, 14, 16, 3, 28, 35], to name just a few. Main focushas been fast indexing techniques to improve performance when a particular similarity model isgiven. Typically, sequences of �xed length are mapped to points in an N -dimensional Euclideanspace and, then, multi-dimensional access methods such as R-tree family [18, 30, 6] can be usedfor fast access of those points.Since, however, time sequences are usually long, a straightforward application of the aboveapproach su�ers from performance degradation due to a phenomenon known as `dimensionalitycurse.' [7] To address the problem, several dimensionality-reduction techniques have been pro-posed. Discrete Fourier Transform (DFT) was the most popular and used in [5, 14, 16, 28] and,more recently, Discrete Wavelet Transform (DWT) was also proposed [21]. The basic idea is toapproximate original time sequences with a few transform coe�cients and, hence, map them intolow-dimensional points. These methods guarantee that every qualifying sequence will be retrieved(no false dismissals). Some non-qualifying sequences may be retrieved, but can be removed inthe post-processing stage. Other techniques include piece-wise constant approximation [12], andFastMap [13, 35].Another issue in the area has been the choice of similarity models. Euclidean distance (L2norm) was the most heavily used one [5, 14, 16, 28]. Linear correlation coe�. [21] is closelyrelated to the normalized Euclidean distance [13]. We investigated the Time Warping distancein [35]. In�nity norm (L1) was proposed in [3] as part of a more complex similarity model. Othersimilarity models are also possible and have been proposed, but due to the space limitation wedo not discuss them any further.We note the following limitations in the previous approaches.� Multi-Modality Support: No single model of similarity is suitable for every application.Sometimes several similarity models may be required for the same database of sequences,depending on di�erent perspectives of di�erent users. (Even a single user may want tohave multiple models.) No previous work has proposed a single framework to supportthis multi-modal query processing for time sequences. To support it, we are forced toimplement di�erent techniques for di�erent models into a DBMS, which is not e�cient andonly add complexity to the system, making it hard to build core DBMS components such asquery optimizer, since di�erent techniques may require di�erent access methods and storageorganizations etc.� Feature Extraction: Proposed feature extraction (dimensionality reduction) methods areeither (a) only suitable for a particular similarity model, or (b) have other shortcomings. Forexample, DFT as well as DWT has been shown very e�ective when the given distance func-2



tion is Euclidean, but its e�ectiveness is questionable for other similarity models. FastMapmay be used for a wider class of models, but it does not guarantee `no false dismissal.'Piece-wise constant approximation does not allow for indexing due to its irregularity.In this paper, we address the above problems and propose a new similarity-based query processingscheme for time sequences. We focus on arbitrary Lp norms, since they have been widely used inreal applications and can be used as basic building blocks for more complex similarity models asin [3].We propose a new feature extraction method based on segmented means. We divide each timesequence into a �xed number, say `s', equal sized segments and take the mean of each segmentto form a feature vector. It has a very nice mathematical property so that we can dramaticallydecrease the given search range without a�ecting the correctness of the query results. Moreover,the proposed method provides a single uni�ed framework in which,� multiple similarity models are supported simultaneously,� indexing for fast retrieval is supported, and,� the same index structure can be re-used for di�erent models.We will demonstrate the e�ciency of the method via extensive experiments based on whole-sequence and subsequence matching queries against a stock price dataset as well as a syntheticdataset.Organization of the paper In Section 2, we survey related work. In Section 3, we present ourproposed method in detail as well as how to use existing techniques. Section 4 reports experimentalresults to compare the proposed method and the competitors. Finally, Section 5 discusses the keycontributions of the paper. In Table 1, we list the symbols and their de�nitions that we use inthe rest of the paper.2 Related WorkSimilarity-based matching of time sequences has been studied extensively in the signal processingarea, and speci�cally in speech processing [27]. However, the usual assumptions are a small dataset(e.g., a few tens of phonemes) so that the primary concern is precision rather than e�ciency inthe presence of large datasets.Performance is the main focus in the recent database work on sequence matching. They di�er inwhat type of distance function is used and what type of matching they aim at. In [5], Agrawal et1In this paper, we focus only on a particular DWT called Discrete Haar Wavelet Transform.3



Symbol De�nitionDFT Discrete Fourier TransformDWT Discrete Wavelet Transform1~x a time sequencexi the i-th value of ~x (1 � i � L)j~xj length of ~xs number of segmentsl length of each segment ( = dL=se)Pxj the j-th segment of ~x (1 � j � s and jP xj j = l)~Fxs feature vector of ~x� search tolerancew sliding window size for the subsequence matchingTable 1: List of symbolsal examined the whole matching problem when the given dissimilarity function is the Euclideandistance, and suggest using the Discrete Fourier Transform (DFT). They argued that most ofreal signals need only a few DFT coe�cients to approximate them. They proposed an indexingmechanism called F-Index which takes a few of the �rst coe�cients and regards them as a pointin the Euclidean space. Hence it makes possible to use any of readily available multidimensionalaccess methods. The proposed method may allow a few false alarms which can be removed inthe post-processing stage, but guarantees no false dismissals. In [14], authors generalized theapproach for subsequence matching. Follow-up work by Goldin and Kanellakis [16] suggestedthat we normalize the sequences �rst, to allow for di�erences in level and scale. Agrawal et al[3] introduce a new distance function for time sequences, aiming to capture the intuitive notionthat two sequences should be considered similar if they have enough non-overlapping time-orderedpairs of similar subsequences. The model allows the amplitude of one of the two sequences to bescaled by any suitable amount and its o�set adjusted appropriately. It also allows non-matchinggaps in the matching subsequences. Ra�ei and Mendelzon [28] extend previous work by proposingtechniques to handle moving average and time scaling (i.e., globally stretching or shrinking of thetime axis), but not time warping. In [21], authors proposed a hierarchical scanning method basedon the linear correlation coe�cient as a similarity measure. Faloutsos et al [12] proposed a genericframework for similar time sequences. It takes advantage of piece-wise constant approximationsas signatures for fast comparison of sequences and allows for regional add transform. Theseapproaches are summarized in Table 2.2It takes the cost of transformations into consideration.4



Reference Distance Feature Matching Indexability Transformations[5] L2 DFT whole yes none[14] L2 DFT subseq yes none[16] L2 DFT whole yes o�set translation,amplitude scaling[3] L1 none subseq yes o�set translation,based amplitude scaling,gaps allowed[28] L2 DFT whole yes moving average,time scaling[21] Corr. DFT or subseq no o�set translation,Coe�. DWT amplitude scaling[12] L2 piece-wise whole no regional addvariant2 constant[35] Time FastMap + whole yes noneWarping lower-boundingTable 2: Comparison of di�erent approaches for similar time sequencesData Mining [1] in general is also related, including association rule mining [2, 4, 25, 32] andclustering [24, 11, 17]. Data mining techniques designed especially for time sequences have beenproposed. In [22], algorithms to �nd patterns in event sequences were presented. A compressiontechnique based on Singular Value Decomposition (SVD) was proposed in [19]. It reduces vastlythe storage requirement for large datasets of sequences in the data warehousing environments withlittle loss in reconstruction errors. Techniques for �nding causal relations among segments of timesequences were presented in [8], based on the similarity between segments. In [34], we developedscalable data mining methods suitable for large sets of inde�nitely growing time sequences whichevolve concurrently, to allow for delayed/missing/future value estimation and quantitative mining.3 Indexing Time Sequences for Lp NormsDi�erent dissimilarity measures have been discussed in the literature. Among others, Lp norm isthe most popular class of dissimilarity measures and de�ned as follows:Lp(~x� ~y) =  LXi=1 jxi � yijp! 1pIt is called the city-block or the Manhattan norm when p = 1, and the Euclidean norm whenp = 2. In the extreme case when p =1, it is called the maximum norm and can be reformulated5



as follows: L1(~x� ~y) = Lmaxi=1 jxi � yijIt is known that L2 norm is optimal (in the Maximum Likelihood sense) when measurementerrors are additive, i.i.d. (independent, identically distributed) Gaussian [31]. It has been themost popular dissimilarity measure in similar time sequence matching [5, 14, 16, 28]. Linearcorrelation coe�cient was used in [21], but it can be e�ectively converted to L2 norm without lossof information [13].L1 norm is optimal when measurement errors are additive, i.i.d. Laplacian (or Double Ex-ponential), hence more robust against impulsive noise [31]. L1 has been used in the context ofrobust (parametric or non-parametric) regression [20, 29, 31] for many applications including timesequences [20, 10]. More recently, it was also used in [15] for their hashing-based similarity searchtechnique.L1 was used for atomic matching in a more complex dissimilarity measure in [3]. The measureproposed in [3], however, only decides whether two sequences are similar or not and ranking ofquery result is not possible.Figure 1 illustrates the characteristics of di�erent Lp norms. All sequences are of length 32.The original sequence is in (a). We added a single impulse of size 2.5 in (b), two impulses of size1.5 in (c). In (d), we added and subtracted 0.5 alternately at each time spot. Then the closestsequences to the sequence (a) with respect to L1, L2, and L1, are (b), (c), and (d), respectively.This example clearly shows the di�erent notion of similarity each norm o�ers.E�ective feature extraction functions such as DFT and DWT are available only for L2 becausethey are rotation-based (orthonormal transformations) and do not preserve distance for L1 andL1 in the feature space. Thus, in case of L1, they were forced to search in high dimensionalspace [3], rather than low dimensional feature space as in [5, 14].We believe the choice of appropriate dissimilarity measures is highly application dependent andup to application engineers. Since, however, the perspectives of di�erent users can vary even onthe same dataset, some form of multi-modality is required. In such an environment, a DBMS forsimilarity-based retrieval of time sequences must provide a single uni�ed framework in which,� multiple similarity models are supported simultaneously,� indexing for fast retrieval is supported, and,� the same index structure can be re-used for di�erent models.In this regard, our �rst goal is to provide a general indexing scheme which can be used for anyof Lp norms (p = 1; 2; : : : ;1). We speci�cally support the following two types of queries.6
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Time(c) L2 nearest-neighbor (d) L1 nearest-neighborFigure 1: Nearest sequences with respect to L1, L2, and L1 normsProblem 3.1 (Lp-based Whole Sequence Matching) Given a query sequence ~q and a set ofsequences SEQ (j~qj = j~xj, for all ~x 2 SEQ), �nd all sequences ~x in SEQ such that Lp(~q � ~x) � �,for any value of p = 1; 2; : : : ;1.Problem 3.2 (Lp-based Subsequence Matching) Given a query sequence ~q and a set of se-quences SEQ (j~qj � j~xj, for all ~x 2 SEQ), �nd all subsequences ~x0 of all ~x in SEQ such thatj~qj = j~x0j and Lp(~q � ~x0) � �, for any value of p = 1; 2; : : : ;1.While we are primarily concerned with whole and subsequence matching, we note that a fastmethod for both types of matching is also essential for more complex matching such as the oneproposed in [3], in which atomic matching is in fact whole matching based on L1.Some transformations can be allowed before sequences are compared. These include o�settranslation, amplitude scaling [16, 3, 21], and time scaling [28]. O�set translation subtracts/addsa certain o�set value (usually mean) from each element of a sequence. Amplitude scaling multipliesa normalization factor to the element such that either the amplitude is within a �xed range orthe sample variance is 1. Time scaling is to enlarge the time axis by a certain amount so that twosequences of di�erent lengths can be matched. They provide a certain degree of exibility in thenotion of similarity. Our next goal is to support these transformations in our scheme.Problem 3.3 (Transformations) Support e�ciently `o�set translation', `amplitude scaling',and `time scaling' in our indexing scheme. 7



L = 24, s = 4

l = 6

meanFigure 2: Example of Segmented Means3.1 Proposed Method { Segmented MeansSuppose we have a set of sequences of length L. The basic idea of our proposal consists of twosteps. First we partition each time sequence into s segments of equal length l. We assume L = s�l.Otherwise, we add zeros at the end of sequences. Note that it does not a�ect query results. Next,we extract simple features from each segment. We propose to use mean as a feature for all Lpnorms.Formally, let ~x = hx1; : : : ; xLi be a sequence of length L. Let s and l be two numbers such thatL = s � l. Then ~x can be divided into s segments of length l. Let P xj denote the j-th segment of~x, i.e., Pxj = hx(j�1)l+1; : : : ; xj�li:We de�ne a feature vector of ~x as follows. (See Figure 2 for an example.)De�nition 3.1 (Segmented-Mean Feature) Given a sequence ~x = hx1; : : : ; xLi and the num-ber of segments s > 0, de�ne the feature vector ~Fxs of ~x by,~Fxs = hfx1 ; : : : ; fxs i = hmean(P x1 ); : : : ;mean(P xs )iThe algorithm to compute ~Fxs is fairly obvious and omitted in this paper. To avoid the possibilityof false dismissals, we must show that the distance between feature vectors lower-bounds that oforiginal sequences. It is not very hard to see that it is indeed the case, i.e., for all p = 1; : : : ;1,Lp( ~Fxs ) � Lp(~x)In practice, however, ~Fxs is a poor approximation of ~x, since it is essentially a down-sampling of~x. Much of the information would be lost and, consequently, too many false alrams would occur.Our goal is to �nd a way to compensate the loss of information so that we could reduce thenumber of false alarms. More speci�cally, we seek a factor �p > 1 such that,�p � Lp( ~Fxs ) � Lp(~x)8
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+Figure 3: Illustration of convex function theoremWe claim that there exists such a factor, thanks to the nice mathematical property of ~Fxs , andwe will take advantage of it for e�cient query processing. There is a well-known mathematicalresult on convex functions. We borrow the following theorem from [26, p.379].3Theorem 3.1 Suppose that x1; : : : ; xL 2 R, and �1; : : : ; �L 2 R such that �i � 0 and (PLi=1 �i) =1. If f is a convex function on R, thenf(�1x1 + � � �+ �LxL) � �1f(x1) + � � �+ �Lf(xL)where R is the set of real numbers.Proof: See [26, p.379]. Also see Figure 3 for an intuitive example. QEDIt is clear that f(�) = j � jp is a convex function on R for 1 � p < 1. Hence, as a directconsequence of Theorem 3.1 by taking �i = 1L , we have the following corollary.Corollary 3.2 For any sequence ~x = hx1; : : : ; xLi and 1 � p <1, the following holds.L � jmean(~x)jp � LXi=1 jxijpOr, equivalently, for each segment of ~x, we have, for 1 � j � s,l � jmean(P xj )jp � j�lXi=(j�1)l+1 jxijpNow we have our main theorem as follows.Theorem 3.3 For any sequence ~x = hx1; : : : ; xLi and 1 � p � 1, the following holds.ppl � Lp( ~Fxs ) � Lp(~x)3The de�nitions of convex sets and functions are beyond the scope of the paper and are found in [26, pp.373-376].Note also that we modi�ed it such that we only consider R rather than Rd.9



Proof: We �rst consider when p 6=1. By the de�nitions of Lp and ~Fxs ,l � Lp( ~Fxs )p= l � sXj=1 jmean(Pxj )jpBy Corollary 3.2, � sXj=10@ j�lXi=(j�1)l+1 jxijp1A= LXi=1 jxijp= Lp(~x)pBy taking p-th root of both sides, we prove the theorem. If p =1, thenL1( ~Fxs )= smaxj=1 jmean(P xj )j� smaxj=1  j�lmaxi=(j�1)l+1 jxij!= Lmaxi=1 jxij= L1(~x)Since 1pl = 1, it completes the proof. QEDQuery Processing Thanks to Theorem 3.3, we can e�ciently handle �-range queries withsegmented-mean feature vectors. Suppose we are to compare two sequences ~x and ~y. By thetheorem, we know that Lp(~x� ~y) � � implies Lp( ~Fxs � ~F ys ) � �= ppl . (The converse does not holdin general.) Therefore, any Lp-based �-range queries against a set of sequences ~x can be correctlyconverted to Lp-based (�= ppl )-range queries against a set of the corresponding feature vectors ~Fxswithout worrying about the possibility of false dismissals. This is an improvement to the plainusage of the feature vectors, since we have reduced the search range by a factor of ppl .We summarize a general strategy for the whole-sequence matching (Problem 3.1) as follows:1. Extract feature vectors ~Fxs for all ~x 2 SEQ. The number of segments, s, is a system tun-ing parameter as the number of Fourier coe�cients in [5]. (Trailing zeros are padded ifnecessary.)2. Build an index structure on ~Fxs using any of the readily available multi-dimensional accessmethods such as the R-tree. 10



3. For each Lp-based �-range query with a query sequence ~q, extract ~F qs and convert the queryto an equivalent (�= ppl )-range query with ~F qs in the feature space, and perform search onthe index. (l = dL=se)4. Filter out false alarms.Processing subsequence matching queries (Problem 3.2) is more complex. The basic idea isfairly the same as in [14]. We assume that all sequences including query sequences are longerthan a predetermined minimum length `w'. (In this case, however, the length of each individualsequence can vary.) Then, our strategy is the following:1. A sequence ~x is divided into (j~xj � w + 1) sliding windows of �xed length w and extractthe segmented-mean features from them. We use the same value of s as in the case ofwhole-sequence matching.2. The feature vectors form a trail in the s-dimensional feature space. To reduce the storageoverhead and enhance the system performance, we divide them into a few sub-trails based onthe `marginal cost' criterion de�ned in [14], and compute their minimum bounding rectangles(MBRs).3. We repeat the above steps for each ~x 2 SEQ.4. Build an index structure on the MBRs using any of the readily available multi-dimensionalaccess methods such as the R-tree.5. For each Lp-based �-range query with a query sequence ~q,(a) Divide ~q into p(= bj~qj=wc) non-overlapping subsequences, ~qk , 1 � k � p. (Note thatwe can ignore the remaining (j~qj�p �w) elements without compromising the correctnessof the query results.)(b) For each feature vector of ~qk, perform (�= ppl � p )-range search on the index and `OR'the query results.6. Filter out false alarms.Transformations - Data Preprocessing We have shown how to e�ciently process Lp-basedqueries using the proposed feature extraction method. We now turn to our next goal. As foro�set translation and amplitude scaling, let ~y = a � ~x� b with `a' for the scaling factor and `b' forthe o�set value. That is, ~y is the translated and rescaled version of ~x. Then the feature vector of11



~z can be computed as follows:~F ys = hmean(P y1 ); : : : ;mean(P ys )i= h(a�mean(P x1 )� b); : : :(a�mean(P xs )� b)i= a � ~Fxs � bThus, once we have the feature vectors, it is almost straightforward to compute the translatedand rescaled versions.As for time scaling, since extending time axis does not change the mean, the mean featurevector is invariant under time scaling. Let ~z is an extended version of ~x by `c' times for an integerc. That is, zi = xdi=ce. Then,~F zs = hmean(P z1 ); : : : ;mean(P zs )i= �c�mean(P x1 )c ; : : : ; c�mean(P xs )c �= ~FxsThus, we can reuse the same feature vector as-is for the time-extended version. We believe othertransformations such as moving-average [28] can be easily handled likewise.3.2 An Alternative{How to use DWTAs an alternative, we can use the existing feature extraction methods based on orthogonal lineartransforms such as DWT and DFT. In this paper, we focus on DWT, especially `Haar' DWT,since it has been widely accepted as a state-of-the-art method for various database applicationsrecently [23, 33]. We present the algorithm to compute 1-d Haar wavelet coe�cients in Figure 4.(For the theory of wavelet, readers are referred to [9].)Since DWT as well as DFT is an orthogonal linear transform, it rotates the data distributionin a predetermined way. As such, L2 norm is perfectly preserved by the transform, since it isinvariant under rotations. Other Lp norms for p 6= 2 are not preserved. Therefore, we can notuse the DWT-based feature vectors for arbitrary Lp-based query processing.One way to �x the problem is to adjust the search range such that all qualifying sequences areincluded within the search boundary. Suppose ~x0 and ~y0 are the rotated versions of two sequences~x and ~y of length L, respectively. Then, it is not hard to see the following relations hold: (Figure 5describes the idea in the 2-d plane, i.e., L = 2.)L1(~x� ~y) � � =) L2(~x0 � ~y0) � �L1(~x� ~y) � � =) L2(~x0 � ~y0) � pL � �12



Algorithm HaarWaveletCoefficientsInput: X[1,: : :,L], L = 2n for some nOutput: H[1,: : :,L], Haar wavelet coeff. for X[]H[1,: : :,L] := X[1,: : :,L];For (len := L; len >= 2; len := len/2) fFor (i := 1, j := 1; i < len; i := i+2, j := j+1) fS[j] := (H[i] + H[i+1]) / p2;D[j] := (H[i] - H[i+1]) / p2;gFor (i := 1; i <= len/2; i := i+1) fH[i] := S[i];H[i+(len/2)] := D[i];ggReturn H[1,: : :,L];End AlgorithmFigure 4: Algorithm to compute Haar wavelet coe�cientsSimilar rules are possible for Lp norms for 3 � p <1.We convert each L1- and L1-based �-range queries to L2-based queries with search rangesaccording the above conversion rules, and then perform search on the index built on top of theDWT feature vectors. Note that, this way, we can guarantee no false dismissals would occur. Aswe will see in the next section, however, it is not very e�cient except for L2 norm.Relationship between the Haar DWT and the Segmented Means Two types of featurevectors produced by the proposed method and the Haar DWT are closely related to each other.More speci�cally, we have the following theorem.Theorem 3.4 Let ~Hxs denote a feature vector of ~x, composed of the �rst s Haar wavelet coef-�cients. We further assume j~xj = 2n (n > 0) and s = 2m (n � m � 0). Then, the followingequality holds. L2(pl � ~Fxs ) = L2( ~Hxs )where l = j~xj=s = 2n�m. 13
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Figure 6: Examples of SSM and SDWTbased on �-range queries for both whole- and subsequence matching. We compared the proposedmethod and the DWT-based method as well as the sequential scanning method as a sanity checker.All methods were implemented in C programming language. For R-tree, we used DR-tree (v2.5)library developed at the Univ. of Maryland with some modi�cations to handle Lp-based search.As a measure of success, we recorded wall clock time with UNIX `time' command. All experi-ments were performed on a dedicated Sun UltraSparc-1 workstation with a 143MHz CPU, 64MBof memory and SCSI disks (Seagate ST410800N), running SunOS version 5.5 operating system.We present more speci�c information on the experimental setting in the following subsection.4.1 Experimental SettingFor the experiment, we prepared two datasets of sequences. Samples of these time sequences areplotted in Figure 7.� STOCK: The stock dataset contains 675 stocks, each with varying number of daily closingprices. The average length is 1,187. For the whole-sequence matching, we generated �xedlength sequences with 128 samples each. The sample windows overlap by 1=3 of the windowsize. For subsequence matching, we used the dataset as-is.� SYNTH: Additional 30,000 synthetic sequences, with 128 samples each, were generatedusing the random-walk model following [5]. More speci�cally, each sequence was generatedby the following formula. xt = xt�1 + � � ztwhere x0 � U(2; 10), zt � N(0; 1), and � = 0:06, for t = 1; : : : ; 128.We compared the following 3 methods:� SM: Our proposed method based on the segmented means.15
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Time(a) Stock (b) SyntheticFigure 7: Sample Time SequencesDataset Num. of Seq. (Avg.) Seq. Len. Feature Dim.STOCK 675 1,187 4SYNTH 30,000 128 4Table 3: Summary of the Experimental Setting� DWT: The alternative method based on the Haar wavelet transform.� SCAN: The naive sequential scanning method.An important parameter is the dimension of the feature space, i.e., the length of feature vectors.In general, the optimal value depends on the datasets, the feature extraction methods to use, andthe distance functions (Lp norms). We �xed it as 4 because of the following two reasons:� The value was good enough for both SM and DWT methods, a little more in favor of DWT,regardless of the datasets.� Since one of our goals is to re-use the same index structure for all Lp norms, we need to �xit for all values of p.Table 3 summarizes the experimental setting.4.2 Whole Sequence Matching QueriesWe �rst performed Lp-based whole-sequence matching queries. We took 100 sequences randomlyfrom each dataset and used them as the query sequences. We measured the average response time(including both search time and post-processing time). Search ranges were chosen such that theaverage selectivity of query results be 0.1%, 1%, 3%, and 7%, for each value of p = 1; 2;1 andfor each dataset. 16
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(a) Stock (b) SyntheticFigure 8: L1-based whole-sequence matchingThe results of L1-based whole matching queries are presented in Figure 8. The proposed methodis the clear winner for both datasets. Interestingly, DWT method was even slower than the SCANmethod on the stock dataset. For the synthetic dataset, the proposed method achieved 10 timespeedup over the DWT method and 50 time speedup over the naive method at the selectivity of0.1%.
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(a) Stock (b) SyntheticFigure 9: L2-based whole-sequence matchingIn the case of L2-based queries (see Figure 9), the DWT method was slightly faster than theproposed method for the stock dataset. It is, however, expected because DWT is highly optimizedfor L2 norm. For the synthetic dataset, it is almost impossible to distinguish between the proposedmethod and the DWT method and they both scaled up very well.Figure 10 presents the results from L1-based queries. Again, the proposed method is thewinner for both datasets, although the di�erence between the proposed method and the DWTmethod is small in the stock dataset. For the synthetic dataset, they both scaled very well andthe proposed method consistently outperformed the competitor.17
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(a) Stock (b) SyntheticFigure 10: L1-based whole-sequence matchingAs a summary, we conclude that the proposed method is the clear winner in all cases exceptfor L2-based queries against the stock dataset. But the DWT method performed very poorly forL1-based queries.4.3 Subsequence Matching QueriesWe next performed Lp-based subsequence matching queries. For the stock dataset, we re-usedthe same query sequences that had been used for the whole matching queries. For the syntheticdataset, we used the �rst 64 values of the query sequences from the whole matching experiment.Hence the ratios between the query length and the data length are 128:1187 for the stock datasetand 64:128 for the synthetic dataset. The search ranges were chosen in the same way as in theprevious experiment.
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(a) Stock (b) SyntheticFigure 11: L1-based subsequence matchingIn Figure 11, presented are the results from L1-based subsequence queries. We observed that,18



again, the proposed method is the clear winner for both datasets and it scales very well even atthe relatively hight selectivity (7%). The DWT performed poorly for both datasets. At highestselectivity, it almost converged to the naive method.
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(a) Stock (b) SyntheticFigure 12: L2-based subsequence matchingIn Figure 12, L2-based query results are shown. Yet gain, the DWT method performed slightlybetter than the proposed method on the stock dataset, but the di�erence was small. For thesynthetic dataset, the proposed method outperformed the DWT method just a little after 1% ofselectivity. On both datasets, they scaled very well.
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(a) Stock (b) SyntheticFigure 13: L1-based subsequence matchingIn the case of L1 (Figure 13), the results are not much di�erent from the other cases and theproposed method consistently outperformed the competitor.Summary In Table 4, we present relative response time of the proposed method w.r.t. theDWT-based method for the 3%-selectivity queries. For L1-based queries, the proposed methodoutperforms the DWT-based method by big margins, in all datasets. For L2-based queries, the19



Whole SubsequenceDataset L1 L2 L1 L1 L2 L1STOCK 0.23 1.1 0.93 0.43 1.05 0.88SYNTH 0.12 1.03 0.7 0.18 0.95 0.74Table 4: Summary: relative response time (TSM=TDWT ) for 3%-selectivity queriesDWT-based is slightly faster as we anticipated. Note, however, the proposed method outperformsin subsequence queries against the synthetic dataset. For L1-based queries, the proposed methodconsistently outperforms by the competitor by up to 30% margin. Overall, we conclude that theproposed method is the winner in the competition.5 ConclusionThe major contribution of the paper is two-folds:� Multi-modality Support: No single model of similarity is suitable for every application.Sometimes several similarity models may be required for the same database of sequences,depending on the di�erent perspectives of di�erent users. We addressed this problem bysupporting arbitrary Lp norms for any value of p = 1; 2; : : : ;1, because they are the mostpopular class of dissimilarity measures and, also, they can be used as the building blocksfor more complex ones. No previous work has proposed a single framework to support thismulti-modal query processing for time sequences.� E�cient Indexing: For e�cient query processing, we proposed a new uni�ed indexingscheme which provides the following advantages over previous approaches.{ All Lp norms are supported simultaneously.{ Indexing for fast retrieval is supported.{ The same index structure can be re-used for di�erent Lp norms.{ It is easy to incorporate such data preprocessing techniques as `o�set translation',`amplitude scaling', and `time scaling'.We showed the soundness of our method mathematically. We also explained in detail how toe�ciently process both the whole-sequence and the subsequence matching queries in our uni�edindexing scheme. Through extensive experiments, we veri�ed that our method is much moree�cient that the state of art. Our method achieved up to 10 time speedup over the state of theart (DWT) and scaled up very well for all Lp norms on both the real and the synthetic datasets.20



Further research will focus on extending the proposed method to a broader class of similaritymodels.
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