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Abstract. We consider the problem of reconstructing a maximally par-
simonious history of network evolution under models that support gene
duplication and loss and independent interaction gain and loss. We intro-
duce a combinatorial framework for encoding network histories, and we
give a fast procedure that, given a set of duplication histories, in practice
finds network histories with close to the minimum number of interaction
gain or loss events. In contrast to previous studies, our method does not
require knowing the relative ordering of unrelated duplication events.
Results on simulated histories suggest that common ancestral networks
can be accurately reconstructed using this parsimony approach.

1 Introduction

High-throughput experiments have revealed thousands of regulatory and protein-
protein interactions that occur in the cells of present-day species. To understand
why these interactions take place, it is necessary to view them from an evo-
lutionary perspective. In analogy with ancestral genome reconstruction [22], we
consider the problem of predicting the topology of the common ancestor of path-
ways, complexes, or regulatory programs present in multiple extant species.

Generating plausible ancestral networks can help answer many natural ques-
tions that arise about how present-day networks have evolved. For example, joint
histories can be used to compare the conservation and the route to divergence
of corresponding processes in two species. This allows us to more finely quan-
tify how modularity has changed over time [15] and how interactions within
a protein complex may have reconfigured across species starting from a single
shared state [24]. Such analysis can also be integrated to develop better network
alignment algorithms and better network-based phylogenies [11, 27, 8, 9, 16], and
it can be used to study robustness and evolvability [1, 10, 26]. Further, inferred
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changes in metabolic networks can be linked to changes in the biochemical envi-
ronment in which each species has evolved, and this can reveal novel mechanisms
of ecological adaptation [4, 3]. Finally, comparing network histories inferred us-
ing different model parameters can be used to estimate the likelihoods of various
evolutionary events [18, 21].

There has been some recent work on reconstructing ancestral interactions.
Gibson and Goldberg [13] presented a framework for estimating ancestral pro-
tein interaction networks that handles gene duplication and interaction loss us-
ing gene trees reconciled against a species phylogeny. However, their approach
assumes that interaction losses occur immediately after duplication and does
not support interaction gain outside of gene duplication. These assumptions are
limiting because interaction loses may occur well after duplication, and inde-
pendent gains are believed to occur at non-trivial rates [17]. Dutkowski and
Tiuryn [8] provided a probabilistic method for inferring ancestral interactions
with the goal of improved network alignment. Their approach is based on con-
structing a Bayesian network with a tree topology where binary random variables
represent existence or non-existence of potential interactions. A similar graphical
model was proposed by Pinney et al. [25], who applied it to inferring ancestral
interactions between bZIP proteins. In the former method, interaction addition
and deletion is assumed to occur only immediately following a duplication or
speciation event. Further, both methods assume the relative ordering of duplica-
tion events is known even between events in unrelated homology groups. Pinney
et al. [25] also explore a parsimony-based approach [19] and find it to work well;
however, it too assumes a known ordering of unrelated duplication events. The
main drawback of these approaches is that the assumed ordering comes from
sequence-derived branch lengths, which do not necessarily agree with rates that
would be estimated based on network evolution [31]. This motivates an approach
such as we describe below that does not use branch lengths as input.

Zhang and Moret [31, 30] use a maximal likelihood method to reconstruct
ancestral regulatory networks as a means to improve estimation of regulatory
networks in extant species. Mithani et al. [20] study the evolution of metabolic
networks, but they only model the gain and loss of interactions amongst a fixed
set of metabolites, whereas we also consider node duplication and loss encoded by
a tree. Navlakha and Kingsford [21] present greedy algorithms for finding high-
likelihood ancestral networks under several assumed models of network growth.
They applied these methods to a yeast protein interaction network and a social
network to estimate relative arrival times of nodes and interactions and found
that the inferred histories matched many independently studied properties of
network growth. This attests to the feasibility of using networks to study evolu-
tion. The authors, however, only consider a single network at a time, and there
is no guarantee that independent reconstruction of two networks will converge
to a common ancestor.

Here, we introduce a combinatorial framework for representing histories of
network evolution that can encode gene duplication, gene loss, interaction gain
and interaction loss at arbitrary times and does not assume a known total order-
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ing of duplication events. We show that nearly-minimal parsimonious histories
of interaction gain and loss can be computed in practice quickly given a dupli-
cation history. In simulated settings, we show that these parsimonious histories
can be used to accurately reconstruct a common ancestral regulatory network
of two extant regulatory networks.

2 A framework for representing network histories

Any natural model of network evolution will include events for gene duplication,
gene loss, interaction gain, and interaction loss. Many such growth models have
been studied (e.g. [6, 29, 23, 14, 1, 30]). We now describe how these events can be
encoded in a history graph.

Consider a set V of proteins or genes (henceforth “nodes”) descended from a
common ancestor by duplication events. Those duplication events can be encoded
in a binary duplication tree T with the items of V as the leaves. An internal node
u in T represents a duplication event of u into its left and right children, uL

and uR. In this representation, after a duplication event, the node represented
by u conceptually does not exist anymore and has been replaced by its two
children. The leaves of a duplication tree are labeled Present or Absent. Absent
leaves represent products of duplication events that were subsequently lost. A
collection of such trees is a duplication forest F .

The gain and loss of interactions can be represented with additional non-tree
edges placed on a duplication forest. A non-tree edge {u, v} represents an edge
flip event, where the present / absent state of the interaction between u and v
is changed to Present if the interaction is currently Absent or to Absent if the
interaction is currently Present. Let Pu and Pv be the paths from nodes u and
v to the root. An interaction exists between u and v if there are an odd number
of such flip non-tree edges between nodes in Pu and Pv. Every non-tree edge
between Pu and Pv, therefore, represents alternatively interaction creation or
deletion between nodes u and v in the evolution of the biological network.

A graph H consisting of the union of a duplication forest and flip non-tree
edges is a network history. A history H constructs a graph G when the Present
leaves of the duplication forest in H correspond to the nodes of G and the flip
edges of H imply an interaction between u and v if and only if {u, v} is an
interaction in G. See Figure 1 for an example history.

Not all placements of non-tree edges lead to a valid network history. The
interaction histories have to be consistent with some temporal embedding of the
tree. Let tcu and tdu be respectively the time of creation and duplication of node
u, Naturally, tcu < tdu, tdu = ∞ if u is a Present leaf, and if v is the child of u,
then by definition we have

tcu < tdu = tcv < tdv. (1)

If {u, v} is a flip edge, then the time t{u,v} of appearance of this edge must satisfy

tcu ≤ t{u,v} < tdu and tcv ≤ t{u,v} < tdv, (2)
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Fig. 1: A duplication forest (solid edges at top) with the non-tree edges (dashed)
necessary to construct G1 and G2 (shown at bottom). Nodes 1, 2, and 3 represent
the 3 homology groups present in the ancestral graph. Node 14 was lost. As an
example of the connectivity induced by the non-tree edges, consider edge (27, 18)
in G2 which is implied by the directed non-tree edge from (3, 2). However, the
reverse edge, (18, 27), which is implied by (2, 3), does not exist because its state
is flipped by (8, 20).

because an event between u and v can only occur when both u and v exist. A
history graph H is said to be valid if there exist tcu, t

d
u for every node u such that

conditions (1) and (2) are satisfied for every non-tree edge.
Whether a particular history is valid can be checked combinatorially using the

following alternative characterization of validity. A k-blocking loop is a set of flip
edges {{ui, vi}}0≤i<k such that ui+1 is an ancestor of vi in the tree for 0 ≤ i < k
(where the index i + 1 is taken modulo k). See Figure 2 for examples. Blocking
loops are not permitted in valid histories and, conversely, the non-existence of
blocking loops implies that a history is valid, as shown in Prop. 1.

Proposition 1 A history graph H is valid if and only if it does not have any
blocking loop of any length.

Proof. Suppose there is a k-blocking loop. Using the same notation as above, we
have the inequalities

tdu0
> t{u0,v0} ≥ tcv0 ≥ tdu1

> t{u1,v1} ≥ . . . ≥ tcvk−1
≥ tdu0

,

which is a contradiction. Hence, to not have any blocking loops is necessary.
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(a) 1 (b) 2 (c) 3

Fig. 2: Blocking loops of size 1, 2 and 3. The solid lines represent a subset of the
tree T . The dashed lines are non-tree edges representing interaction flip events.

Conversely, suppose that H does not have any blocking loops. We assign
times to the nodes and non-tree edges using a modified depth-first search (DFS)
algorithm following the tree edges only. First, the root of the tree is given a
creation time of 0. During DFS, just before calling DFS recursively on the left
and right children of a node u, we set the duplication time tdu = max{max t{u,v}+
1, tcu + 1}, where the second max is taken over all non-tree edges adjacent to u.
Also, we set the creation time of the children tcuL

= tcuR
= tdu.

When DFS visits a node u with some edge {u, v} where v has not been
assigned a creation time, u is added to a set Q and DFS is not called recursively
on the children of u. The main loop consists of calling DFS again on all the
nodes in Q until this set is empty. By construction, the algorithm assigns times
which satisfy conditions (1) and (2). Therefore, if the algorithm terminates, H
is a valid history.

At each main iteration, the nodes in the set Q are all the nodes u for which
tcu is set but tdu is not set. It suffices to show that at each such iteration, at least
one of the nodes in the set Q will not be added again to Q by a call to DFS.
In other words, for at least one node u ∈ Q, every non-tree edge {u, v} has tcv
set. For a contradiction, suppose not. Take u1 ∈ Q and {u1, v1} with tcv1 not
set. There is necessarily an ancestor of v1, call it u2, which is in Q. Similarly,
take {u2, v2} with tcv2 not set and its ancestor u3 ∈ Q, and so on. Because Q is
finite, uj = ui for some j > i, and we constructed a blocking loop. Hence, the
algorithm must terminate. ut

3 Parsimonious reconstruction of a network history

Traditional phylogenetic inference algorithms and reconciliation between gene
and species trees can be used to obtain duplication and speciation histories [5, 7,
2]. What remains is the reconstruction of interaction gain and loss events. This
leads to the following problem:

Problem 1. Given a duplication forest F and an extant network G, find H, a
valid history constructing G, with a minimum number of flip edges.

We will show that nearly optimal solutions to this problem for a large range of
instances can be solved in polynomial time in practice. Whether Problem 1 is
NP-hard or admits a polynomial-time algorithm for all instances remains open.
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3.1 A fast heuristic algorithm

The challenge of Problem 1 comes from avoiding the creation of blocking loops. A
polynomial-time algorithm can find a minimum set of flip edges that reconstructs
a graph G and does not contain 1- and 2-blocking loops but allows longer blocking
loops. We define an interaction encoding of G = (V,E) as a function fG : V ×
V → {0, 1} such that: fG(u, v) = 1 if {u, v} is an interaction in G and fG(u, v) =
0 otherwise. We omit the subscript on fG if G is clear from the context.

The following intertwined dynamic programming recurrences find the mini-
mum number of flip edges required for H to construct a given graph G if blocking
loops of length ≥ 3 are allowed. First, S(u, f) finds the minimum number of flip
edges for the subtree rooted at u and interaction encoding f :

S(u, f) = S(uL, f) + S(uR, f) + A(uL, uR, f). (3)

The expression A(u, v, f) gives the minimum number of flip edges that should
be placed between the subtree rooted at u and the subtree rooted at v. This can
be computed using the recurrence:

A(u, v, f) = min


A(uL, v, f) + A(uR, v, f)

A(u, vL, f) + A(u, vR, f)

1 + A(uL, v, f̄) + A(uR, v, f̄)

1 + A(u, vL, f̄) + A(u, vR, f̄).

(4)

In the above, if one of u or v is a leaf but the other is not, the options that look
at non-existent children are disallowed.

The function f̄ in Eqn. (4) is defined as 1− f and thus represents a function
such that f̄(x) has opposite parity from f(x) for all x. The A recurrence considers
two possible options: (1) We connect u and v with a non-tree edge, this costs
us 1 and flips the parity of all interactions going between the subtree rooted at
u and the subtree rooted at v; or (2) We do not connect u and v with a flip
edge. This costs 0 and keeps the parity requirement the same. Regardless of the
choice to create an edge, since we are not allowed to have a 2-blocking loop,
either (a) we possibly connect u to some descendant of v (and do not connect v
to a descendant of u) or (b) we possibly connect v to some descendant of u (and
do not connect u to a descendant of v).

The base case for the S recurrence when u is a leaf and the base case for the
A recurrence when u and v are leaves are:

S(u, f) = 0 and A(u, v, f) = f(u, v).

The minimum number of flip edges needed to turn a duplication forest F
into a history constructing G (allowing blocking loops of ≥ 3) is then given by∑

r S(r, dG) +
∑

r,q A(r, q, dG), where dG is the interaction encoding of G, and
the sums are over roots r, q of the trees in F . Standard backtracking can be used
to recover the actual minimum edge set. The dynamic program runs in O(n2)
time and space because only two functions f are ever considered: dG, and d̄G.
This yields ≈ n × n × 2 subproblems, each of which can be solved in constant
time.
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3.2 Removing blocking loops

If the solution contains blocking loops of length ≥ 3, one can choose an edge
in some blocking loop, forbid that edge from appearing in the solution, and
rerun the dynamic program. Because there are O(n2) possible non-tree edges,
iterating this procedure will terminate in polynomial time. In practice, we can
choose to exclude the non-tree edge that participates in the largest number of
loops. We repeat this until a valid solution is obtained. In the worst case, one may
obtain a solution where all non-tree edges are placed at leaves, but in practice
long blocking loops do not often arise, and the obtained solutions are close to
optimal (see Sec. 4.2).

3.3 Reconstruction of a common ancestor of two graphs

Given extant networks of several species, in addition to the reconstructed history,
we seek a parsimonious estimate for their common ancestor network. Specifically,
given extant networks G1 and G2, with interaction encodings d1 and d2, and
their duplication forests F1 and F2, we want to find an ancestral network X =
(VX , EX) such that the cost of X evolving into G1 and G2 after speciation is
minimized. VX is the set of roots of the homology forests. We assume that the
networks of the two species evolved independently after speciation. Therefore,
we can use the recurrence above applied to F1 and F2 to compute AF1

(r, q, d1)
and AF2(r, q, d2) independently for r, q ∈ VX , and then select interactions in X
as follows. EX of X is given by the pairs r, q ∈ VX × VX for which creating an
interaction leads to a lower total cost than not creating an interaction. Formally,
we place an interaction {r, q} in EX if

1 + AF1(r, q, d̄1) + AF2(r, q, d̄2) < AF1(r, q, d1) + AF2(r, q, d2). (5)

Rule (5) creates an interaction in X if doing so causes the cost of parsimonious
histories inferred for G1 and G2 between the homology groups associated with
r and q to be smaller than if no interaction was created.

3.4 Modifications for self-loops

Self-loops (homodimers) can be accommodated by modifying recurrence (3):

S′(u, f) = min

{
S′(uL, f) + S′(uR, f) + A(uL, uR, f)

1 + S′(uL, f̄) + S′(uR, f̄) + A(uL, uR, f̄).
(6)

The intuition here is that paying cost 1 to create a self-loop on node u creates
(or removes) interactions, including self-loops, among all the descendants of u.

3.5 Modifications for directed graphs

Finally, the algorithm can be modified to handle evolutionary histories of di-
rected graphs. For this, only the recurrence A need be modified. When com-
puting A′(u, v, f), a non-tree edge can be included from u to v, from v to u,
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both, or neither. Each of these cases modifies the function f in a different way.
Specifically:

A′(u, v, f) = min



0 + A′(uL, v, f) + A′(uR, v, f)

1 + A′(uL, v,
←
f ) + A′(uR, v,

←
f )

1 + A′(uL, v,
→
f ) + A′(uR, v,

→
f )

2 + A′(uL, v,
↔
f ) + A′(uR, v,

↔
f ),

...

where the vertical ellipsis indicates the symmetric cases involving vL and vR,

and where
→
f ,
←
f ,
↔
f are defined, depending on u and v, as follows:

→
f (x, y) = min

{
1− f(x, y) if x ∈ ST(u) and y ∈ ST(v)

f(x, y) otherwise
(7)

↔
f (x, y) = min

{
1− f(x, y) if x ∈ ST(u) and y ∈ ST(v) or vice versa

f(x, y) otherwise,
(8)

with
←
f defined analogously to

→
f . Here, ST(u) indicates the set of nodes in the

subtree rooted at u.
The heuristic also can be extended to handle different costs for interaction

addition and interaction deletion by changing the constants in the recurrences
to be functions dependent on f .

4 Results

4.1 Generating plausible simulated histories

We use a degree-dependent model (DDM) to simulate an evolutionary path from
a putative ancestral network to its extant state. The model simulates node dupli-
cation, node deletion, independent interaction gain, and independent interaction
loss with given probabilities Pndup, Pnloss, Pegain and Peloss, respectively. The
nodes or edges involved in a modification are chosen probabilistically based on
their degrees (as in [28]) according to the following expressions:

P(u | node duplication) ∝ 1/ku P(u | node loss) ∝ 1/ku (9)

P((u, v) | interaction gain) ∝ kou P((u, v) | interaction loss) ∝ 1/kou, (10)

where kou is the out-degree of a node u, and ku is the total degree. At each
time step, the distribution of possible modifications to the graph is calculated
as P(modification) = PoperationP(object | operation). Nodes with out-degree of 0
are removed. Varying parameters Pndup, Pnloss, Pegain and Peloss can produce a
wide variety of densities and sizes. We also consider a degree-independent model
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(DIM) in which the four conditional probabilities in Eqns. (9) and (10) are all
equal.

The DDM model is theoretically capable of producing evolutionary trajec-
tories between any two networks while incorporating preferential attachment to
the source node and random uniform choice of the target node. Furthermore,
choosing a node for duplication or loss in inverse proportion to its degree favors
an event in inverse relation to its expected disruption of the network.

We also consider a model of regulatory network evolution by Foster et al. [12],
which is based on gene duplication, with incoming and outgoing interactions kept
after duplication as in other models (Pinkeep and Poutkeep probabilities respec-
tively). New edges are added with probability Pinnovation.

In all of the network evolution models, we started with a random connected
seed graph that has 10 nodes and 25 interactions. We evolved it to X by 200
operations after which we introduce a speciation event, and then both G1 and
G2 evolve from X by an additional 200 operations each. To generate more bi-
ologically plausible ancestral graphs, instances were kept only if the ancestral
graph X had an in-degree that fit an exponential distribution with parameter
between 1.0 and 1.2 or an out-degree that was scale-free with parameter between
1.8 and 2.2.

4.2 Reconstructing histories

Optimality of loop breaking. The greedy procedure to break blocking loops pro-
duces histories that are very close to optimal. We generated 1400 networks using
the DDM model with the range of parameters on the x-axis of Fig. 3a. In the
vast majority of cases (1325 out of 1400), either no loop breaking is required,
or the solution discovered after greedily breaking all loops has the same cost as
the original solution. In these cases, therefore, the method returned a provably
maximally parsimonious set of interaction modification events. In the remain-
ing 75 cases (5.4%), greedily removing blocking loops increased the number of
interaction modifications by no more than 10 (< 2% of the initial number of in-
teraction modification events). Since the initial solution provides a lower bound
on the optimal, we can verify that the greedy procedure always found a solu-
tion within 2% of the optimal (and perhaps even better). Thus, it seems that
in practice, while blocking loops occur, the greedy procedure does a good job of
eliminating them without increasing the number of events significantly.

Effect of growth model and its parameters. Modeling the evolutionary dynamics
of a regulatory network is still an active topic of research. We therefore experi-
mented with three different network models (Sec. 4.1). Despite their differences,
high precision and recall (measured as the F1 score) can be obtained for all of
them for many choices of their parameters (Fig. 3a-c). Very good performance
can be achieved under the general model presented above whether degree distri-
butions are taken into account (Fig. 3a) or not (Fig. 3b) when selecting nodes
and interactions to modify. In these cases, for most parameter choices, precision
is close to 1.0, meaning every interaction predicted to be in the ancestor, in fact,
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(a) Degree-dependent model (Sec. 4.1)
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(b) Degree-independent model
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(c) Foster et al. [12] model
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Fig. 3: (a-c) Effect of model parameters on reconstruction accuracy under three
different models. “Prob” in (c) is Pinnovation. (d) Effect of evolutionary distance
(number of network modification operations) on the quality of the ancestral
network reconstruction. In both plots, boxes show 1st and 3rd quartile over
100 networks with median indicated by a line. Pentagons show the median if
interactions incident to nodes lost in both lineages are not considered.

was. Recall is often lower. The Foster et al. [12] model, with its heavy reliance on
duplication events and lack of node loss events, tends to be the simplest under
which to reconstruct the ancestral graph (Fig. 3c).

The largest factor leading to poorer performance is lower recall caused by
gene losses. If all descendants of a gene are lost in both extant networks, it is
not possible to reconstruct interactions incident to it. If these interactions are
excluded from the computation of recall, the F1 score often improves dramati-
cally. Median F1 scores excluding these interactions are shown as pentagons in
Fig. 3.
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Robustness to evolutionary divergence. Naturally, the ability to recover the an-
cestral network degrades as time passes and the extant networks diverge. How-
ever, the degradation is slow (Fig. 3d, using the degree-dependent model with
parameters fixed at Pndup = 0.35, Pnloss = 0.05, Pegain = 0.3, and Peloss = 0.3).
When the distance is small, we are almost always able to recover the ancestral
network well, as illustrated by the high F1-scores and small interquartile ranges
in Figure 3d. Even when the distance between the ancestral and extant networks
is large (300) compared to the average ancestral network size (55), we obtain
an F1-score of 0.72 (0.77 when homology groups lost in both lineages are not
considered).

5 Conclusion

We have presented a novel framework for representing network histories involv-
ing gene duplications, gene loss, and interaction gain and loss for both directed
and undirected graphs. A combinatorial characterization for valid histories was
given. We have shown that a fast heuristic can recover optimal histories in a
large majority of instances. We further provide evidence that, even with a prob-
abilistic, weighted, generative model of network growth, a parsimony approach
can recover accurate histories.
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