CMU 15-826

Evolution of the Graphs

- How do graphs evolve over time?
- Conventional Wisdom:
 - Constant average degree: the number of edges grows linearly with the number of nodes
 - Slowly growing diameter: as the network grows the distances between nodes grow
- Our findings:
 - Densification Power Law: networks are becoming denser over time
 - Shrinking Diameter: diameter is decreasing as the network grows
 28 Jure Leskovec (ure@cs.cmu.edu)

CMU 15-826

Outline

- General patterns and generators
- Graph evolution Observations
 - Densification Power LawShrinking Diameters
- Proposed explanation
 - Community Guided Attachment
 - Forest Fire Model
- Proposed graph generation model
 Kronecker Graphs
- Conclusion and Open questions

Patterns Hold in Many Graphs

- All these patterns can be observed in many real life graphs:
 - World wide web [Barabasi]
 - On-line communities [Holme, Edling, Liljeros]
 - Who call whom telephone networks [Cortes]
 - Autonomous systems [Faloutsos, Faloutsos]
 - Internet backbone routers [Faloutsos, Faloutsos]
 - Movie actors [Barabasi]
 - Science citations [Leskovec, Kleinberg, Faloutsos]
 - Co-authorship [Leskovec, Kleinberg, Faloutsos]
 - Sexual relationships [Liljeros]
- Click-streams [Chakrabarti]

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></table-row></table-row></table-row><list-item></table-row><list-item></table-row><list-item>

- Choose a random vertex and "copy" its links (neighbors)
- Generates power-law degree distributions

13

Generates communities

CMU 15-826

Why is all this important?

Gives insight into the graph formation process:

- Anomaly detection abnormal behavior, evolution
- Predictions predicting future from the past
- Simulations of new algorithms where real graphs are hard/impossible to collect
- Graph sampling many real world graphs are too large to deal with

Jure Leskovec (jure@cs.cmu.edu)

"What if" scenarios

Densification - Possible Explanation

- Existing graph generation models do not capture the Densification Power Law and Shrinking diameters
- Can we find a simple model of local behavior, which naturally leads to observed phenomena?
- Yes! We present 2 models:
 - Community Guided Attachment obeys Densification
 - Forest Fire model obeys Densification, Shrinking diameter (and Power Law degree distribution)
- CMU 15-826 Jure Leskovec (jure@cs.cmu.edu)

Densification Power Law (2) • <u>Theorem:</u> The Community Guided Attachment leads to Densification Power Law with exponent $a = 2 - \log_b(c)$ • a ... densification exponent $E(t) \propto N(t)^a$ • b ... community tree branching factor • c ... difficulty constant, $1 \le c \le b$

How do authors identify references?

- 1. Find first paper and cite it
- 2. Follow a few citations, make citations
- 3. Continue recursively

CMU 15-826

4. From time to time use bibliographic tools (e.g. CiteSeer) and chase back-links

Recap

CMU 15-826

- We have seen static graph patterns
- We observed two new temporal graph patterns
 - Densification Power Law
 - Shrinking Diameter
- We found intuitive explanation
- Question: How can we generate a realistic graph?
 - given the number of nodes N and edges E

Kronecker Product – Definition

The Kronecker product of matrices A and B is given by

 $\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} \dots & a_{n,m}\mathbf{B} \end{pmatrix}$

We define a Kronecker product of two graphs as a Kronecker product of their adjacency matrices Jure Leakower (jurges cruced)

Graph mining

Why fitting graph modes?

- Parameters tell us about the structure of a graph
- Extrapolation: given a graph today, how will it look in a year?
- Sampling: can I get a smaller graph with similar properties?
- Anonymization: instead of releasing real graph (e.g., email network), we can release a synthetic version of it

/ec (jure@cs.cmu.edu)

54

CMU 15-826

- We propose a family of Kronecker Graph generators
- We use the Kronecker Product
- We introduce a randomized version Stochastic Kronecker Graphs
- We fit Kronecker graphs to real data
- And show Kronecker generates graphs with properties similar to those found in real graphs

CMU 15-826

Propagation of information and influence in networks

Joint work with: Lada Adamic, University of Michigan Bernardo Huberman, HP Labs Natalie Glance and Matthew Hurst, Nielsen Buzzmetrics Mary McGlohon and Christos Faloutsos

Jure Leskovec (jure@cs.cmu.edu)

58

Variable	transformation	Coefficient	
const		-0.940 ***	
# recommendations	ln(r)	0.426 ***	
# senders	ln(n _s)	-0.782 ***	
# recipients	ln(n _r)	-1.307 ***	
product price	ln(p)	0.128 ***	
# reviews	ln(v)	-0.011 ***	
avg. rating	ln(t)	-0.027 *	
R ²		0.74	
significance at the	 0.01 (***), 0.05 (**) and	0.1 (*) levels	
CMU 15-826 Jure Leskovec (jure@cs.cmu.edu)			

products most suited to viral marketing

pricey products

CMU 15-826

rating doesn't play as much of a role

Jure Leskovec (jure@cs.cmu.edu)

78

Subtracting from both sides, and dividing by
$$N_t$$
, we have
$$\frac{N_{(t+1)}-N_t}{N_t}=p_t-1$$

83

<section-header><section-header><list-item><list-item><list-item><list-item><section-header>

Comparing signatures

- First compare simple signatures
- Compare the graphs with the same simple signature using more and more complicated (expensive/accurate) signatures
- At the end (for small graphs) we perform exact isomorphism resolution
- Since we are interested in building blocks of cascades which are generally small, the precision for small graphs is more important

Jure Leskovec (jure@cs.cmu.edu)

General observations:			high Iow
DVDs have the richest cascades (most		cascades	different
recommendations, most densely linked) Books have small cascades Music is 3 times larger	Book	122,657	959
	DVD	289,055	87,614
	Music	13,330	158
	Video	1,928	109
than video but does not have much variety in cMU 15828	cs.cmu.edu)	number of all "words"	vocabulary size 94

Frequent cascade subgraphs (2) • is the most common cascade subgraph It accounts for ~75% cascades in books, CD and VHS, only 12% of DVD cascades • is 6 (1.2 for DVD) times more frequent than • For DVDs • is more frequent than • Chains (••••) are more frequent than • is more frequent than a collision (•••) (but collision has less edges) • Late split (••••) is more frequent than

Conclusions

Overall

- incentivized viral marketing contributes marginally to total sales
- occasionally large cascades occur

Observations for future diffusion models

- purchase decision more complex than threshold or simple infection
- influence saturates as the number of contacts expands
- links user effectiveness if they are overused

Conditions for successful recommendations

- professional and organizational contexts
- discounts on expensive items
- small, tightly knit communities

Conclusions (2)

- Cascades are a form of collective behavior
- From our experiments we found:
 - Most cascades are small, but large bursts can occur
 - Cascade sizes follow a heavy-tailed distribution
 - Frequency of different cascade subgraphs depends on the product type
 - Cascade frequencies do not simply decrease monotonically for denser subgraphs
 - But reflect more subtle features of the domain in which the recommendations are operating

Jure Leskovec (jure@cs.cmu.edu)

