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Ancestral Network Reconstruction

What?
Reconstruct the biological networks — regulatory, protein
interaction or signaling pathways — of ancestral species

Why?

I Study the evolution of functional modules

I Learn what interactions are conserved

I Understand robustness & evolvability of
biological networks

I Improve network-based alignment & phylogeny

?
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Related Work

Reversing Network Growth:

Gibson and Goldberg (2009) – Multiple networks, not parsimony or ML

Navlakha and Kingsford (2011) – Single network, greedy model reversal

Ancestor Reconstruction (Maximum Likelihood, require total ordering):

Pinney et al. (2007)

Dutkowski and Tiuryn (2007)

Zhang and Moret (2008/10) – Used to improve regulatory inference

Metabolic Network Reconstruction:

Mithani et al. (2009) – Fixed node set; Gibbs sampling
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Represent Network Evolution Histories
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Leaf nodes exist in the extant network

Duplication tree specifies (partial) time constraints
Child nodes exist after their ancestors

Edges between leaf nodes represent extant interactions

How do we encode ancestral interactions?
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Encoding Ancestral Interactions

Assume a duplicate inherits its
parents interactions

Non-tree edges between ancestral
nodes show how interactions flip
on and off

Flip (on)

DEC BA
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Encoding Ancestral Interactions
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parents interactions
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Encoding Ancestral Interactions

Assume a duplicate inherits its
parents interactions

Non-tree edges between ancestral
nodes show how interactions flip
on and off

Flip (on)

Flip (off)

DEC BA

Flip (on)

A set of flips that reconstructs the extant networks encodes a
possible history of interaction gain and loss
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Encoding Ancestral Interactions

Flip (on)

Flip (off)

DEC BA

Flip (on)

For any pair (u, v) of nodes in the trees and paths pu and pv from u
and v to their (possibly distinct) roots, the parity of flips between
these paths encodes the state of the inferred edge

Even =⇒ no edge, odd =⇒ edge
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Not all sets of flips (histories) are valid
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2-blocking loop

3-blocking loop
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1-blocking loop

A ceases to exist here, 
after it duplicates

The duplication of A depends on
the duplication of B and vice-versa

Blocking loops imply that the duplication 
events can't be consistently ordered while

respecting the inferred interactions

A history H is valid ⇐⇒ it contains no blocking loops
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Given: a duplication forest F and extant networks G1 and G2

Find: H — a valid interaction history reconstructing G1 and G2,
with a minimum cost set of edge flips (i.e. the most
parsimonious solution).

Despite the exponential number of flip encodings constructing G1

and G2, we can discover a maximally parsimonious set of flips in
O(N2) time.

Duplication forest:

I Trees explain node duplication
and node loss

I Leaves in extant networks,
internal nodes in ancestors

Interaction encoding:

I Non-tree edges represent
interactions

I Edge gain/loss affects
descendants
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Basic idea: Recurse down the tree, finding the minimum cost set of
edge flips that construct the extant networks

At each internal node, decide:

Is it better (lower cost) to add an edge here or separately in
subtrees?

A B A B

 <
?

We avoid 2-blocking loops by design

Algorithm recurses into either the left or right subtree; never both
simultaneously
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Handling Multiple Graphs

To infer the ancestral interactions using data from multiple graphs:

Lower cost to add an interaction in the ancestor or separately in the
extant species?
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Same as single-graph DP step, except don’t consider flips between
species
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Breaking Blocking Loops

Blocking loops of order ≥ 3 handled post-hoc

If there are no blocking loops, we’ve found the optimal solution

while any blocking loop ` exists:

e = some edge of `
Forbid e
Re-run the dynamic program X

Gives us an upper bound on ∆(OPT )

Loop-free solution is at least as costly as initial (loopy) solution
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Benefits of Our Approach

I Can encode directed & undirected networks

PPI and regulatory networks, signaling pathways

I Can encode networks both with and without self-loops

I Does not require branch lengths (total ordering of duplications)

I Can handle asymmetric edge creation and deletion costs
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Experimental Setup (Synthetic)

Consider 3 models to generate synthetic regulatory networks

1) Foster, Kauffman, and Socolar 2006:
Based on node duplication
In & Out edges removed probabilistically after duplication
Nodes lost only when they have no incident edges

2a) Degree-independent variant

2b) Degree-dependent variant
}

General model:
Arbitrary edge gain, loss
Node duplication
Arbitrary node loss

Compute F1-Score over 100 trials for each choice of parameters
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Foster model (1)
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Degree-independent model (2a)

N



Degree-dependent model (2b)
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Summary of Performance on Synthetic Data

Performance is generally good

Arbitrary node loss has the largest single effect:

This effect can be mitigated by considering more extant species

Blocking loops of size ≥ 3 are rare in practice:

Occurred in < 2% of all of our test cases

Even when they occur, often find a loop-free sol. of the same cost
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Real bZIP PPI

bZIP PPI analyzed in the work of Pinney et al. (PNAS 2007)

“Ground truth”: ancestral interactions predicted using sequence

Reconstruction of ancestral Teleost network:

Pinney et al. Our algorithm
Maximum Likelihood Parsimony

Precision 0.68 0.78
Recall 0.88 0.90

F1-Score 0.77 0.84

Simple extension of our algorithm to arbitrary # of extant species
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Comparison of Inferred Edges

23 42167

Our Predicitons

Pinney et al. Predictions

Most predictions are the same

We make fewer total predictions:

But more of them are correct

Consider a larger space of histories

Not constrained by edge lengths
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Conclusion & Future Work

Parsimony-based reconstruction performs well
On both real & synthetic data

Dynamic programming solution efficient & accurate
Doesn’t require phylogenetic branch lengths

Future Work :
I Room to improve both sensitivity & specificity

I Study the effect of noise

I Improve uncertain duplication histories (tree inference)

I How many (near) optimal solutions are there, how do they differ?

I Is avoiding general (i.e. k ≥ 3) blocking-loops NP-hard?

N



Thanks

Grants:

{EF-0849899, IIS-0812111, CCF-1053918}
{1R21AI085376, R01HG002945}
{2008-04049, 2010-15739-01}

People:
Emre Sefer Justin Malin Guillaume Marçais

Saket Navlakha Carl Kingsford

Darya Filippova Geet Duggal

N



Duplication History Framework
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