
Aggregating Quantitative Relative Judgments:
From Social Choice to Ranking Prediction

Anonymous Author(s)
Affiliation
Address
email

Abstract

Quantitative Relative Judgment Aggregation (QRJA) is a new research topic in1

(computational) social choice. In the QRJA model, agents provide judgments2

on the relative quality of different candidates, and the goal is to aggregate these3

judgments across all agents. In this work, our main conceptual contribution is to4

explore the interplay between QRJA in a social choice context and its application5

to ranking prediction. We observe that in QRJA, judges do not have to be people6

with subjective opinions; for example, a race can be viewed as a “judgment” on7

the contestants’ relative abilities. This allows us to aggregate results from multiple8

races to evaluate the contestants’ true qualities. At a technical level, we introduce9

new aggregation rules for QRJA and study their structural and computational prop-10

erties. We evaluate the proposed methods on data from various real races and show11

that QRJA-based methods offer effective and interpretable ranking predictions.12

1 Introduction13

In voting theory, each voter ranks a set of candidates, and a voting rule maps the vector of rankings14

to either a winning candidate or an aggregate ranking of all the candidates. There has been signif-15

icant interaction between computer scientists interested in voting theory and the learning-to-rank16

community. The learning-to-rank community is interested in problems such as ranking webpages in17

response to a search query, or ranking recommendations to a user (see, e.g., Liu [2009]). Another18

problem of interest is to aggregate multiple rankings into a single one, for example combining the19

ranking results from different algorithms (“voters”) into a single meta-ranking. While the interests of20

the communities may differ, e.g., the learning-to-rank community is less concerned about strategic21

aspects of voting, a natural intersection point for these two communities is a model where there is22

a latent “true” ranking of the candidates, of which all the votes are just noisy observations. Conse-23

quently, it is natural to try to estimate the true ranking based on the received rankings, and such an24

estimation procedure corresponds to a voting rule. (See, e.g., Young [1995]; Conitzer and Sandholm25

[2005]; Meila et al. [2007]; Conitzer et al. [2009]; Caragiannis et al. [2013]; Soufiani et al. [2014];26

Xia [2016], and Elkind and Slinko [2015] for an overview.)27

Voting rules are just one type of mechanism in the broader field of social choice, which studies28

the broader problem of making decisions based on the opinions and preferences of multiple agents.29

Such opinions are not necessarily represented as rankings. For example, in judgment aggregation30

(see Endriss [2015] for an overview), judges assess whether certain propositions are true or false,31

and the goal is to aggregate these judgments into logically consistent statements. The observation32

that other types of input are aggregated in social choice prompts the natural question of whether33

analogous problems exist in statistics and machine learning (as is the case with ranking aggregation).34

In this paper, we aim to bring the social choice community and the learning-to-rank community35

closer together, by applying existing social choice formulations to the problem of ranking predic-36
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tion. We focus on a relatively new model in social choice, the quantitative judgment aggregation37

problem [Conitzer et al., 2015, 2016]. In this problem, the goal is to aggregate relative quantita-38

tive judgments: for example, one agent may value the life of a 20-year-old at 2 times the life of a39

50-year-old (say in the context of self-driving cars making decisions) [Noothigattu et al., 2018];40

another example could be that an agent judges that “using 1 unit of gasoline is as bad as creating 341

units of landfill trash” (in a societal tradeoff context) [Conitzer et al., 2016]. Quantitative judgment42

aggregation has been considered in the area of automated moral decision-making, where an AI system43

may choose a course of action based on data about human judgments in similar scenarios.44

We observe that relative “judgments” can be produced by a process other than an agent reporting45

them. To illustrate, consider a race in which contestant A finishes at 20:00 and contestant B at46

30:00. In this race, the “judgment” is that A is 10:00 faster than B. In a different race, their relative47

performance may be different. We are interested in aggregating the “judgments” from past races,48

which allows us to evaluate the contestants and predict their relative performance in future races.49

Given the different motivations, some important aspects in a social choice context are less important50

in our setting. For example, social choice is often concerned with agents strategically misreporting,51

but this is less relevant in our setting because races are not strategic.52

Our Contributions. We summarize our main contributions below: (1) Conceptually, we apply53

social-choice-motivated solution concepts to the problem of ranking prediction, which creates a54

bridge between research typically done in the social choice and the learning-to-rank communities. (2)55

We pose and study the problem of quantitative relative judgment aggregation (QRJA) in Section 3,56

which generalizes models from previous work [Conitzer et al., 2015, 2016]. (3) Theoretically, we57

focus on ℓp QRJA, an important subclass of QRJA problems. We (almost) settle the computational58

complexity of ℓp QRJA in Section 4, proving that ℓp QRJA is solvable in almost-linear time when59

p ≥ 1, and is NP-hard when p < 1. (4) Empirically, we focus on ℓ1 and ℓ2 QRJA. We conduct60

extensive experiments on a wide range of real-world datasets in Section 5 to compare the performance61

of QRJA with several other commonly used methods, showing the effectiveness of QRJA in practice.62

2 Motivating Examples63

To better motivate our study and help readers understand the problem, we first consider simple64

mean/median approaches for aggregating quantitative judgments and illustrate their limitations65

through three examples.66

Example 1. When each race has some common “difficulty” factor (e.g. how hilly a marathon route67

is), if a contestant only participates in the “easy” races (or only the “hard” races), simply taking the68

median or mean of historical performance will return biased estimates, as illustrated in Figure 1.69

Contestant ⧹ Race Boston New York Chicago
Alice 4:00:00 4:10:00 3:50:00
Bob 4:11:00 4:18:00 4:01:00

Charlie 4:09:00

Figure 1: Bob finishes earlier than Charlie in the Chicago race, which suggests that Bob runs
marathons faster than Charlie. However, if we simply calculate the mean or median of all available
data, Charlie’s mean/median finishing time will be faster than Bob’s. This is because, Charlie
participated only in the Chicago race, where conditions were more favorable.

Example 2. Suppose past data shows that Alice has beaten Bob in some race, and Bob has beaten70

Charlie in another race. If we have never seen Alice and Charlie competing in the same race, we may71

want to predict that Alice runs faster than Charlie (see Figure 2). However, when comparing Alice72

and Charlie, simple measures like median and mean effectively ignore the data on Bob, even though73

Bob’s data can provide useful information for this comparison.74

Example 3. When the variance of the races’ difficulty is much higher than the variance in the75

contestants’ performance, taking the median will essentially focus on the result of a single race (with76

median difficulty) and may throw away useful information as shown in Figure 3.77

QRJA addresses the above issues by considering relative performance instead of absolute performance.78

More specifically, each race provides a judgment of the form “A runs faster than B by Y minutes” for79

every pair of contestants (A,B) that participated in this race.80
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Contestant ⧹ Race Boston New York Chicago
Alice 4:10:00
Bob 4:11:00 4:18:00 4:01:00

Charlie 4:09:00

Figure 2: The same results as in Figure 1, but with some data missing. If we only look at the data on
Alice and Charlie, it is difficult to judge who is the faster runner. If anything, Charlie appears to be
slightly faster. However, if we know Bob’s results in these races, then transitivity suggests that Alice
runs faster than Charlie.

Contestant ⧹ Race Boston New York Chicago
Alice 4:00:00 4:10:00 3:50:00
Bob 4:11:00 4:18:00 4:01:00

Charlie 4:10:00 4:32:00 4:09:00

Figure 3: In this example, the races’ difficulty has high variance, and everyone’s median time is in
Boston. Based on this, we would predict Charlie to be faster than Bob. However, if we consider the
other two races, overall it seems that Bob runs faster than Charlie.

3 Problem Formulation81

In this section, we formally define the Quantitative Relative Judgment Aggregation (QRJA) problem.82

We start with the definition of its input.83

Definition 1 (Quantitative Relative Judgment). For a set of n candidates N = {1, . . . , n}, a84

quantitative relative judgment is a tuple J = (a, b, y), denoting a judgment that candidate a ∈ N is85

better than candidate b ∈ N by y ∈ R units.86

The input of QRJA is a set of quantitative relative judgments to be aggregated. We model the87

aggregation result as a vector x ∈ Rn, where xi is the single-dimensional evaluation of candidate i.88

The aggregation result should be consistent with the input judgments as much as possible, i.e., for a89

quantitative relative judgment (a, b, y), we want |xa − xb − y| to be small. We use a loss function90

f(|xa−xb−y|) to measure the inconsistency between the aggregation result and the input judgments.91

The aggregation result should minimize the weighted total loss. Formally, we define QRJA as follows.92

Definition 2 (Quantitative Relative Judgment Aggregation (QRJA)). Consider n candidates N =93

{1, . . . , n} and m quantitative relative judgments J = (J1, . . . , Jm) with weights w = (w1, . . . , wm)94

where Ji = (ai, bi, yi). The quantitative relative judgment aggregation problem with loss function95

f : R≥0 → R≥0 asks for a vector x ∈ Rn that minimizes
∑m

i=1 wif(|xai
− xbi − yi|).96

Previous work [Conitzer et al., 2015, 2016; Zhang et al., 2019] studied a special case of QRJA where97

f(t) = t. In this work, we broaden the scope and study QRJA with more general loss functions. We98

first note that when the loss function f is convex, QRJA can be formulated as a convex optimization99

problem. Consequently, one can use standard convex optimization methods like gradient descent or100

the ellipsoid method to solve QRJA in polynomial time.101

However, general-purpose convex optimization methods are often very slow when the numbers102

of candidates n and judgments m are large. For this reason, we focus on ℓp QRJA, an important103

subclass of QRJA problems with loss function f(t) = tp. Our theoretical analysis (almost) settles104

the computational complexity of ℓp QRJA for all p > 0. We show that ℓp QRJA is solvable in105

almost-linear time when p ≥ 1, and is NP-hard when p < 1. Our experiments focus on comparing ℓ1106

and ℓ2 QRJA with various baselines in social choice and machine learning. We conduct extensive107

experiments on a wide range of real-world data sets.108

4 Theoretical Aspects of ℓp QRJA109

In this section, we study the theoretical aspects of ℓp QRJA, providing a clean and (almost) tight110

characterization of the computational complexity of ℓp QRJA for different values of p. Recall that n111

is the number of candidates and m is the number of judgments. Note that n ≤ 2m.112
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In Section 4.1, we prove that for all p ≥ 1, ℓp QRJA can be solved in almost-linear time O(m1+o(1)).113

In Section 4.2, we show that when p < 1, ℓp QRJA is NP-hard and there is no FPTAS 1 unless P =114

NP. Additionally, in Appendix A, we show that if 1 ≤ p ≤ 2 and m≫ n, we can reduce m to Õ(n)115

while incurring a small error. 2116

4.1 ℓp QRJA in Almost-Linear Time When p ≥ 1117

We first show that when p ≥ 1, ℓp QRJA can be solved in O(m1+o(1)) time, i.e., in time almost118

linear in the size of the input. Our approach leverages recent advancements in faster algorithms for119

(directed) maximum flow [Chen et al., 2022].120

Theorem 1. Let p ≥ 1 be an absolute constant. Consider ℓp QRJA in Definition 2 with loss function121

f(t) = tp. Assume all input numbers are polynomially bounded in m. We can solve ℓp QRJA in time122

O(m1+o(1)) with exp(− logc m) additive error for any constant c > 0.123

Proof of Theorem 1: We first prove the theorem for p > 1. We will prove the p = 1 case in124

Appendix B.1. Let Sinput = (n,m, (wi)
m
i=1, (yi)

m
i=1). We assume m is sufficiently large, and that c is125

a sufficiently large constant such that ∀v ∈ Sinput, either v = 0 or 1/mc < |v| < mc.126

Consider an ℓp QRJA instance (N,J,w) where J = (J1, . . . , Jm) and Ji = (ai, bi, yi), we construct127

a matrix A ∈ Rm×n and a vector z ∈ Rm as follows:128

Ai,j =


p
√
wi if j = ai
− p
√
wi if j = bi

0 otherwise
, zi = p

√
wiyi. (1)

Given A and z, the ℓp QRJA problem can be formulated as129

min
x∈Rn

m∑
i=1

wi|xai
− xbi − yi|p = min

x∈Rn
∥Ax− z∥pp ,

We will show how to find x in time O(m1+o(1)) such that130

∥Ax− z∥p ≤ min
x∗
∥Ax∗ − z∥p + exp(− log2c m).

We first write the optimization as131

min
x∈Rn

∥Ax− z∥p = min
x∈Rn,s∈Rm,s=Ax−z

∥s∥p . (2)

The Lagrangian dual of (2) is132

min
x∈Rn,s∈Rm

max
f∈Rm

(
∥s∥p + f⊤(s− (Ax− z))

)
.

Note that s = Ax − z is enforced; otherwise the inner maximization problem is unbounded. Let133

∥·∥q be the dual norm of ∥·∥p, i.e., 1
p + 1

q = 1. (So q > 1.) By strong duality,134

max
f∈Rm

min
x∈Rn,s∈Rm

(
∥s∥p + f⊤(s− (Ax− z))

)
= max

f∈Rm

[
f⊤z+ min

s∈Rm

(
∥s∥p + f⊤s

)
− max

x∈Rn
f⊤Ax

]
= max

f∈Rm,A⊤f=0,∥f∥q≤1
f⊤z. (3)

The last step follows from the fact that the value of (mins∈Rm ∥s∥p + f⊤s) is 0 if ∥f∥q ≤ 1 and −∞135

otherwise, and that maxx∈Rn f⊤Ax is unbounded if A⊤f ̸= 0.136

We will show that the dual program (3) can be solved near-optimally in almost-linear time (Lemma 1),137

and given a near-optimal dual solution f ∈ Rm, a good primal solution x ∈ Rn can be computed in138

linear time (Lemma 2). Theorem 1 follows directly from Lemmas 1 and 2.139

1Fully Polynomial-Time Approximation Scheme.
2The Õ(·) notation hides logarithmic factors in its argument.
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Lemma 1. We can find a feasible solution f ∈ Rm of (3) in time O(m1+o(1)) with additive error140

exp(− log6c m).141

Proof of Lemma 1: Consider the following problem, which moves the norm constraint of (3) into142

the objective:143

max
f∈Rm,A⊤f=0

f⊤z− ∥f∥qq . (4)

(4) is closely related to ℓp norm mincost flow. Recent breakthrough in mincost flow [Chen et al.,144

2022] showed that a feasible solution f† of (4) within error exp(− log13c m) can be computed in145

O(m1+o(1)) time.146

Suppose
∥∥f†∥∥

q
≥ exp(− log7c m), which we prove later. Notice that f† is a solution within error147

exp(− log13c m) of148

max
f∈Rm,A⊤f=0,∥f∥q=∥f†∥q

f⊤z.

Choosing f = f†/
∥∥f†∥∥

q
satisfies Lemma 1.149

To lower bound
∥∥f†∥∥

q
, let f∗ be the optimal solution of (3). When f∗⊤z ≥ 3, because the optimal150

value of (4) is at least f∗⊤z− 1 and f† is near-optimal for (4), we have f†
⊤
z ≥ f∗⊤z− 2 and thus151 ∥∥f†∥∥

q
≥ 1/3. When f∗⊤z < 3, we will show f†

⊤
z ≥ exp(− log6c m), so

∥∥f†∥∥
q
≥ exp(− log7c m).152

To show f†
⊤
z ≥ exp(− log6c m), we only need to show that the optimal value of (4) is at least153

exp(− log5c m). We can assume w.l.o.g. that f∗⊤z > exp(− log3c m), otherwise there is a primal154

solution x almost consistent with all judgments, which is easy to approximate. Note that when155

scaling down f∗, ∥f∗∥qq scales faster than f∗⊤z. Let f ′ = kf∗ with k = exp(− log4c m). We have156

f ′
⊤
z− ∥f ′∥qq = k(f∗⊤z)− kq > exp(− log5c m), where the last step assumes that m is sufficiently157

large, in particular logc m > max{ 2
q−1 , q + 1}.158

Lemma 2. Given a solution f of (3) that satisfies Lemma 1, we can compute a vector x ∈ Rn in159

time O(m) such that160

∥Ax− z∥p ≤ min
x∗
∥Ax∗ − z∥p + exp(− log2c m).

Proof of Lemma 2: We assume w.l.o.g. that ∥f∥q = 1.161

Let v = f⊤z and consider162

max
f ′∈Rm,A⊤f ′=0

Φ(f ′) where Φ(f ′) = f ′
⊤
z− v

q
∥f ′∥qq . (5)

Because f is a solution of (3) within error exp(− log6c m), and max∥f∥q
v ∥f∥q −

v
q ∥f∥

q
q is achieved163

when ∥f∥q = 1, we know that f is a solution of (5) within error exp(− log5c m).164

The first-order optimality condition of (5) guarantees that ∇Φ(f) is very close to a potential flow.165

That is, we can find in O(m) time a vector x ∈ Rn, such that ∥Ax−∇Φ(f)∥∞ ≤ exp(− log3c m).166

For this x,167

∥Ax− z∥p ≤ ∥∇Φ(f)− z∥p + ∥Ax−∇Φ(f)∥p
= v + ∥Ax−∇Φ(f)∥p
≤ v +m ∥Ax−∇Φ(f)∥∞
≤ v + exp(− log2c m)

≤ min
x∗∈Rn

∥Ax∗ − z∥p + exp(− log2c m).

The last inequality uses that v = f⊤z is a lower bound on the optimal value because f is a feasible168

dual solution.169
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4.2 NP-Hardness of ℓp QRJA When p < 1170

In this section, we show that ℓp QRJA is NP-hard when p < 1 by reducing from Max-Cut. Note that171

in this case, the loss function f(t) = tp is no longer convex.172

Definition 3 (Max-Cut). For an undirected graph G = (V,E), Max-Cut asks for a partition of V173

into two sets S and T that the number of edges between S and T is maximized.174

Reduction from Max-Cut to ℓp QRJA. Given a Max-Cut instance on an undirected graph G =175

(V,E), let n = |V |,m = |E|, w2 = 2n
1−p + 1, and w1 = nw2 + 1.176

We will construct an ℓp QRJA instance with n + 2 candidates V ∪ {v(s), v(t)} and O(n + m)177

quantitative relative judgments. Specifically, we add the following judgments:178

• (v(t), v(s), 1) with weight w1.179

• (v(s), u, 0) with weight w2 for each u ∈ V .180

• (v(t), u, 0) with weight w2 for each u ∈ V .181

• (u, v, 1), (v, u, 1) with weight 1 for each (u, v) ∈ E.182

In Appendix B.2, we will prove that the Max-Cut instance has a cut of size at least k if and only if183

the constructed ℓp QRJA instance has a solution with loss at most nw2 + 2(m− k) + k2p, which184

implies the following hardness result.185

Theorem 2. For any p < 1, there exists a constant c > 0 such that it is NP-hard to approximate ℓp186

QRJA within a multiplicative factor of
(
1 + c

n2

)
.187

Theorem 2 implies that there is no (multiplicative) FPTAS for ℓp QJA when p < 1 unless P = NP.188

This is because if a (1 + ε) solution can be computed in poly(m, 1/ε) time, then choosing ε = c
n2189

gives a poly-time algorithm for Max-Cut.190

5 Experiments191

We conduct experiments on real-world datasets to compare the performance of ℓ1 and ℓ2 QRJA with192

existing methods. We focus on ℓ1 and ℓ2 QRJA because the almost-linear time algorithm for general193

values of p ≥ 1 relies on very complicated galactic algorithms for ℓp norm mincost flow [Chen et al.,194

2022]. All experiments are done on a server with 56 CPU cores and 504G RAM. The experiments in195

Section 5 and Appendices A and C take around 2 weeks in total to run on this server. No GPU is196

used. All source code required for conducting experiments is included in the supplementary material.197

5.1 Experiments Setup198

Datasets. We consider types of contests where events are reasonably frequent (so it makes sense to199

predict future events based on past ones), and contest results contain numerical scores in addition to200

rankings. Specifically, we use the four datasets listed below. We include additional experiments on201

three more datasets in Appendix C, and the copyright information of the datasets in Appendix E.202

• Chess. This dataset contains the results of the Tata Steel Chess Tournament (https:203

//tatasteelchess.com/, also historically known as the Hoogovens Tournament or the Corus204

Chess Tournament) from 1983 to 2023 3. Each contest is typically a round-robin tournament205

among 10 to 14 contestants. A contestant’s numerical score is the contestant’s number of wins206

in the tournament. There are 80 contests and 408 contestants in this dataset.207

• F1. This dataset contains the results of Formula 1 races (https://www.formula1.com/) from208

1950 to 2023. In each contest, we take all contestants who complete the whole race. There are209

around 7 such contestants in each contest. A contestant’s numerical score is the negative of210

his/her finishing time (in seconds). There are 878 contests and 261 contestants in this dataset.211

3We choose the time frame of our datasets to be longer than the active period of most contestants to emphasize
that contestants come and go, but their past performance could help the prediction.
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(a) Ordinal accuracy on Chess
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(b) Quantitative loss on Chess
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(c) Ordinal accuracy on F1
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(d) Quantitative loss on F1
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(e) Ordinal accuracy on Marathon
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(h) Quantitative loss on Codeforces

Figure 4: Ordinal accuracy and quantitative loss of the algorithms on all four datasets. Error bars
are not shown here as the algorithms are deterministic. The results show that both versions of QRJA
perform consistently well across the tested datasets.

• Marathon. This dataset contains the results of the Boston and New York Marathons from 2000212

to 2023. We use the data from https://www.marathonguide.com/, which publishes results213

of all major marathon events. Each contest usually involves more than 20000 contestants. We214

take the 100 top-ranked contestants in each contest as our dataset. A contestant’s numerical215

score is the negative of that contestant’s finishing time (in seconds). There are 44 contests and216

2984 contestants.217

• Codeforces. This dataset contains the results of Codeforces (https://codeforces.com), a218

website hosting frequent online programming contests, from 2010 to 2023 (Codeforces Round219

875). We consider only Division 1 contests, where only more skilled contestants can participate.220

Each contest involves around 700 contestants. We take the 100 top-ranked contestants in each221

contest as our dataset. A contestant’s numerical score is that contestant’s points in that contest.222

There are 327 contests and 5338 contestants in total in this dataset.223

Evaluation Metrics. For all the datasets we use, contests are naturally ordered chronologically.224

We use the results of the first i− 1 contests to predict the results of the i-th contest. We apply the225

following two metrics to evaluate the prediction performance of different algorithms.226

• Ordinal Accuracy. This metric measures the percentage of correct relative ordinal predictions.227

For each contest, we predict the ordinal results of all pairs of contestants that (i) have both228

appeared before and (ii) have different numerical scores in the current contest. We compute the229

percentage of correct predictions.230

• Quantitative Loss. This metric measures the average absolute error 4 of relative quantitative231

predictions. For each contest, we predict the difference in numerical scores of all pairs of232

contestants that have both appeared before. We then compute the quantitative loss as the average233

absolute error of the predictions. We normalize this number by the quantitative loss of the trivial234

prediction that always predicts 0 for all pairs.235

4We also include the experiment results using average squared error as the quantitative metric in Appendix C.1.
The relative performance of the tested algorithms on these two metrics are similar.
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Implementation. We have implemented both ℓ1 and ℓ2 QRJA in Python. We use Gurobi Gurobi236

Optimization, LLC [2023] and NetworkX Hagberg et al. [2008] to implement ℓ1 QRJA and SciPy237

[Jones et al., 2014] to implement ℓ2 QRJA. To transform the contest standings into a QRJA instance,238

we construct a quantitative relative judgment J = (a, b, y) for each contest and each pair of contestants239

(a, b) with y being the score difference between a and b in that contest. We set all weights to 1 to240

ensure fair comparison with benchmarks.241

Benchmarks. We evaluate ℓ1 and ℓ2 QRJA against several benchmark algorithms. Specifically, we242

consider the natural one-dimensional aggregation methods Mean and Median, social choice methods243

Borda and Kemeny-Young, and a common method for prediction, matrix factorization. We describe244

how we apply these methods to our setting below.245

• Mean and Median. For every contestant in the training set, we take the mean or median of that246

contestant’s scores in training contests. We then make predictions based on differences between247

these mean or median scores. In one-dimensional environments like ours, means and medians248

are considered to be among the best imputation methods for various tasks (see, e.g., Engels and249

Diehr, 2003, Shrive et al., 2006).250

• The Borda rule. The Borda rule is a voting rule that takes rankings as input and produces a251

ranking as output. We use a normalized version of the Borda rule. The i-th ranked contestant in252

contest j receives 1− 2(i−1)
nj−1 points, where nj is the number of contestants in the contest. The253

aggregated ranking result is obtained by sorting the contestants by their total number of points.254

• The Kemeny-Young rule. [Kemeny, 1959; Young and Levenglick, 1978; Young, 1988]. The255

Kemeny-Young rule is a voting rule that takes multiple (partial) rankings of the contestants as256

input and produces a ranking as output. Specifically, it outputs a ranking that minimizes the257

number of disagreements on pairs of contestants with the input rankings. Finding the optimal258

Kemeny-Young ranking is known to be NP-hard Bartholdi et al. [1989]. In our experiments, we259

use Gurobi to solve the mixed-integer program formulation of the Kemeny-Young rule given in260

Conitzer et al. [2006]. As this method is still computationally expensive and can only scale to261

hundreds of contestants, for each contest we predict, we only keep the contestants within that262

specific contest and discard all other contestants to run Kemeny-Young.263

• Matrix Factorization (MF). Matrix factorization takes as input a matrix with missing entries264

and outputs a prediction of the whole matrix. Every row is a contestant and every column is a265

race. The score of a contestant in a race is the entry in the corresponding row and column. We266

implement several variants of MF and report results for one variant (Koren et al. [2009]), as267

other variants have comparable or worse performance. For implementation details and other268

variants, see Appendix C.4.269

Many other, related approaches deserve mention in this context. But we do not include them in the270

benchmarks because they do not exactly fit our setting or motivation. For example, the seminal Elo271

rating system Elo [1978] as well as many other methods Maher [1982]; Karlis and Ntzoufras [2008];272

Guo et al. [2012]; Hunter and others [2004] can all predict the results of pairwise matches in, e.g.,273

chess and football. However, they are not originally designed for predicting the results of contests274

with more than two contestants.275

5.2 Experiment Results276

The complete experimental results of all algorithms on the four datasets are shown in Fig. 4. Note277

that Borda and Kemeny-Young do not make quantitative predictions, so they are not included in278

Figs. 4b, 4d, 4f and 4h.279

The performance of QRJA. As shown in Fig. 4, both versions of QRJA perform consistently well280

across the tested datasets. They are always among the best algorithms in terms of both ordinal281

accuracy and quantitative loss.282

The performance of Mean and Median. In terms of ordinal accuracy, Mean and Median do well on283

Marathon, but are not among the best algorithms on other datasets, especially on F1 (for both) and284

Codeforces (for Median). Moreover, for quantitative loss, they are never among the best algorithms.285

The performance of Borda and Kemeny-Young. Borda and Kemeny-Young do not make quan-286

titative predictions, so we only compare them with other algorithms in terms of ordinal accuracy.287
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As shown in Fig. 4, Borda and Kemeny-Young perform very well on F1, but are not among the288

best algorithms on other datasets. By only using rankings as input, Borda and Kemeny-Young are289

more robust on datasets where contestants’ performance varies a lot. However, they fail to utilize the290

quantitative information on other datasets.291

The performance of Matrix Factorization (MF). MF works well across the tested datasets in terms292

of both metrics. In all of our four datasets, it has performance comparable to QRJA. The advantage293

of QRJA over MF is the interpretability of its model, in the sense that the variables in QRJA have294

clear meanings, in contrast to the latent factors in MF. Additionally, we observe in Appendix C.2 that295

ℓ1 QRJA is more robust to large variance in contestants’ performance than MF.296

Summary of experimental results. In summary, both MF and QRJA are never significantly worse297

than the best-performing algorithm on any of the tested datasets, unlike the other benchmark methods.298

QRJA additionally offers an interpretable model. This shows that QRJA is an effective method for299

making predictions on contest results.300

6 Related Work301

Random utility models. Random utility models (Fahandar et al. [2017]; Zhao et al. [2018]) explicitly302

reason about the contestants being numerically different from each other, e.g., one contestant is303

generally 1.1 times as fast as another. However, they are still designed for settings in which the only304

input data we have is ranking data, rather than numerical data such as finishing times. Moreover,305

random utility models generally do not model common factors, such as a given race being tough and306

therefore resulting in higher finishing times for everyone.307

Matrix completion. Richer models considered in recommendation systems appear too general for308

the scenarios we have in mind. Matrix completion Rennie and Srebro [2005]; Candès and Recht309

[2009] is a popular approach in collaborative filtering, where the goal is to recover missing entries310

given a partially-observed low-rank matrix. While using higher ranks may lead to better predictions,311

we want to model contestants in a single-dimensional way, which is necessary for interpretability312

purposes (the single parameter being interpreted as the “quality” of the contestant).313

Preference learning. In preference learning, we train on a subset of items that have preferences314

toward labels and predict the preferences for all items (see, e.g., Pahikkala et al. [2009]). One315

high-level difference is that preference learning tends to use existing methodologies in machine316

learning to learn rankings. In contrast, our methods (as well as those in previous work Conitzer317

et al. [2015, 2016]) are social-choice-theoretically well motivated. In addition, our methods are318

designed for quantitative predictions, while the main objective of preference learning is to learn319

ordinal predictions.320

Elo and TrueSkill. Empirical methods, such as the Elo rating system Elo [1978] and Microsoft’s321

TrueSkill Herbrich et al. [2006], have been developed to maintain rankings of players in various322

forms of games. Unlike QRJA, these methods focus more on the online aspects of the problem, i.e.,323

how to properly update scores after each game. While under specific statistical assumptions, these324

methods can in principle predict the outcome of a future game, they are not designed for making325

ordinal or quantitative predictions in their nature.326

7 Conclusion327

In this paper, we conduct a thorough investigation of QRJA (Quantitative Relative Judgment Ag-328

gregation). We pose and study QRJA and focus on an important subclass of problems, ℓp QRJA.329

Our theoretical analysis shows that ℓp QRJA can be solved in almost-linear time when p ≥ 1, and330

is NP-hard when p < 1. Empirically, we conduct experiments on real-world datasets to show that331

QRJA-based methods are effective for predicting contest results. As mentioned before, the almost-332

linear time algorithm for general values of p ̸= 1, 2 relies on very complicated galactic algorithms.333

An interesting avenue for future work would be to develop fast (e.g., nearly-linear time) algorithms334

for ℓp QRJA with p ̸= 1, 2 that are more practical, and evaluate their empirical performance.335

Broader Impacts. We expect our work to have a mostly positive social impact by providing an336

effective and interpretable method for aggregating quantitative relative judgments that can be used in337

applications such as predicting contest results. While for specific applications, certain desiderata may338

be not met by QRJA, we allow users (e.g., contest organizers) to set different weights for different339

judgments, which can be used to reflect the importance of different contests.340
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A Subsampling Judgments434

A.1 Subsampling Judgments When p ∈ [1, 2]435

In this section, we show that for p ∈ [1, 2], we can reduce the number of judgments while incurring a436

small approximation error by subsampling the input judgments.437

Algorithm 1 Subsampling Judgments
Input: ℓp QRJA instance (N,J,w), subsample count M ∈ N, and subsampling weights s ∈ Rm.
Output: ℓp QRJA instance (N,J′,w′).

1: Let qi ← si∑m
j=1 sj

for each i ∈ {1, 2, . . . ,m}.
2: for i ∈ {1, 2, . . . ,M} do
3: Sample x ∈ {1, 2, . . . ,m} with probability qx.
4: Let J ′

i ← Jx and w′
i ← wx

M ·qx .
5: end for
6: return (N,J′,w′).

Algorithm 1 takes as input an ℓp QRJA instance, a parameter M , and a vector s ∈ Rm. It then438

samples M judgments from the input instance (with replacements) with probability proportional to s,439

and outputs a new ℓp QRJA instance with the sampled judgments. The weight of any judgment in the440

output instance is divided by its expected number of occurrences in the output instance, so that the441

expected total weight of any judgment is preserved after subsampling.442

Theorem 3. Fix absolute constants p ∈ [1, 2] and ε > 0. Given any ℓp QRJA instance (N,J,w),443

we can compute subsampling weights s ∈ Rm in time O(m + nω+o(1)), where ω is the matrix444

multiplication exponent. For these weights s and M = Õ(n), Algorithm 1 with high probability445

outputs an ℓp QRJA instance (N,J′,w′) whose optimal solution is an (1 + ε)-approximate solution446

of the original instance.447

To obtain the theoretical guarantee of Algorithm 1, we use the Lewis weights mentioned in (Cohen448

and Peng [2015]) as vector s. Empirically, we also find that simply setting s as an all-ones vector449

works well in many real-world datasets (see Appendix A.2).450

Proof of Theorem 3: For an ℓp QRJA instance (N,J,w), define matrix A ∈ Rm×(n+1)451

Ai,j =


p
√
wi if j = ai
− p
√
wi if j = bi

− p
√
wiyi if j = n+ 1

0 otherwise.

The Lewis weights for this ℓp QRJA instance is defined as the unique vector s ∈ Rm such that for452

each i ∈ {1, 2, . . . ,m},453

ai

(
A⊤S1− 2

pA
)

−1a⊤i = s
2/p
i ,

where S = diag(s) and ai is the i-th row of A.454

The existence and uniqueness of such weights are first shown in Lewis [1978]. In Cohen and Peng455

[2015], the authors show that for p ∈ [1, 2], the Lewis weights can be computed in O(nnz(A) +456

nω+o(1)) = O(m+ nω+o(1)) time.457

For x ∈ Rn, we have458 ∥∥∥∥A [
x
1

]∥∥∥∥p
p

=

m∑
i=1

wi|xai
− xbi − yi|p.

Thus the ℓp QRJA loss is always equal to ∥Ax∥pp for some x ∈ Rn+1. The theorem then follows459

from the ℓp Matrix Concentration Bounds in Cohen and Peng [2015].460
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A.2 Subsampling Experiments461

We also conduct experiments to test the performance of our subsampling algorithm (Algorithm 1),462

which speeds up the (approximate) computation of QRJA on large datasets. In the experiments, we463

specify the subsample rate α, let M = ⌊αm⌋ and s be an all-ones vector in Algorithm 1.464

Experiment setup. We run ℓ1 and ℓ2 QRJA with instances subsampled by Algorithm 1 on the465

datasets. For each α = {0.1, 0.2, . . . , 1.0}, we run ℓ1 and ℓ2 QRJA 10 times and report their average466

performance on both metrics with error bars. Due to the space constraints, we only show the results467

on Chess in Fig. 5 in this section. The results on other datasets are deferred to Appendix C.3.468
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(a) ℓ1 and ℓ2 QRJA’s ordinal accuracy on Chess
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(b) ℓ1 and ℓ2 QRJA’s quantitative loss on Chess

Figure 5: The performance of ℓ1 and ℓ2 QRJA on Chess after subsampling judgments using Al-
gorithm 1 with equal weights for all judgments. The subsample rate α means M = ⌊αm⌋ in
Algorithm 1. Error bars indicate the standard deviation. The results show that Algorithm 1 can reduce
the number of judgments to a factor of 0.4 with a minor performance loss on Chess.

Experiment results. As is shown in Fig. 5, with equal weights for all judgments, Algorithm 1 can469

reduce the number of judgments without significantly hurting the performance of ℓ1 and ℓ2 QRJA470

as long as the sampling rate α is not too small (≥ 0.4 for Chess). This shows that Algorithm 1 is a471

practical algorithm for subsampling judgments in QRJA. We also note that as the experiments show,472

ℓ2 QRJA is more robust to subsampling than ℓ1 QRJA.473

B Missing Proofs in Section 4474

B.1 Proof of Theorem 1475

Theorem 1. Let p ≥ 1 be an absolute constant. Consider ℓp QRJA in Definition 2 with loss function476

f(t) = tp. Assume all input numbers are polynomially bounded in m. We can solve ℓp QRJA in time477

O(m1+o(1)) with exp(− logc m) additive error for any constant c > 0.478

Proof of Theorem 1 (when p = 1): We proved Theorem 1 for p > 1 in Section 4.1. It remains to479

consider p = 1.480

When p = 1, the overall loss function of QRJA is a sum of absolute values of some linear terms. We481

can therefore formulate ℓ1 QRJA as the following linear program (LP), as observed in [Zhang et al.,482

2019]:483

minimize
∑m

i=1 wi

(
z+i + z−i

)
subject to z+i ≥ xai − xbi − yi ∀i ∈ [m]

z−i ≥ yi + xbi − xai ∀i ∈ [m]
z+i ≥ 0, z−i ≥ 0 ∀i ∈ [m]
xi ∈ R ∀i ∈ [n]

For this LP, Zhang et al. [2019] gave a faster algorithm than using general-purpose LP solvers.484

Lemma 3 (Zhang et al. 2019). There is a reduction from ℓ1 QRJA to Minimum Cost Flow with O(n)485

vertices and O(m) edges in O(TSSSP(n,m,W )) time, where TSSSP(n,m,W ) is the time required486

to solve Single-Source Shortest Path with negative weights on a graph with n vertices, m edges, and487

maximum absolute distance W.488

Using this reduction (Lemma 3) together with the SSSP algorithm in Bernstein et al. [2022] and the489

minimum cost flow algorithm in Chen et al. [2022], we have an algorithm for ℓ1 QRJA that runs in490

time O(m1+o(1)).491
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B.2 Proof of Theorem 2492

Theorem 2. For any p < 1, there exists a constant c > 0 such that it is NP-hard to approximate ℓp493

QRJA within a multiplicative factor of
(
1 + c

n2

)
.494

Recall the reduction from Max-Cut to ℓp QRJA: Given an instance of Max-Cut with an undirected495

graph G = (V,E), let n = |V |,m = |E| and let w2 = 2n
1−p + 1, w1 = nw2 + 1. We construct496

an instance of ℓp QRJA with n+ 2 candidates V ∪ {v(s), v(t)} and O(n+m) quantitative relative497

judgments. Specifically, we construct the followings judgments:498

• (v(t), v(s), 1) with weight w1.499

• (v(s), u, 0) with weight w2 for each u ∈ V .500

• (v(t), u, 0) with weight w2 for each u ∈ V .501

• (u, v, 1), (v, u, 1) with weight 1 for each (u, v) ∈ E.502

To show validity of the reduction above, we will first establish integrality of any optimal solution.503

Lemma 4. Any optimal solution of the ℓp QRJA instance described in the above reduction is integral.504

Moreover, all variables must be either 0 or 1 up to a global constant shift.505

We need an inequality for the proof of Lemma 4.506

Lemma 5. For any d ∈ (0, 1
2 ], p ∈ (0, 1),507

1− (1− d)p ≤ pdp.

Proof of Lemma 5: Fix p ∈ (0, 1). Let f(d) = pdp − 1 + (1− d)p. We have508

f ′(d) = p(pdp−1 − (1− d)p−1).

Note that f ′ is decreasing for d ∈ (0, 1). In other words, f is single peaked on (0, 1
2 ] and continuous509

at 0. Now we only have to check that f(0) ≥ 0, which is trivial, and f
(
1
2

)
≥ 0. For the latter, let510

g(p) = (p+ 1)0.5p − 1.

g(p) ≥ 0 for p ∈ [0, 1] since g(p) is concave on [0, 1] and g(0) = g(1) = 0. The lemma then follows.511

512

We then proceed to prove Lemma 4.513

Proof of Lemma 4: Let xa be the potential of candidate a in ℓp QRJA. W.l.o.g. assume that in any514

solution, xv(s) = 0. We first show that if xv(t) ̸= 1, then moving it to 1 strictly improves the solution.515

Suppose |xv(t) − 1| = d. By moving xv(t) to 1, we decrease the loss on the judgment (v(t), v(s), 1)516

by w1d
p. For other judgments (v(t), u) incident on v(t), the loss increase by no more than w2d

p,517

since518

|(xv(t) ± d)− xu|p ≤ |xv(t) − xu|p + dp.

Overall, the cost decreases by at least519

w1d
p − nw2d

p = dp > 0.

Now we show moving any fractional xu to the closest value in {0, 1} strictly improves the solution.520

There are two cases:521

• xu ∈ (0, 1). W.l.o.g. xu ∈ (1, 1
2 ] and we try to move it to 0 by a displacement of d = xu. The522

total loss on (v(s), u, 0) and (v(t), u, 0) decreases by w2(d
p +(1− d)p− 1), while the total cost523

on judgments of form (u, v, 1) and (v, u, 1) can increase by no more than n(dp+(2+d)p−2p).524

With Lemma 5, we see that525

w2(d
p + (1− d)p − 1) ≥ w2(d

p − pdp)

> 2ndp

≥ n(dp + (2 + d)p − 2p).

So, there is a positive improvement from rounding xu.526

14



• xu /∈ [0, 1]. W.l.o.g. xu < 0 and we try to move it to 0 by a displacement of d = −xu. The total527

loss on (v(s), u, 0) and (v(t), u, 0) decreases by w2(d
p + (1 + d)p − 1), while the total cost on528

edges of form (u, v, 1) and (v, u, 1) can increase by no more than n(dp + (2 + d)p − 2p). And529

w2(d
p + (1 + d)p − 1) ≥ w2d

p

> 2ndp

≥ n(dp + (2 + d)p − 2p).

We conclude that in any optimal solution, xv(s) = 0, xv(t) = 1, and for any u ∈ V , xu ∈ {0, 1}.530

Next, we present a lemma that shows the connection between solutions in the Max-Cut instance and531

those in the constructed ℓp QRJA instance.532

Lemma 6. A Max-Cut instance has a solution of size at least k iff its corresponding ℓp QRJA instance533

has a solution of loss at most nw2 + 2(m− k) + k2p. Moreover, with such a solution to the ℓp QRJA534

instance, one can construct a Max-Cut solution of the claimed size.535

Proof of Lemma 6: Given a Max-Cut solution (S, T ) of size at least k, setting the potentials of536

the vertices in S and T to be 0 and 1 respectively gives an ℓp QRJA solution with loss at most537

nw2 + 2(m− k) + k2p.538

Given a ℓp QRJA solution of loss at most nw1 + 2(m− k) + k2p, we first round the solution to the539

form stated in Lemma 4. This improves the solution. The two vertex sets U = {u ∈ V | x(u) = 0}540

and V = {v ∈ V | x(v) = 1} then form a Max-Cut solution of size at least k.541

We are now ready to prove Theorem 2.542

Proof of Theorem 2: According to Lemma 6, any approximation with an additive error less543

than 2− 2p of the constructed ℓp QRJA instance can be rounded to produce an optimal solution to544

Max-Cut. Since Max-Cut is NP-Hard and the constructed ℓp QRJA instance’s optimal solution has545

loss Θ(n2 +m), the theorem follows.546

C Additional Experiments547

C.1 L2 Variant of Quantitative Loss548
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Figure 6: L2 quantitative loss of the algorithms on all four datasets used in Section 5. Error bars
are not shown here as the algorithms are deterministic. Similar to Fig. 4, the results show that both
versions of QRJA perform consistently well across the tested datasets.

We include in this subsection experiment results using average squared error as the quantitative metric.549

We call this metric L2 quantitative loss. Specifically, for each contest, we predict the difference550

in numerical scores of all pairs of contestants that have both appeared before. We then compute551

the L2 quantitative loss as the average squared error of the predictions, and normalize it by the L2552

quantitative loss of the trivial prediction that always predicts 0 for all pairs.553
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The results are shown in Fig. 6. We observe that both versions of QRJA still perform consistently554

well compared to other algorithms across the tested datasets. This is consistent with the results using555

the (L1) quantitative loss in Section 5.556

Additionally, ℓ2 QRJA performs slightly better than ℓ1 QRJA on this metric. This is expected because557

this metric is more aligned with the ℓ2 QRJA’s loss function.558

C.2 Performance Experiments on More Datasets559

We include in this subsection the performance experiments on three more datasets. The new datasets560

are listed below.561

• Cross-Tables. This dataset contains the results of cross-tables (a crossword-style word game)562

tournaments (https://www.cross-tables.com/) from 2000 to 2023. Each contest is a563

round-robin tournament involving around 8 contestants. A contestant’s numerical score is564

his/her number of wins in the tournament. There are 1215 contests and 1912 contestants in this565

dataset.566

• F1-Full. This dataset is an alternative version of F1. In F1-Full, we choose to additionally567

include contestants who do not complete the whole race. Now the contestants are ranked first by568

the number of laps they finish, and then their finishing time. A contestant’s numerical score is569

the negative of the contestant’s finishing time (in seconds). If the contestant does not finish all570

laps, we add a large penalty (1000 seconds) for each lap the contestant fails to finish. There are571

878 contests and 606 contestants in this dataset.572

• Codeforces-Core. This dataset is a modified version of Codeforces. We only keep contestants573

who have participated in at least half of the contests in this dataset. We test on this modified574

dataset because all other datasets we use in the experiments are sparse datasets (i.e., contestants575

participate in a small fraction of the contests on average), so we want to see what happens on576

dense ones. There are 327 contests and 17 contestants in total.577

We evaluate ℓ1 and ℓ2 QRJA using the same metrics against the same set of benchmarks as in Section 5578

on these three datasets. The results are shown in Fig. 7. We highlight a few extra observations below.579

Extra observations on Cross-Tables. In terms of ordinal accuracy, Median performs the best among580

the tested algorithms on Cross-Tables. However, in terms of quantitative loss, Median is the worst581

algorithm among the tested ones. Moreover, it mostly performs suboptimally on other datasets as582

shown in Figs. 4 and 7. This shows that although Median is occasionally good in performance, it583

fails in other cases.584

Extra observations on F1-Full. On F1-Full, both MF and ℓ2 QRJA and perform considerably worse585

than ℓ1 QRJA. This is not seen in other datasets. We believe this is because our score calculation586

results in a large variance in contestants’ scores on F1-Full, which makes it harder for these methods to587

make good predictions. This also shows that ℓ1 QRJA is more robust to datasets with large variances588

in contestants’ performance than these methods. We also notice that Borda and Kemeny-Young589

perform well on F1-Full, which is consistent with their good performance on F1.590

Extra observations on Codeforces-Core. In terms of ordinal accuracy, all tested algorithms except591

Borda perform well. In terms of quantitative loss, MF and Median are worse than the other ones.592

This shows that on a dense dataset like Codeforces-Core, most algorithms can make good predictions.593

Moreover, MF does not have a clear advantage over other algorithms in our problem even if the594

dataset is dense.595

C.3 Subsampling Experiments on More Datasets596

We also conduct the subsampling experiments in Appendix A.2 on all other 5 datasets. The results597

are shown in Fig. 8.598

Experiment results. The message here is the same as that in Appendix A.2. In particular, Algorithm 1599

can reduce the number of judgments with only a minor loss in performance as long as the subsample600

rate α is not too small. Note that in some of the figures, like Fig. 8c, the errors seem to be large601

visually. This is because of the small scale of the y-axis (only 0.6% for Fig. 8c). The actual errors are602
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Figure 7: The performance of the algorithms on Cross-Tables, F1-Full, and Codeforces-Core. Error
bars are not shown as the algorithms are deterministic. The results show that ℓ1 QRJA still performs
consistently well across the tested datasets. However, ℓ2 QRJA performs considerably worse than ℓ1
QRJA on F1-Full. This is not seen in other datasets.

small. Moreover, we observe that the performance of ℓ2 QRJA is slightly more robust to subsampling603

than that of ℓ1 QRJA. This is consistent with the results in Appendix A.2.604

C.4 Experiments about Matrix Factorization605

Recall that in Section 5, we only show results of one version of Matrix Factorization (MF). We606

include in this subsection the experiments involving different variants of Matrix Factorization as well607

as their implementation details.608

Implementation details. We have implemented two variants of MF: Low-Rank MF and Additive609

MF. The MF algorithm used in Section 5 is Low-Rank MF with rank r = 1. We describe the610

implementation details below.611

• Low-Rank MF. Recall that in the context of our experiments, we can view each contestant as612

a row and each contest as a column. The score of a contestant in a contest is the entry in the613

corresponding row and column. A classical model of MF Koren et al. [2009] is factorizing614

A ∈ Rn×m as the product of two low-rank matrices UV⊤, where U ∈ Rn×r,V ∈ Rm×r615

for some small r. Note that in our experiments, the algorithm is required to predict a new616

column of A with no known entries. Therefore, we cannot directly apply this method since617

the corresponding row of V will remain unchanged after initialization. To solve this problem,618

we instead predict every column with known entries in A and then take the average of the619

predictions as the prediction for the new column. We use the standard loss function that sums up620

the squared errors of all observed entries. We implement this method with SciPy [Jones et al.,621

2014] and use gradient descent for a fixed number of epochs on a deterministic initialization to622

keep the results deterministic. We test r = 1, 2, 5 in this subsection.623

• Additive MF. We also consider an additive variant of MF. For x ∈ Rn,y ∈ Rm, this method624

predicts Ai,j = xi + yj . Here, xi can be viewed as contestant i’s skill level, and yj can be625

interpreted as the (inversed) difficulty of contest j. We then use the vector x to make predictions.626

Note that this version of MF resembles QRJA in that for each of these two methods, the loss627

function is 0 if Ai,j = xi + yj holds for the known entries. We also use the standard sum of the628

squared loss function and use gradient descent for a fixed number of epochs on a deterministic629

initialization to keep it deterministic.630

Performance experiments. We first evaluate these variants of MF using the same metrics as in631

Section 5 on all datasets. The results are shown in Fig. 9. We can see that R1 MF and Additive MF632
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Figure 8: The performance of ℓ1 and ℓ2 QRJA after subsampling judgments using Algorithm 1 with
equal weights for all judgments. The subsample rate α means M = ⌊αm⌋ in Algorithm 1. Error
bars indicate the standard deviation. The results show that Algorithm 1 can reduce the number of
judgments to a factor less than 1.0 with a minor loss in performance in the used datasets. Note that
errors in some figures appear large because of the small scale of the y-axis. The actual errors are
small.
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Figure 9: The performance of different variants of Matrix Factorization. The results show that R1
MF and Additive MF generally have similar performance. In contrast, R2 and R5 MF perform worse
than the former.
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Figure 10: The performance of Matrix Factorization with different numbers of training epochs on
all datasets. The results generally show that R1 MF outperforms R2 and R5 MF. Moreover, on
some datasets, R2 and R5 MF’s performance worsens as the number of training epochs increases. In
contrast, R1 MF’s performance improves as the number of training epochs increases.
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Figure 11: Entrywise L1 and L2 loss of Matrix Factorization, Mean, and Median. The results
show that on most datasets, R1 MF outperforms R2 and R5 MF. The exceptions are F1-Full and
Codeforces-Core. Moreover, Matrix Factorization does not have a clear advantage over Mean and
Median on any dataset in terms of entrywise metrics.
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generally have similar performance. In contrast, R2 and R5 MF perform worse than the former. We633

therefore choose to present R1 MF in Section 5.634

Low-Rank MF’s performance over training. The observation that R2 and R5 MF perform worse635

than R1 MF is surprising to us. To confirm this observation, we plot the performance of these variants636

of MF with different numbers of training epochs on all datasets. The results are shown in Fig. 10.637

We can see that R1 MF generally outperforms R2 and R5 MF in terms of both ordinal accuracy and638

quantitative loss when trained for long enough. Moreover, R1 MF’s performance on both metrics639

generally improves as the number of training epochs increases (the only exception is quantitative640

loss on F1-Full). In contrast, R2 and R5 MF’s performance in terms of both metrics worsens as the641

number of training epochs increases on Chess, F1, and Codeforces. These observed phenomena642

suggest that R2 and R5 MF tend to overfit the data. The problem for R1 MF is less severe.643

Experiment results on entrywise metrics. As the metrics in Section 5 are defined in a pairwise644

fashion and might not be well-suited for MF, we also evaluate the performance of MF in terms of645

entrywise L1 and L2 loss (i.e., the average absolute and squared error of the predictions on each646

contestant’s actual score in each contest). We also normalize each of these losses by the corresponding647

loss of the trivial all-zero prediction. The results are shown in Fig. 11. Note that QRJA and Additive648

MF are not included, because their predictions can be shifted by an arbitrary constant, and thus649

entrywise losses do not apply to them. We can see that in terms of entrywise L1 and L2 loss, R1650

MF outperforms R2 and R5 MF on most datasets. The exceptions are F1-Full and Codeforces-Core.651

These two datasets are different from the other ones in that F1-Full’s scores are calculated with two652

numbers (the number of laps finished and the finishing time) and Codeforces-Core is a dense dataset653

constructed from Codeforces. Therefore, on these datasets, MF with higher ranks might be more654

suitable than R1 MF, while on the other datasets, they tend to overfit the training data. Moreover, we655

note that on entrywise metrics, MF generally performs worse than Mean and Median.656

Summary of experiment results. In summary, experiments in this subsection show that on our657

datasets, R1 MF and Additive MF, which are similar in performance, generally perform better than658

R2 and R5 MF. Therefore, we choose to include only the results of R1 MF in Section 5.659

D Axiomatic Characterization of ℓp QRJA660

We characterize ℓp QRJA by giving a set of axioms for the family of transformation functions f of661

pairwise loss that we consider. We show that those transformation functions considered in ℓp QRJA662

are essentially the minimum set of functions satisfying these axioms.663

Recall that for each judgment about a and b where a is better b by y units, the absolute error of the664

prediction vector x on this pair is |xa − xb − y|. Using this as the loss function, we obtain the ℓ1665

QRJA rule, which has been characterized using axioms in the context of social choice theory Conitzer666

et al. [2016]. Below we extend this characterization to ℓp QRJA for any positive rational number667

p ∈ Q+. Note that restricting p to be rational is without loss of generality, since the output of ℓp668

QRJA is continuous in p.669

We consider transforming the absolute error by a transformation function f to obtain the actual670

pairwise loss, which is f(|xa − xb − y|). For ℓp QRJA, the transformation function is f(t) = tp. To671

characterize QRJA as a family of rules (for different p ∈ Q+), we give axioms for the corresponding672

family of transformation functions, i.e., tp for p ∈ Q+. Let F be a family of transformation functions.673

Below are the axioms we consider:674

• Identity. There is an identity transformation f0 ∈ F , such that f0(t) = t for any t ≥ 0.675

• Invertibility. For each f1 ∈ F , there is an f2 ∈ F such that f1 composed with f2 is identity, i.e.,676

for any t ≥ 0,677

f1(f2(t)) = t.

• Closedness under multiplication. For any f1, f2 ∈ F , there exists f3 ∈ F such that for any678

t ≥ 0,679

f1(t) · f2(t) = f3(t).

We show below that the family of transformation functions corresponding to the ℓp QRJA rules is680

the minimum family of functions F∗ satisfying the above axioms. By the first axiom, the identity681
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transformation f0 where f0(t) = t is in F∗. (This corresponds to ℓ1 QRJA.) Then by the third axiom,682

for any k ∈ Z+, fk
0 is also in F∗, where fk

0 (t) = tk. And by the second axiom, for any k ∈ Z+,683

f
1/k
0 is also in F∗, where f

1/k
0 (t) = t1/k. This is because f

1/k
0 (fk

0 (t)) = t. Finally, for any r ∈ Q+684

where r = p/q for p, q ∈ Z+, by the third axiom, fr
0 = (f

1/q
0 )p is in F∗, where fr

0 (t) = tr.685

Note that the above argument establishes that F∗ contains all transformation functions corresponding686

to QRJA, i.e.,687

{tr | r ∈ Q+} ⊆ F∗.

Below we show the other direction, i.e., {tr | r ∈ Q+} satisfy the 3 axioms, and as a result,688

F∗ ⊆ {tr | r ∈ Q+}.

For f1(t) = tr1 , f2(t) = tr2 where r1, r2 ∈ Q+, we have689

f1(t) · f2(t) = tr1+r2 ,

where r1 + r2 ∈ Q+, and690

f1(f2(t)) = (tr2)r1 = tr1·r2 ,

where r1 · r2 ∈ Q+. This implies F∗ ⊆ {tr | r ∈ Q+}. Thus F∗ = {tr | r ∈ Q+} as desired.691

E Copyright Information for Datasets Used692

The datasets used in this paper are collected from publicly available websites either manually or693

through an API. We provide the following information about these datasets.694

• Chess. Copyright: © 2023 - Tata Steel Chess Tournament. Data collected is sub-695

ject to the website’s Terms of Conditions, available at https://tatasteelchess.com/696

terms-and-conditions/.697

• F1. Copyright: © 2003-2024 Formula One World Championship Limited. Data collected is698

subject to the website’s Terms of Use, available at https://account.formula1.com/#/699

en/terms-of-use.700

• Marathon. Copyright: © 2000-2024, All Rights Reserved by MarathonGuide.com701

LLC. Data collected is subject to the website’s Policy, available at https://www.702

marathonguide.com/Policy.cfm.703

• Codeforces. Copyright: © 2010-2024 Mike Mirzayanov. Data collected is subject to the704

website’s Terms and Conditions, available at https://codeforces.com/terms.705

• Cross-Tables. Copyright: © 2005-2024 Seth Lipkin and Keith Smith. Data collected is706

subject to the website’s Policy, available at https://www.cross-tables.com/privacy.707

html.708
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NeurIPS Paper Checklist709

1. Claims710

Question: Do the main claims made in the abstract and introduction accurately reflect the711

paper’s contributions and scope?712

Answer: [Yes]713

Justification: The main contributions are summarized at the end of the introduction.714

Guidelines:715

• The answer NA means that the abstract and introduction do not include the claims716

made in the paper.717

• The abstract and/or introduction should clearly state the claims made, including the718

contributions made in the paper and important assumptions and limitations. A No or719

NA answer to this question will not be perceived well by the reviewers.720

• The claims made should match theoretical and experimental results, and reflect how721

much the results can be expected to generalize to other settings.722

• It is fine to include aspirational goals as motivation as long as it is clear that these goals723

are not attained by the paper.724

2. Limitations725

Question: Does the paper discuss the limitations of the work performed by the authors?726

Answer: [Yes]727

Justification: We briefly discuss the limitations of our work in Section 7.728

Guidelines:729

• The answer NA means that the paper has no limitation while the answer No means that730

the paper has limitations, but those are not discussed in the paper.731

• The authors are encouraged to create a separate "Limitations" section in their paper.732

• The paper should point out any strong assumptions and how robust the results are to733

violations of these assumptions (e.g., independence assumptions, noiseless settings,734

model well-specification, asymptotic approximations only holding locally). The authors735

should reflect on how these assumptions might be violated in practice and what the736

implications would be.737

• The authors should reflect on the scope of the claims made, e.g., if the approach was738

only tested on a few datasets or with a few runs. In general, empirical results often739

depend on implicit assumptions, which should be articulated.740

• The authors should reflect on the factors that influence the performance of the approach.741

For example, a facial recognition algorithm may perform poorly when image resolution742

is low or images are taken in low lighting. Or a speech-to-text system might not be743

used reliably to provide closed captions for online lectures because it fails to handle744

technical jargon.745

• The authors should discuss the computational efficiency of the proposed algorithms746

and how they scale with dataset size.747

• If applicable, the authors should discuss possible limitations of their approach to748

address problems of privacy and fairness.749

• While the authors might fear that complete honesty about limitations might be used by750

reviewers as grounds for rejection, a worse outcome might be that reviewers discover751

limitations that aren’t acknowledged in the paper. The authors should use their best752

judgment and recognize that individual actions in favor of transparency play an impor-753

tant role in developing norms that preserve the integrity of the community. Reviewers754

will be specifically instructed to not penalize honesty concerning limitations.755

3. Theory Assumptions and Proofs756

Question: For each theoretical result, does the paper provide the full set of assumptions and757

a complete (and correct) proof?758

Answer: [Yes]759
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Justification: The theoretical results are stated with the full set of assumptions and their760

proofs are provided either in Section 4 or in Appendices A and B.761

Guidelines:762

• The answer NA means that the paper does not include theoretical results.763

• All the theorems, formulas, and proofs in the paper should be numbered and cross-764

referenced.765

• All assumptions should be clearly stated or referenced in the statement of any theorems.766

• The proofs can either appear in the main paper or the supplemental material, but if767

they appear in the supplemental material, the authors are encouraged to provide a short768

proof sketch to provide intuition.769

• Inversely, any informal proof provided in the core of the paper should be complemented770

by formal proofs provided in appendix or supplemental material.771

• Theorems and Lemmas that the proof relies upon should be properly referenced.772

4. Experimental Result Reproducibility773

Question: Does the paper fully disclose all the information needed to reproduce the main ex-774

perimental results of the paper to the extent that it affects the main claims and/or conclusions775

of the paper (regardless of whether the code and data are provided or not)?776

Answer: [Yes]777

Justification: The code and data are provided in the supplemental materials, including an778

automated test script to reproduce the experimental results stated in the paper.779

Guidelines:780

• The answer NA means that the paper does not include experiments.781

• If the paper includes experiments, a No answer to this question will not be perceived782

well by the reviewers: Making the paper reproducible is important, regardless of783

whether the code and data are provided or not.784

• If the contribution is a dataset and/or model, the authors should describe the steps taken785

to make their results reproducible or verifiable.786

• Depending on the contribution, reproducibility can be accomplished in various ways.787

For example, if the contribution is a novel architecture, describing the architecture fully788

might suffice, or if the contribution is a specific model and empirical evaluation, it may789

be necessary to either make it possible for others to replicate the model with the same790

dataset, or provide access to the model. In general. releasing code and data is often791

one good way to accomplish this, but reproducibility can also be provided via detailed792

instructions for how to replicate the results, access to a hosted model (e.g., in the case793

of a large language model), releasing of a model checkpoint, or other means that are794

appropriate to the research performed.795

• While NeurIPS does not require releasing code, the conference does require all submis-796

sions to provide some reasonable avenue for reproducibility, which may depend on the797

nature of the contribution. For example798

(a) If the contribution is primarily a new algorithm, the paper should make it clear how799

to reproduce that algorithm.800

(b) If the contribution is primarily a new model architecture, the paper should describe801

the architecture clearly and fully.802

(c) If the contribution is a new model (e.g., a large language model), then there should803

either be a way to access this model for reproducing the results or a way to reproduce804

the model (e.g., with an open-source dataset or instructions for how to construct805

the dataset).806

(d) We recognize that reproducibility may be tricky in some cases, in which case807

authors are welcome to describe the particular way they provide for reproducibility.808

In the case of closed-source models, it may be that access to the model is limited in809

some way (e.g., to registered users), but it should be possible for other researchers810

to have some path to reproducing or verifying the results.811

5. Open access to data and code812
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Question: Does the paper provide open access to the data and code, with sufficient instruc-813

tions to faithfully reproduce the main experimental results, as described in supplemental814

material?815

Answer: [Yes]816

Justification: The code and data are provided in the supplemental materials, including an817

automated test script to reproduce the experimental results stated in the paper.818

Guidelines:819

• The answer NA means that paper does not include experiments requiring code.820

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/821

public/guides/CodeSubmissionPolicy) for more details.822

• While we encourage the release of code and data, we understand that this might not be823

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not824

including code, unless this is central to the contribution (e.g., for a new open-source825

benchmark).826

• The instructions should contain the exact command and environment needed to run to827

reproduce the results. See the NeurIPS code and data submission guidelines (https:828

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.829

• The authors should provide instructions on data access and preparation, including how830

to access the raw data, preprocessed data, intermediate data, and generated data, etc.831

• The authors should provide scripts to reproduce all experimental results for the new832

proposed method and baselines. If only a subset of experiments are reproducible, they833

should state which ones are omitted from the script and why.834

• At submission time, to preserve anonymity, the authors should release anonymized835

versions (if applicable).836

• Providing as much information as possible in supplemental material (appended to the837

paper) is recommended, but including URLs to data and code is permitted.838

6. Experimental Setting/Details839

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-840

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the841

results?842

Answer: [Yes]843

Justification: The experiment settings in Section 5 and Appendices A and C aim to provide844

necessary details to understand the results. The full details are provided with the code.845

Guidelines:846

• The answer NA means that the paper does not include experiments.847

• The experimental setting should be presented in the core of the paper to a level of detail848

that is necessary to appreciate the results and make sense of them.849

• The full details can be provided either with the code, in appendix, or as supplemental850

material.851

7. Experiment Statistical Significance852

Question: Does the paper report error bars suitably and correctly defined or other appropriate853

information about the statistical significance of the experiments?854

Answer: [Yes]855

Justification: We state in the caption of the figures that “error bars are not shown here as the856

algorithms are deterministic”, which is appropriate information about statistical significance.857

Guidelines:858

• The answer NA means that the paper does not include experiments.859

• The authors should answer "Yes" if the results are accompanied by error bars, confi-860

dence intervals, or statistical significance tests, at least for the experiments that support861

the main claims of the paper.862
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• The factors of variability that the error bars are capturing should be clearly stated (for863

example, train/test split, initialization, random drawing of some parameter, or overall864

run with given experimental conditions).865

• The method for calculating the error bars should be explained (closed form formula,866

call to a library function, bootstrap, etc.)867

• The assumptions made should be given (e.g., Normally distributed errors).868

• It should be clear whether the error bar is the standard deviation or the standard error869

of the mean.870

• It is OK to report 1-sigma error bars, but one should state it. The authors should871

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis872

of Normality of errors is not verified.873

• For asymmetric distributions, the authors should be careful not to show in tables or874

figures symmetric error bars that would yield results that are out of range (e.g. negative875

error rates).876

• If error bars are reported in tables or plots, The authors should explain in the text how877

they were calculated and reference the corresponding figures or tables in the text.878

8. Experiments Compute Resources879

Question: For each experiment, does the paper provide sufficient information on the com-880

puter resources (type of compute workers, memory, time of execution) needed to reproduce881

the experiments?882

Answer: [Yes]883

Justification: It is stated in Section 5 that “All experiments are done on a server with 56 CPU884

cores and 504G RAM. The experiments in Section 5 and Appendices A and C take around 2885

weeks in total to run on this server. No GPU is used.”886

Guidelines:887

• The answer NA means that the paper does not include experiments.888

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,889

or cloud provider, including relevant memory and storage.890

• The paper should provide the amount of compute required for each of the individual891

experimental runs as well as estimate the total compute.892

• The paper should disclose whether the full research project required more compute893

than the experiments reported in the paper (e.g., preliminary or failed experiments that894

didn’t make it into the paper).895

9. Code Of Ethics896

Question: Does the research conducted in the paper conform, in every respect, with the897

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?898

Answer: [Yes]899

Justification: We have reviewed the Code of Ethics and believe that our paper conforms to it.900

Guidelines:901

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.902

• If the authors answer No, they should explain the special circumstances that require a903

deviation from the Code of Ethics.904

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-905

eration due to laws or regulations in their jurisdiction).906

10. Broader Impacts907

Question: Does the paper discuss both potential positive societal impacts and negative908

societal impacts of the work performed?909

Answer: [Yes]910

Justification: We briefly discuss the boarder impacts of our work in Section 7.911

Guidelines:912

• The answer NA means that there is no societal impact of the work performed.913
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• If the authors answer NA or No, they should explain why their work has no societal914

impact or why the paper does not address societal impact.915

• Examples of negative societal impacts include potential malicious or unintended uses916

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations917

(e.g., deployment of technologies that could make decisions that unfairly impact specific918

groups), privacy considerations, and security considerations.919

• The conference expects that many papers will be foundational research and not tied920

to particular applications, let alone deployments. However, if there is a direct path to921

any negative applications, the authors should point it out. For example, it is legitimate922

to point out that an improvement in the quality of generative models could be used to923

generate deepfakes for disinformation. On the other hand, it is not needed to point out924

that a generic algorithm for optimizing neural networks could enable people to train925

models that generate Deepfakes faster.926

• The authors should consider possible harms that could arise when the technology is927

being used as intended and functioning correctly, harms that could arise when the928

technology is being used as intended but gives incorrect results, and harms following929

from (intentional or unintentional) misuse of the technology.930

• If there are negative societal impacts, the authors could also discuss possible mitigation931

strategies (e.g., gated release of models, providing defenses in addition to attacks,932

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from933

feedback over time, improving the efficiency and accessibility of ML).934

11. Safeguards935

Question: Does the paper describe safeguards that have been put in place for responsible936

release of data or models that have a high risk for misuse (e.g., pretrained language models,937

image generators, or scraped datasets)?938

Answer: [NA]939

Justification: The paper does not release data or models that have a high risk for misuse.940

Guidelines:941

• The answer NA means that the paper poses no such risks.942

• Released models that have a high risk for misuse or dual-use should be released with943

necessary safeguards to allow for controlled use of the model, for example by requiring944

that users adhere to usage guidelines or restrictions to access the model or implementing945

safety filters.946

• Datasets that have been scraped from the Internet could pose safety risks. The authors947

should describe how they avoided releasing unsafe images.948

• We recognize that providing effective safeguards is challenging, and many papers do949

not require this, but we encourage authors to take this into account and make a best950

faith effort.951

12. Licenses for existing assets952

Question: Are the creators or original owners of assets (e.g., code, data, models), used in953

the paper, properly credited and are the license and terms of use explicitly mentioned and954

properly respected?955

Answer: [Yes]956

Justification: Any existing code package used in the paper is properly cited in Section 5.957

The datasets used in the paper are publicly available and their copyright information are958

explicitly mentioned in Appendix E.959

Guidelines:960

• The answer NA means that the paper does not use existing assets.961

• The authors should cite the original paper that produced the code package or dataset.962

• The authors should state which version of the asset is used and, if possible, include a963

URL.964

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.965
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• For scraped data from a particular source (e.g., website), the copyright and terms of966

service of that source should be provided.967

• If assets are released, the license, copyright information, and terms of use in the968

package should be provided. For popular datasets, paperswithcode.com/datasets969

has curated licenses for some datasets. Their licensing guide can help determine the970

license of a dataset.971

• For existing datasets that are re-packaged, both the original license and the license of972

the derived asset (if it has changed) should be provided.973

• If this information is not available online, the authors are encouraged to reach out to974

the asset’s creators.975

13. New Assets976

Question: Are new assets introduced in the paper well documented and is the documentation977

provided alongside the assets?978

Answer: [Yes]979

Justification: The uploaded code is accompanied by a README file that documents the980

overall usage of it, and for each individual source file, comments are provided to explain the981

purpose of the file and the functions defined in it.982

Guidelines:983

• The answer NA means that the paper does not release new assets.984

• Researchers should communicate the details of the dataset/code/model as part of their985

submissions via structured templates. This includes details about training, license,986

limitations, etc.987

• The paper should discuss whether and how consent was obtained from people whose988

asset is used.989

• At submission time, remember to anonymize your assets (if applicable). You can either990

create an anonymized URL or include an anonymized zip file.991

14. Crowdsourcing and Research with Human Subjects992

Question: For crowdsourcing experiments and research with human subjects, does the paper993

include the full text of instructions given to participants and screenshots, if applicable, as994

well as details about compensation (if any)?995

Answer: [NA]996

Justification: The paper does not involve crowdsourcing nor research with human subjects.997

Guidelines:998

• The answer NA means that the paper does not involve crowdsourcing nor research with999

human subjects.1000

• Including this information in the supplemental material is fine, but if the main contribu-1001

tion of the paper involves human subjects, then as much detail as possible should be1002

included in the main paper.1003

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1004

or other labor should be paid at least the minimum wage in the country of the data1005

collector.1006

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1007

Subjects1008

Question: Does the paper describe potential risks incurred by study participants, whether1009

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1010

approvals (or an equivalent approval/review based on the requirements of your country or1011

institution) were obtained?1012

Answer: [NA]1013

Justification: The paper does not involve crowdsourcing nor research with human subjects.1014

Guidelines:1015

• The answer NA means that the paper does not involve crowdsourcing nor research with1016

human subjects.1017
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1018

may be required for any human subjects research. If you obtained IRB approval, you1019

should clearly state this in the paper.1020

• We recognize that the procedures for this may vary significantly between institutions1021

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1022

guidelines for their institution.1023

• For initial submissions, do not include any information that would break anonymity (if1024

applicable), such as the institution conducting the review.1025
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