Self-interested Automated Mechanism Design and
Implications for Optimal Combinatorial Auctions .

Vincent Conitzer
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA

conitzer@cs.cmu.edu

ABSTRACT

Often, an outcome must be chosen on the basis of the pref-
erences reported by a group of agents. The key difficulty
is that the agents may report their preferences insincerely
to make the chosen outcome more favorable to themselves.
Mechanism design is the art of designing the rules of the
game so that the agents are motivated to report their pref-
erences truthfully, and a desirable outcome is chosen. In a
recently proposed approach—called automated mechanism
design—a mechanism is computed for the preference aggre-
gation setting at hand. This has several advantages, but the
downside is that the mechanism design optimization prob-
lem needs to be solved anew each time. Unlike the earlier
work on automated mechanism design that studied a benev-
olent designer, in this paper we study automated mechanism
design problems where the designer is self-interested. In this
case, the center cares only about which outcome is chosen
and what payments are made to it. The reason that the
agents’ preferences are relevant is that the center is con-
strained to making each agent at least as well off as the agent
would have been had it not participated in the mechanism.
In this setting, we show that designing optimal deterministic
mechanisms is N'P-complete in two important special cases:
when the center is interested only in the payments made
to it, and when payments are not possible and the center
is interested only in the outcome chosen. We then show
how allowing for randomization in the mechanism makes
problems in this setting computationally easy. Finally, we
show that the payment-maximizing AMD problem is closely
related to an interesting variant of the optimal (revenue-
maximizing) combinatorial auction design problem, where
the bidders have “best-only” preferences. We show that
here, too, designing an optimal deterministic auction is NP-
complete, but designing an optimal randomized auction is
easy.

*Supported by NSF under CAREER Award IRI-9703122,
Grant 11S-9800994, ITR 1IS-0081246, and ITR 1IS-0121678.

Permission to make digital or hard copies of all or part of this work for

Tuomas Sandholm
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA

sandholm@cs.cmu.edu

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Fconomics

General Terms

Algorithms, Economics, Theory

Keywords

Automated Mechanism Design, Combinatorial Auctions,
Revenue Maximization

1. INTRODUCTION

In multiagent settings, often an outcome must be cho-
sen on the basis of the preferences reported by a group of
agents. Such outcomes could be potential presidents, joint
plans, allocations of goods or resources, etc. The preference
aggregator generally does not know the agents’ preferences
a priori. Rather, the agents report their preferences to the
coordinator. Unfortunately, an agent may have an incentive
to misreport its preferences in order to mislead the mech-
anism into selecting an outcome that is more desirable to
the agent than the outcome that would be selected if the
agent revealed its preferences truthfully. Such manipulation
is undesirable because preference aggregation mechanisms
are tailored to aggregate preferences in a socially desirable
way, and if the agents reveal their preferences insincerely, a
socially undesirable outcome may be chosen.

Manipulability is a pervasive problem across preference
aggregation mechanisms. A seminal negative result, the
Gibbard-Satterthwaite theorem, shows that under any non-
dictatorial preference aggregation scheme, if there are at
least 3 possible outcomes, there are preferences under which
an agent is better off reporting untruthfully [10, 23]. (A
preference aggregation scheme is called dictatorial if one of
the agents dictates the outcome no matter what preferences
the other agents report.)

What the aggregator would like to do is design a prefer-
ence aggregation mechanism so that 1) the self-interested

personal or classroom use is granted without fee provided that copies areagents are motivated to report their preferences truthfully,
not made or distributed for profit or commercial advantage and that copies and 2) the mechanism chooses an outcome that is desirable
bear this notice and the full citation on the first page. To copy otherwise, t0 from the perspective of some objective. This is the classic
republish, to post on servers or to redistribute to lists, requires prior specific setting of mechanism design in game theory. In this paper,

permission and/or a fee. we study the case where the designer is self-interested, that

EC’04,May 17-20, 2004, New York, New York, USA. . . )
Copyright 2004 ACM 1-58113-711-0/04/00055.00. is, the designer does not directly care about how the out-



come relates to the agents’ preferences, but is rather con-
cerned with its own agenda for which outcome should be
chosen, and with maximizing payments to itself. This is the
mechanism design setting most relevant to electronic com-
merce.

In the case where the mechanism designer is interested in
maximizing some notion of social welfare, the importance
of collecting the agents’ preferences is clear. It is perhaps
less obvious why they should be collected when the designer
is self-interested and hence its objective is not directly re-
lated to the agents’ preferences. The reason for this is that
often the agents’ preferences impose limits on how the de-
signer chooses the outcome and payments. The most com-
mon such constraint is that of individual rationality (IR),
which means that the mechanism cannot make any agent
worse off than the agent would have been had it not par-
ticipated in the mechanism. For instance, in the setting
of optimal auction design, the designer (auctioneer) is only
concerned with how much revenue is collected, and not per
se with how well the allocation of the good (or goods) cor-
responds to the agents’ preferences. Nevertheless, the de-
signer cannot force an agent to pay more than its valuation
for the bundle of goods allocated to it. Therefore, even a
self-interested designer will choose an outcome that makes
the agents reasonably well off. On the other hand, the de-
signer will not necessarily choose a social welfare maximiz-
ing outcome. For example, if the designer always chooses
an outcome that maximizes social welfare with respect to
the reported preferences, and forces each agent to pay the
difference between the utility it has now and the utility it
would have had if it had not participated in the mechanism,
it is easy to see that agents may have an incentive to mis-
report their preferences—and this may actually lead to less
revenue being collected. Indeed, one of the counterintuitive
results of optimal auction design theory is that sometimes
the good is allocated to nobody even when the auctioneer
has a reservation price of 0.

Classical mechanism design provides some general mech-
anisms, which, under certain assumptions, satisfy some no-
tion of nonmanipulability and maximize some objective. The
upside of these mechanisms is that they do not rely on
(even probabilistic) information about the agents’ prefer-
ences (e.g., the Vickrey-Clarke-Groves (VCG) mechanism [24,
4, 11]), or they can be easily applied to any probability
distribution over the preferences (e.g., the dAGVA mecha-
nism [8, 2], the Myerson auction [18], and the Maskin-Riley
multi-unit auction [17]). However, the general mechanisms
also have significant downsides:

e The most famous and most broadly applicable general
mechanisms, VCG and dAGVA, only maximize social
welfare. If the designer is self-interested, as is the case
in many electronic commerce settings, these mecha-
nisms do not maximize the designer’s objective.

e The general mechanisms that do focus on a self-
interested designer are only applicable in very restricted
settings—such as Myerson’s expected revenue maxi-
mizing auction for selling a single item, and Maskin
and Riley’s expected revenue maximizing auction for
selling multiple identical units of an item.

e Even in the restricted settings in which these mecha-
nisms apply, the mechanisms only allow for payment

maximization. In practice, the designer may also be
interested in the outcome per se. For example, an auc-
tioneer may care which bidder receives the item.

e It is often assumed that side payments can be used
to tailor the agents’ incentives, but this is not always
practical. For example, in barter-based electronic
marketplaces—such as Recipco, firstbarter.com,
BarterOne, and Intagio—side payments are not al-
lowed. Furthermore, among software agents, it might
be more desirable to construct mechanisms that do not
rely on the ability to make payments, because many
software agents do not have the infrastructure to make
payments.

In contrast, we follow a recent approach where the mech-
anism is designed automatically for the specific problem at
hand. This approach addresses all of the downsides listed
above. We formulate the mechanism design problem as an
optimization problem. The input is characterized by the
number of agents, the agents’ possible types (preferences),
and the aggregator’s prior distributions over the agents’
types. The output is a nonmanipulable mechanism that is
optimal with respect to some objective. This approach is
called automated mechanism design.

The automated mechanism design approach has four ad-
vantages over the classical approach of designing general
mechanisms. First, it can be used even in settings that
do not satisfy the assumptions of the classical mechanisms
(such as availability of side payments or that the objective
is social welfare). Second, it may allow one to circumvent
impossibility results (such as the Gibbard-Satterthwaite the-
orem) which state that there is no mechanism that is desir-
able across all preferences. When the mechanism is designed
for the setting at hand, it does not matter that it would
not work more generally. Third, it may yield better mech-
anisms (in terms of stronger nonmanipulability guarantees
and/or better outcomes) than classical mechanisms because
the mechanism capitalizes on the particulars of the setting
(the probabilistic information that the designer has about
the agents’ types). Given the vast amount of information
that parties have about each other today, this approach is
likely to lead to tremendous savings over classical mecha-
nisms, which largely ignore that information. For example,
imagine a company automatically creating its procurement
mechanism based on statistical knowledge about its suppli-
ers, rather than using a classical descending procurement
auction. Fourth, the burden of design is shifted from hu-
mans to a machine.

However, automated mechanism design requires the mech-
anism design optimization problem to be solved anew for
each setting. Hence its computational complexity becomes
a key issue. Previous research has studied this question for
benevolent designers—that wish to maximize, for example,
social welfare [5, 6]. In this paper we study the compu-
tational complexity of automated mechanism design in the
case of a self-interested designer. This is an important set-
ting for automated mechanism design due to the shortage
of general mechanisms in this area, and the fact that in
most e-commerce settings the designer is self-interested. We
also show that this problem is closely related to a particular
optimal (revenue-maximizing) combinatorial auction design
problem.



The rest of this paper is organized as follows. In Sec-
tion 2, we justify the focus on nonmanipulable mechanisms.
In Section 3, we define the problem we study. In Section 4,
we show that designing an optimal deterministic mechanism
is N'P-complete even when the designer only cares about the
payments made to it. In Section 5, we show that designing
an optimal deterministic mechanism is also N“P-complete
when payments are not possible and the designer is only in-
terested in the outcome chosen. In Section 6, we show that
an optimal randomized mechanism can be designed in poly-
nomial time even in the general case. Finally, in Section 7,
we show that for designing optimal combinatorial auctions
under best-only preferences, our results on AMD imply that
this problem is NP-complete for deterministic auctions, but
easy for randomized auctions.

2. JUSTIFYING THE FOCUS ON NONMA-
NIPULABLE MECHANISMS

Before we define the computational problem of automated
mechanism design, we should justify our focus on nonma-
nipulable mechanisms. After all, it is not immediately ob-
vious that there are no manipulable mechanisms that, even
when agents report their types strategically and hence some-
times untruthfully, still reach better outcomes (according to
whatever objective we use) than any nonmanipulable mech-
anism. This does, however, turn out to be the case: given
any mechanism, we can construct a nonmanipulable mech-
anism whose performance is identical, as follows. We build
an interface layer between the agents and the original mech-
anism. The agents report their preferences (or types) to
the interface layer; subsequently, the interface layer inputs
into the original mechanism the types that the agents would
have strategically reported to the original mechanism, if their
types were as declared to the interface layer. The resulting
outcome is the outcome of the new mechanism. Since the
interface layer acts “strategically on each agent’s behalf”,
there is never an incentive to report falsely to the interface
layer; and hence, the types reported by the interface layer
are the strategic types that would have been reported with-
out the interface layer, so the results are exactly as they
would have been with the original mechanism. This argu-
ment is known in the mechanism design literature as the rev-
elation principle [16]. (There are computational difficulties
with applying the revelation principle in large combinatorial
outcome and type spaces [7, 22]. However, because here we
focus on flatly represented outcome and type spaces, this is
not a concern here.) Given this, we can focus on truthful
mechanisms in the rest of the paper.

3. DEFINITIONS

We now formalize the automated mechanism design set-
ting.

DEFINITION 1. In an automated mechanism design set-
ting, we are given:

e a finite set of outcomes O;
e a finite set of N agents;
e for each agent i,

1. a finite set of types O,

2. a probability distribution y; over ©; (in the case of
correlated types, there is a single joint distribution
v over ©1 X ... x On), and

3. a utility function u; : ©; x O — R; ?

o An objective function whose expectation the designer
wishes to mazximize.

There are many possible objective functions the designer
might have, for example, social welfare (where the designer
seeks to maximize the sum of the agents’ utilities), or the
minimum utility of any agent (where the designer seeks to
maximize the worst utility had by any agent). In both
of these cases, the designer is benevolent, because the de-
signer, in some sense, is pursuing the agents’ collective hap-
piness. However, in this paper, we focus on the case of
a self-interested designer. A self-interested designer cares
only about the outcome chosen (that is, the designer does
not care how the outcome relates to the agents’ preferences,
but rather has a fixed preference over the outcomes), and
about the net payments made by the agents, which flow to
the designer.

DEFINITION 2. A self-interested designer has an objective
N

function given by g(o) + > 7, where g : O — R indicates
i=1

the designer’s own preference over the outcomes, and m; is
the payment made by agent i. In the case where g = 0
everywhere, the designer is said to be payment maximizing.
In the case where payments are not possible, g constitutes
the objective function by itself.

We now define the kinds of mechanisms under study. By
the revelation principle, we can restrict attention to truth-
ful, direct revelation mechanisms, where agents report their
types directly and never have an incentive to misreport them.

DEFINITION 3. We consider the following kinds of mech-
anism:

e A deterministic mechanism without payments consists
of an outcome selection function o : ©1 X O X ... X

Oy — O.

e A randomized mechanism without payments consists
of a distribution selection function p: ©1 X O2 X ... X
On — P(O), where P(O) is the set of probability dis-
tributions over O.

e A deterministic mechanism with payments consists of
an outcome selection functiono: ©1 XBO2X...XOn —
O and for each agent i, a payment selection function
M ©1 X O2 X ... Xx Oy — R, where m;(61,...,0N)
gives the payment made by agent i when the reported
types are 01,... ,0N.

'Though this follows standard game theory notation [16],
the fact that the agent has both a utility function and a type
is perhaps confusing. The types encode the various possible
preferences that the agent may turn out to have, and the
agent’s type is not known to the aggregator. The utility
function is common knowledge, but because the agent’s type
is a parameter in the agent’s utility function, the aggregator
cannot know what the agent’s utility is without knowing the
agent’s type.



e A randomized mechanism with payments consists of
a distribution selection function p : ©1 X O2 X ... X
On — P(O), and for each agent i, a payment selection
function w; : ©1 X O2 X ... X Oy — R.2

There are two types of constraint on the designer in build-
ing the mechanism.

3.1 Individual rationality (IR) constraints

The first type of constraint is the following. The utility of
each agent has to be at least as great as the agent’s fallback
utility, that is, the utility that the agent would receive if it
did not participate in the mechanism. Otherwise that agent
would not participate in the mechanism—and no agent’s
participation can ever hurt the mechanism designer’s objec-
tive because at worst, the mechanism can ignore an agent
by pretending the agent is not there. (Furthermore, if no
such constraint applied, the designer could simply make the
agents pay an infinite amount.) This type of constraint is
called an IR (individual rationality) constraint. There are
three different possible IR constraints: ex ante, ex interim,
and ex post, depending on what the agent knows about its
own type and the others’ types when deciding whether to
participate in the mechanism. FEz ante IR means that the
agent would participate if it knew nothing at all (not even
its own type). We will not study this concept in this paper.
Ex interim IR means that the agent would always partici-
pate if it knew only its own type, but not those of the others.
Ez post IR means that the agent would always participate
even if it knew everybody’s type. We will define the lat-
ter two notions of IR formally. First, we need to formalize
the concept of the fallback outcome. We assume that each
agent’s fallback utility is zero for each one of its types. This
is without loss of generality because we can add a constant
term to an agent’s utility function (for a given type), with-
out affecting the decision-making behavior of that expected
utility maximizing agent [16].

DEFINITION 4. In any automated mechanism design set-
ting with an IR constraint, there is a fallback outcome og €
O where, for any agent i and any type 6; € O;, we have
u;(0i,00) = 0. (Additionally, in the case of a self-interested
designer, g(og) =0.)

We can now to define the notions of individual rationality.

DEFINITION 5. Individual rationality (IR) is defined by:

e A deterministic mechanism is ex interim IR if for any
agent i, and any type 0; € ©;, we have
Ey...0i1.0041...00)10; Wi (05,0001, .., 0n)) =i (01, .., On)]
> 0.

A randomized mechanism is ex interim IR if for any
agent i, and any type 0; € ©;, we have
Eoy,.0,_1.0i41,.05)10; Foloy .0, [1i (0:,0) =7 (01, .., ON )]
>0.

o A deterministic mechanism is ex post IR if for any
agent i, and any type vector (01,... ,0n) € O1 X ... X
On, we have u;(0;,0(01,...,0n)) — mi(61,...,0n) >
0.

*We do not randomize over payments because as long as
the agents and the designer are risk neutral with respect to
payments, that is, their utility is linear in payments, there
is no reason to randomize over payments.

A randomized mechanism is ex post IR if for any agent
i, and any type vector (01,...,0n) € O1 X ... X On,
we have Eojo,...0, [ti(0:,0) — mi(61,..,0n)] 2 0.

The terms involving payments can be left out in the case
where payments are not possible.

3.2 Incentive compatibility (IC) constraints

The second type of constraint says that the agents should
never have an incentive to misreport their type (as justified
above by the revelation principle). For this type of con-
straint, the two most common variants (or solution concepts)
are implementation in dominant strategies, and implemen-
tation in Bayes-Nash equilibrium.

DEFINITION 6. Given an automated mechanism design set-
ting, a mechanism is said to implement its outcome and
payment functions in dominant strategies if truthtelling is
always optimal even when the types reported by the other
agents are already known. Formally, for any agent i, any
type vector (01,...,0;,... ,08) €EO1 X ... X O; X...XOpn,
and any alternative type report b; € O, in the case of de-
terministic mechanisms we have
ui(ei,o(él,... ,01',. .. 791\1)) 771'7;(01,... ,07;,... ,91\]) >
ui(9i70(91, ce ,92',.‘ . ,91\])) - 71'1'(01,. . ,91', e ,QN).

In the case of randomized mechanisms we have
Eojoy....6,,...00[1i(0i,0) = mi(0r,... , 0i,.. ON)] >
Eo\ﬂl,“,@i,“,en [u’b(a’w 0) - 7Ti(91, s 79ia s 70N)]-

The terms involving payments can be left out in the case
where payments are not possible.

Thus, in dominant strategies implementation, truthtelling
is optimal regardless of what the other agents report. If it
is optimal only given that the other agents are truthful, and
given that one does not know the other agents’ types, we
have implementation in Bayes-Nash equilibrium.

DEFINITION 7. Given an automated mechanism design set-
ting, a mechanism is said to implement its outcome and
payment functions in Bayes-Nash equilibrium if truthtelling
is always optimal to an agent when that agent does not yet
know anything about the other agents’ types, and the other
agents are telling the truth. Formally, for any agent i, any
type 0; € ©;, and any alternative type report 0; € ©;, in the
case of deterministic mechanisms we have

Ey,..0,_1,0i41,..05)10; Wi (05,0001, ... ,0i,... ,ON))—
7Ti(91,... ,91',... ,91\7)] >
E(gl7“,91._1797;4_17”,91\,”97:[ui(Hi,o(Ol,... ,91',... ,01\[))—
7Ti(91,,,. ,61',.., ,01\])].

In the case of randomized mechanisms we have
Ey,..0i_1,0041,08)10: Folo1,...0;,...0, [i (03, 0)—
71',‘(91,... ,Qi,‘.. ,HN)] Z
E(elv-wei—l!9i+1’-<19N)|9iE0|91,4.,9},..,9" [ui(0i,0)—
’/Ti(gl, ce ,éi, ce ,HN)].

The terms involving payments can be left out in the case
where payments are not possible.



3.3 Automated mechanism design

We can now define the computational problem we study.

DEFINITION 8. (AUTOMATED-MECHANISM-DESIGN
(AMD)) We are given:

e an automated mechanism design setting,

e an IR notion (ex interim, ex post, or none),

a solution concept (dominant strategies or Bayes-Nash),

whether payments are possible,

whether randomization is possible,

(in the decision variant of the problem) a target value

G.

We are asked whether there exists a mechanism of the spec-
ified kind (in terms of payments and randomization) that
satisfies both the IR motion and the solution concept, and
gives an expected value of at least G for the objective.

An interesting special case is the setting where there is
only one agent. In this case, the reporting agent always
knows everything there is to know about the other agents’
types—Dbecause there are no other agents. Since ex post and
ex interim IR only differ on what an agent is assumed to
know about other agents’ types, the two IR concepts coin-
cide here. Also, because implementation in dominant strate-
gies and implementation in Bayes-Nash equilibrium only dif-
fer on what an agent is assumed to know about other agents’
types, the two solution concepts coincide here. This obser-
vation will prove to be a useful tool in proving hardness
results: if we prove computational hardness in the single-
agent setting, this immediately implies hardness for both
IR concepts, for both solution concepts, for any number of
agents.

4. PAYMENT-MAXIMIZING DETERMINIS-
TIC AMD IS HARD

In this section we demonstrate that it is NP-complete
to design a deterministic mechanism that maximizes the
expected sum of the payments collected from the agents.
We show that this problem is hard even in the single-agent
setting, thereby immediately showing it hard for both IR
concepts, for both solution concepts. To demonstrate NP-
hardness, we reduce from the MINSAT problem.

DEFINITION 9  (MINSAT). We are given a formula ¢
in conjunctive normal form, represented by a set of Boolean
variables V and a set of clauses C, and an integer K (K <
|C|). We are asked whether there exists an assignment to the
variables in V' such that at most K clauses in ¢ are satisfied.

MINSAT was recently shown to be N'P-complete [14]. We
can now present our result.

THEOREM 1. Payment-mazimizing deterministic AMD is
NP-complete, even for a single agent, even with a uniform
distribution over types.

PROOF. It is easy to show that the problem is in N'P.
To show ANP-hardness, we reduce an arbitrary MINSAT
instance to the following single-agent payment-maximizing
deterministic AMD instance. Let the agent’s type set be
O ={6::ce C}U{f, : v €V}, where C is the set of
clauses in the MINSAT instance, and V is the set of vari-
ables. Let the probability distribution over these types be
uniform. Let the outcome set be O = {oo} U {o. : ¢ €
C}tU{or : I € L}, where L is the set of literals, that is,
L={4+v:veV}U{—v:ve V}. Let the notation v(l) =v
denote that v is the variable corresponding to the literal [,
that is, | € {+v,—v}. Let | € ¢ denote that the literal I
occurs in clause c¢. Then, let the agent’s utility function
be given by u(fc,01) = |©| + 1 for all | € L with [ € ¢
u(@c,01) = 0 for all | € L with I ¢ ¢; u(fc,0.) = |©] + 1;
w(fe,00) =0 for all ¢’ € C with ¢ # ¢’; u(0y, 0;) = |©] for all
l € L with v(l) = v; u(0y,01) = 0 for all | € L with v(l) # v;
u(0y,0.) = 0 for all ¢ € C. The goal of the AMD instance

is G=|0|+ ‘C‘lT_‘K, where K is the goal of the MINSAT in-
stance. We show the instances are equivalent. First, suppose
there is a solution to the MINSAT instance. Let the assign-
ment of truth values to the variables in this solution be given
by the function f : V' — L (where v(f(v)) = vforallv € V).
Then, for every v € V, let 0(6,) = 0y(,) and 7(6,) = |O)].
For every ¢ € C, let 0(6.) = oc; let w(0:.) = |©] + 1 if ¢
is not satisfied in the MINSAT solution, and w(6.) = |O)|
if ¢ is satisfied. It is straightforward to check that the IR
constraint is satisfied. We now check that the agent has no
incentive to misreport. If the agent’s type is some 6,, then
any other report will give it an outcome that is no better,
for a payment that is no less, so it has no incentive to mis-
report. If the agent’s type is some 6. where c is a satisfied
clause, again, any other report will give it an outcome that
is no better, for a payment that is no less, so it has no in-
centive to misreport. The final case to check is where the
agent’s type is some 0. where ¢ is an unsatisfied clause. In
this case, we observe that for none of the types, reporting it
leads to an outcome o; for a literal [ € ¢, precisely because
the clause is not satisfied in the MINSAT instance. Because
also, no type besides 6. leads to the outcome o., reporting
any other type will give an outcome with utility 0, while still
forcing a payment of at least |©| from the agent. Clearly the
agent is better off reporting truthfully, for a total utility of
0. This establishes that the agent never has an incentive to
misreport. Finally, we show that the goal is reached. If s is
the number of satisfied clauses in the MINSAT solution (so

that s < K), the expected payment from this mechanism
|V|\@HS\@WS‘C\*S)(\@HU > IVI\@HKI@HI((B\C\*K)(\@HU —

is

O] + ‘C“(;lK = G. So there is a solution to the AMD in-
stance.

Now suppose there is a solution to the AMD instance,
given by an outcome function o and a payment function
m. First, suppose there is some v € V such that o(6,) ¢
{04v,0-»}. Then the utility that the agent derives from
the given outcome for this type is 0, and hence, by IR, no
payment can be extracted from the agent for this type. Be-
cause, again by IR, the maximum payment that can be ex-
tracted for any other type is |©] + 1, it follows that the
maximum expected payment that could be obtained is at
most w < |©] < G, contradicting that this is a
solution to the AMD instance. It follows that in the solution
to the AMD instance, for every v € V', 0(6y) € {04v,0-v}.



We can interpret this as an assignment of truth values to
the variables: v is set to true if 0(6,) = 0+v, and to false
if 0(6,) = 0—,. We claim this assignment is a solution to
the MINSAT instance. By the IR constraint, the maximum
payment we can extract from any type 6, is |©|. Because
there can be no incentives for the agent to report falsely, for
any clause c satisfied by the given assignment, the maximum
payment we can extract for the corresponding type 6. is |©|.
(For if we extracted more from this type, the agent’s utility
in this case would be less than 1; and if v is the variable sat-
isfying c in the assignment, so that o(6,) = o; where [ occurs
in ¢, then the agent would be better off reporting 6, instead
of the truthful report 6., to get an outcome worth |0 +1 to
it while having to pay at most |0|.) Finally, for any unsat-
isfied clause ¢, by the IR constraint, the maximum payment
we can extract for the corresponding type 0. is |©] + 1. It

follows that the expected payment from our mechanism is
V\9|+S\9I+((|90|—S)(|9I+1)

at most , where s is the number of
satisfied clauses. Because our mechanism achieves the goal,
it follows that V‘@HSI@H%C‘*SW@HD > @G, which by simple
algebraic manipulations is equivalent to s < K. So there is
a solution to the MINSAT instance. []

Because payment-maximizing AMD is just the special case
of AMD for a self-interested designer where the designer has
no preferences over the outcome chosen, this immediately
implies hardness for the general case of AMD for a self-
interested designer where payments are possible. However,
it does not yet imply hardness for the special case where
payments are not possible. We will prove hardness in this
case in the next section.

5. SELF-INTERESTED DETERMINISTIC
AMD WITHOUT PAYMENTS IS HARD

In this section we demonstrate that it is AP-complete to
design a deterministic mechanism that maximizes the ex-
pectation of the designer’s objective when payments are not
possible. 'We show that this problem is hard even in the
single-agent setting, thereby immediately showing it hard
for both IR concepts, for both solution concepts.

THEOREM 2. Without payments, deterministic AMD for
a self-interested designer is N'P-complete, even for a single
agent, even with a uniform distribution over types.

PROOF. It is easy to show that the problem is in NP.
To show NP-hardness, we reduce an arbitrary MINSAT in-
stance to the following single-agent self-interested determin-
istic AMD without payments instance. Let the agent’s type
set be © = {6, : c € C}U {0, : v € V}, where C is the
set of clauses in the MINSAT instance, and V is the set of
variables. Let the probability distribution over these types
be uniform. Let the outcome set be O = {oo} U {o. : ¢ €
CYU{o; : 1 € L}U{0"}, where L is the set of literals, that is,
L={+v:veV}U{—v:v eV} Letthenotation v(l) =v
denote that v is the variable corresponding to the literal [,
that is, I € {+v,—v}. Let I € ¢ denote that the literal [
occurs in clause c¢. Then, let the agent’s utility function be
given by u(0c,0;) =2 for all l € L with [ € ¢; u(fc,01) = —1
for all I € L with I ¢ ¢; u(0c,0.) = 2; u(fe,0.) = —1 for
all ¢ € C with ¢ # ¢’; u(fc,0%) = 1; u(fy,0;) = 1 for all
!l € L with v(I) = v; w(0y,01) = —1 for all | € L with

v(l) # v; u(fy,0.) = —1 for all ¢ € C; u(fy,0") = —1. Let
the designer’s objective function be given by g(o*) = |©|+1;
g(o)) = 10| for alll € L; g(o.) = |©] for all ¢ € C. The goal
of the AMD instance is G = |©] + \c|\6—|1<7 where K is the
goal of the MINSAT instance. We show the instances are
equivalent. First, suppose there is a solution to the MINSAT
instance. Let the assignment of truth values to the variables
in this solution be given by the function f : V — L (where
v(f(v)) = v for all v € V). Then, for every v € V, let
0(0v) = 0f(v)- For every ¢ € C that is satisfied in the MIN-
SAT solution, let 0(6.) = oc; for every unsatisfied ¢ € C,
let 0o(6.) = o*. It is straightforward to check that the IR
constraint is satisfied. We now check that the agent has no
incentive to misreport. If the agent’s type is some 6,, it is
getting the maximum utility for that type, so it has no in-
centive to misreport. If the agent’s type is some 6. where ¢
is a satisfied clause, again, it is getting the maximum utility
for that type, so it has no incentive to misreport. The final
case to check is where the agent’s type is some 6. where c is
an unsatisfied clause. In this case, we observe that for none
of the types, reporting it leads to an outcome o; for a literal
l € c, precisely because the clause is not satisfied in the MIN-
SAT instance. Because also, no type leads to the outcome
0c, there is no outcome that the mechanism ever selects that
would give the agent utility greater than 1 for type 6., and
hence the agent has no incentive to report falsely. This es-
tablishes that the agent never has an incentive to misreport.
Finally, we show that the goal is reached. If s is the number
of satisfied clauses in the MINSAT solution (so that s < K),
then the expected value of the designer’s objective function
is Vlieltsiel+(ci-s)(ol+l) IVI\@I+K|9I+|((9\‘CFK>(\@\+1) —
O] + ‘C“@]K = G. So there is a solution to the AMD in-
stance.

Now suppose there is a solution to the AMD instance,
given by an outcome function o. First, suppose there is
some v € V such that o(0,) ¢ {04v,0-v}. The only other
outcome that the mechanism is allowed to choose under the
IR constraint is 0p. This has an objective value of 0, and
because the highest value the objective function ever takes
is |©| + 1, it follows that the maximum expected value of
the objective function that could be obtained is at most
w < 8| < G, contradicting that this is a solu-
tion to the AMD instance. It follows that in the solution
to the AMD instance, for every v € V, 0(6y) € {04v,0-v}.
We can interpret this as an assignment of truth values to
the variables: v is set to true if 0(6y) = 04v, and to false
if 0(6,) = 0—,. We claim this assignment is a solution to
the MINSAT instance. By the above, for any type 0,, the
value of the objective function in this mechanism will be
|©]|. For any clause c¢ satisfied by the given assignment,
the value of the objective function in the case where the
agent reports type 6. will be at most |©|. (This is because
we cannot choose the outcome o* for such a type, as in
this case the agent would have an incentive to report 6,
instead, where v is the variable satisfying c in the assign-
ment (so that o(6,) = o; where [ occurs in ¢).) Finally,
for any unsatisfied clause ¢, the maximum value the ob-
jective function can take in the case where the agent re-
ports type 6. is |©| + 1, simply because this is the largest
value the function ever takes. It follows that the expected

value of the objective function for our mechanism is at most
Viel+se[+(C]=s)(O]+1)
9

, where s is the number of satisfied



clauses. Because our mechanism achieves the goal, it follows
that V‘@HSI@H%C‘*S)(‘@HD > G, which by simple algebraic
manipulations is equivalent to s < K. So there is a solution
to the MINSAT instance. [

Both of our hardness results relied on the constraint that
the mechanism should be deterministic. In the next section,
we show that the hardness of design disappears when we
allow for randomization in the mechanism.

6. RANDOMIZED AMD FOR A SELF-
INTERESTED DESIGNER IS EASY

We now show how allowing for randomization over the
outcomes makes the problem of self-interested AMD tractable
through linear programming, for any constant number of
agents.

THEOREM 3. Self-interested randomized AMD with a con-
stant number of agents is solvable in polynomial time by lin-
ear programming, both with and without payments, both for
ex post and ex interim IR, and both for implementation in
dominant strategies and for implementation in Bayes-Nash
equilibrium—even if the types are correlated.

PRrROOF. Because linear programs can be solved in poly-
nomial time [13], all we need to show is that the number of
variables and equations in our program is polynomial for any
constant number of agents—that is, exponential only in N.
Throughout, for purposes of determining the size of the lin-
ear program, let 7' = max;{|0;|}. The variables of our linear
program will be the probabilities (p(61,02,...,60n))(0) (at
most TV|O| variables) and the payments 7; (61,62, ... ,0n)
(at most NT™ variables). (We show the linear program for
the case where payments are possible; the case without pay-
ments is easily obtained from this by simply omitting all the
payment variables in the program, or by adding additional
constraints forcing the payments to be 0.)

First, we show the IR constraints. For ez post IR, we add
the following (at most NT?) constraints to the LP:

e Foreveryi € {1,2,...,N}, and for every (61,62,...,0n)
€01 X003 X...Xx 0Oy, we add

( Z (p(017027 cee 70N))(0)U(02‘,0)) — 7T7;(01,92, e

ocO

,0n) > 0.

For ez interim IR, we add the following (at most NT)
constraints to the LP:

e For every i € {1,2,... ,N}, for every 6; € ©;, we add

> (01, 0n0:)(( X (p(61,02, ... ,0n))(0)u(bs,0))—

01,...,.0N 0€0
7Ti(01,02, e 701\/)) > 0.

Now, we show the solution concept constraints. For im-
plementation in dominant strategies, we add the following
(at most NTN*1) constraints to the LP:

e For every i € {1,2,...,N}, for every
(01,02,...,0:,... ,0N) € O1 X O2 X ... x O, and for every
alternative type report 6; € ©;, we add the constraint

(> (p(61,62,...,60;,...,0n))(0)u(b;,0)) —

ocO

7Ti(91,02,... ,9»;,... 791\7) 2

(Zo(p(01702?' .. aé’ia cee ,0]\7))(0)’&(01‘,0)) -
o€

7 (01,02, ... ,0;,... ,0n).

Finally, for implementation in Bayes-Nash equilibrium, we
add the following (at most NT?) constraints to the LP:

e For every ¢ € {1,2,..., N}, for every 6; € ©,, and for
every alternative type report 6; € ©;, we add the constraint

Zg Y01, ..., 0n10:)(( D (p(01,02, ..., 0, ...,0n)) (0)u(b;,0))

01,..., 0€O
_71-1(617027 "79’ia ,0N)) >
Y (01, On10) (X (P(01,02, .., 0s, .., On)) (0)u(6:;, 0))
01,..., On 0€0
- 71'1'(01,927 ...791‘, ,01\7))

All that is left to do is to give the expression the designer
is seeking to maximize, which is:

Z 7(91,,01\])((2 (p(01,92,...,9i,...

1,--5,0N o€

71'7;(01,02, ...,91\7)).

,0n))(0)g(0))

Jr

e

i=1

As we indicated, the number of variables and constraints
is exponential only in N, and hence the linear program is of
polynomial size for constant numbers of agents. Thus the
problem is solvable in polynomial time. [

7. IMPLICATIONS FOR AN OPTIMAL
COMBINATORIAL AUCTION DESIGN
PROBLEM

In this section, we will demonstrate some interesting con-
sequences of the problem of automated mechanism design
for a self-interested designer on designing optimal combina-
torial auctions.

Consider a combinatorial auction with a set S of items
for sale. For any bundle B C S, let u;(6;, B) be bidder
i’s utility for receiving bundle B when the bidder’s type is
0;. The optimal auction design problem is to specify the
rules of the auction so as to maximize expected revenue to
the auctioneer. (By the revelation principle, without loss
of generality, we can assume the auction is truthful.) The
optimal auction design problem is solved for the case of a
single item by the famous Myerson auction [18]. However,
designing optimal auctions in combinatorial auctions is a
recognized open research problem [3, 25]. The problem is
open even if there are only two items for sale. (The two-
item case with a very special form of complementarity and
no substitutability has been solved recently [1].)

Suppose we have free disposal—items can be thrown away
at no cost. Also, suppose that the bidders’ preferences have
the following structure: whenever a bidder receives a bundle
of items, the bidder’s utility for that bundle is determined
by the “best” item in the bundle only. (We emphasize that



which item is the best is allowed to depend on the bidder’s
type.)

DEFINITION 10. Bidder i is said to have best-only pref-
erences over bundles of items if there exists a function v; :
0; x S — R such that for any 0; € ©;, for any B C S,
u;(0;, B) = maxsep vi(0;,s).

We make the following useful observation in this setting:
there is no sense in awarding a bidder more than one item.
The reason is that if the bidder is reporting truthfully, taking
all but the highest valued item away from the bidder will
not hurt the bidder; and, by free disposal, doing so can only
reduce the incentive for this bidder to falsely report this
type, when the bidder actually has another type.

We now show that the problem of designing a determin-
istic optimal auction here is NP-complete, by a reduction
from the payment maximizing AMD problem!

THEOREM 4. Given an optimal combinatorial auction de-
sign problem under best-only preferences (given by a set of
items S and for each bidder i, a finite type space ©; and a
function v; : ©; X S — R such that for any 0; € ©,, for any
B C S, ui(0;, B) = maxsepvi(bs,8)), designing the opti-
mal deterministic auction is NP-complete, even for a single
bidder with a uniform distribution over types.

Proor. The problem is in NP because we can nondeter-
ministically generate an allocation rule, and then set the
payments using linear programming.

To show NP-hardness, we reduce an arbitrary payment-
maximizing deterministic AMD instance, with a single agent
and a uniform distribution over types, to the following op-
timal combinatorial auction design problem instance with
a single bidder with best-only preferences. For every out-
come o € O in the AMD instance (besides the outcome og),
let there be one item s, € S. Let the type space be the
same, and let v(0;, so) = u;(6;,0) (where u is as specified in
the AMD instance). Let the expected revenue target value
be the same in both instances. We show the instances are
equivalent.

First suppose there exists a solution to the AMD instance,
given by an outcome function and a payment function. Then,
if the AMD solution chooses outcome o for a type, in the
optimal auction solution, allocate {s,} to the bidder for this
type. (Unless o = og, in which case we allocate {} to the
bidder.) Let the payment functions be the same in both
instances. Then, the utility that an agent receives for re-
porting a type (given the true type) in either solution is the
same, so we have incentive compatibility in the optimal auc-
tion solution. Moreover, because the type distribution and
the payment function are the same, the expected revenue to
the auctioneer/designer is the same. It follows that there
exists a solution to the optimal auction design instance.

Now suppose there exists a solution to the optimal auction
design instance. By the at-most-one-item observation, we
can assume without loss of generality that the solution never
allocates more than one item. Then, if the optimal auction
solution allocates item s, to the bidder for a type, in the
AMD solution, let the mechanism choose outcome o for that
type. If the optimal auction solution allocates nothing to the
bidder for a type, in the AMD solution, let the mechanism
choose outcome op for that type. Let the payment functions

be the same. Then, the utility that an agent receives for
reporting a type (given the true type) in either solution is
the same, so we have incentive compatibility in the AMD
solution. Moreover, because the type distribution and the
payment function are the same, the expected revenue to the
designer/auctioneer is the same. It follows that there exists
a solution to the AMD instance. [

Fortunately, we can also carry through the easiness result
for randomized mechanisms to this combinatorial auction
setting—giving us one of the few known polynomial-time al-
gorithms for an optimal combinatorial auction design prob-
lem.

THEOREM 5. Given an optimal combinatorial auction de-
sign problem under best-only preferences (given by a set of
items S and for each bidder i, a finite type space ©; and a
function v; : ©; x S — R such that for any 0; € ©,;, for
any B C S, u;(0;, B) = maxscp v;i(0:,)), if the number of
bidders is a constant k, then the optimal randomized auc-
tion can be designed in polynomial time. (For any IC and
IR constraints.)

PROOF. By the at-most-one-item observation, we can with-
out loss of generality restrict ourselves to allocations where
each bidder receives at most one item. There are fewer than
(|S| 4+ 1) such allocations—that is, a polynomial number
of allocations. Because we can list the outcomes explicitly,
we can simply solve this as a payment-maximizing AMD
instance, with linear programming. []

8. RELATED RESEARCH ON COMPLEX-
ITY IN MECHANISM DESIGN

There has been considerable recent interest in mechanism
design in computer science. Some of it has focused on is-
sues of computational complexity, but most of that work has
strived toward designing mechanisms that are easy to exe-
cute (e.g. [20, 15, 19, 9, 12]), rather than studying the com-
plexity of designing the mechanism. The closest piece of ear-
lier work studied the complexity of automated mechanism
design by a benevolent designer [5, 6]. Roughgarden has
studied the complexity of designing a good network topol-
ogy for agents that selfishly choose the links they use [21].
This is related to mechanism design, but differs significantly
in that the designer only has restricted control over the rules
of the game because there is no party that can impose the
outcome (or side payments). Also, there is no explicit re-
porting of preferences.

9. CONCLUSIONS AND FUTURE
RESEARCH

Often, an outcome must be chosen on the basis of the
preferences reported by a group of agents. The key difficulty
is that the agents may report their preferences insincerely
to make the chosen outcome more favorable to themselves.
Mechanism design is the art of designing the rules of the
game so that the agents are motivated to report their pref-
erences truthfully, and a desirable outcome is chosen. In a
recently emerging approach—called automated mechanism
design—a mechanism is computed for the specific preference
aggregation setting at hand. This has several advantages,



but the downside is that the mechanism design optimization
problem needs to be solved anew each time. Unlike earlier
work on automated mechanism design that studied a benev-
olent designer, in this paper we studied automated mecha-
nism design problems where the designer is self-interested—
a setting much more relevant for electronic commerce. In
this setting, the center cares only about which outcome is
chosen and what payments are made to it. The reason that
the agents’ preferences are relevant is that the center is con-
strained to making each agent at least as well off as the agent
would have been had it not participated in the mechanism.
In this setting, we showed that designing an optimal deter-
ministic mechanism is NP-complete in two important spe-
cial cases: when the center is interested only in the payments
made to it, and when payments are not possible and the cen-
ter is interested only in the outcome chosen. These hard-
ness results imply hardness in all more general automated
mechanism design settings with a self-interested designer.
The hardness results apply whether the individual rational-
ity (participation) constraints are applied ez interim or ex
post, and whether the solution concept is dominant strate-
gies implementation or Bayes-Nash equilibrium implemen-
tation. We then showed that allowing randomization in the
mechanism makes the design problem in all these settings
computationally easy. Finally, we showed that the payment-
maximizing AMD problem is closely related to an interesting
variant of the optimal (revenue-maximizing) combinatorial
auction design problem, where the bidders have “best-only”
preferences. We showed that here, too, designing an opti-
mal deterministic mechanism is NP-complete even with one
agent, but designing an optimal randomized mechanism is
easy.

Future research includes studying automated mechanism
design with a self-interested designer in more restricted set-
tings such as auctions (where the designer’s objective may
include preferences about which bidder should receive the
good—as well as payments). We also want to study the com-
plexity of automated mechanism design in settings where the
outcome and type spaces have special structure so they can
be represented more concisely. Finally, we plan to assemble
a data set of real-world mechanism design problems—both
historical and current—and apply automated mechanism de-
sign to those problems.

10. REFERENCES

[1] M. Armstrong. Optimal multi-object auctions. Review
of Economic Studies, 67:455-481, 2000.

[2] K. Arrow. The property rights doctrine and demand
revelation under incomplete information. In
M. Boskin, editor, Economics and human welfare.
New York Academic Press, 1979.

[3] C. Avery and T. Hendershott. Bundling and optimal
auctions of multiple products. Review of Economic
Studies, 67:483-497, 2000.

[4] E. H. Clarke. Multipart pricing of public goods. Public
Choice, 11:17-33, 1971.

[5] V. Conitzer and T. Sandholm. Complexity of
mechanism design. In Proceedings of the 18th Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-02), pages 103-110, Edmonton, Canada, 2002.

[6] V. Conitzer and T. Sandholm. Automated mechanism
design: Complexity results stemming from the

(16]

(17]

(20]

(21]

(22]

single-agent setting. In Proceedings of the 5th
International Conference on Electronic Commerce
(ICEC-03), pages 17-24, Pittsburgh, PA, USA, 2003.
V. Conitzer and T. Sandholm. Computational
criticisms of the revelation principle. In Proceedings of
the ACM Conference on Electronic Commerce
(ACM-EC), New York, NY, 2004. Short paper.
Full-length version appeared in the AAMAS-03
workshop on Agent-Mediated Electronic Commerce
(AMEC).

C. d’Aspremont and L. A. Gérard-Varet. Incentives
and incomplete information. Journal of Public
FEconomics, 11:25-45, 1979.

J. Feigenbaum, C. Papadimitriou, and S. Shenker.
Sharing the cost of muliticast transmissions. Journal
of Computer and System Sciences, 63:21-41, 2001.
Early version in Proceedings of the Annual ACM
Symposium on Theory of Computing (STOC), 2000.
A. Gibbard. Manipulation of voting schemes.
FEconometrica, 41:587-602, 1973.

T. Groves. Incentives in teams. Econometrica,
41:617-631, 1973.

J. Hershberger and S. Suri. Vickrey prices and
shortest paths: What is an edge worth? In
Proceedings of the Annual Symposium on Foundations
of Computer Science (FOCS), 2001.

L. Khachiyan. A polynomial algorithm in linear
programming. Soviet Math. Doklady, 20:191-194,
1979.

R. Kohli, R. Krishnamurthi, and P. Mirchandani. The
minimum satisfiability problem. SIAM Journal of
Discrete Mathematics, 7(2):275-283, 1994.

D. Lehmann, L. I. O’Callaghan, and Y. Shoham.
Truth revelation in rapid, approximately efficient
combinatorial auctions. Journal of the ACM,
49(5):577-602, 2002. Early version appeared in
Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), 1999.

A. Mas-Colell, M. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University Press, 1995.
E. S. Maskin and J. Riley. Optimal multi-unit
auctions. In F. Hahn, editor, The Economics of
Missing Markets, Information, and Games,

chapter 14, pages 312-335. Clarendon Press, Oxford,
1989.

R. Myerson. Optimal auction design. Mathematics of
Operation Research, 6:58-73, 1981.

N. Nisan and A. Ronen. Computationally feasible
VCG mechanisms. In Proceedings of the ACM
Conference on Electronic Commerce (ACM-EC),
pages 242-252, Minneapolis, MN, 2000.

N. Nisan and A. Ronen. Algorithmic mechanism
design. Games and Economic Behavior, 35:166—-196,
2001. Early version in Proceedings of the Annual ACM
Symposium on Theory of Computing (STOC), 1999.
T. Roughgarden. Designing networks for selfish users
is hard. In Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS), 2001.

T. Sandholm. Issues in computational Vickrey
auctions. International Journal of Electronic
Commerce, 4(3):107-129, 2000. Special Issue on



[23]

Applying Intelligent Agents for Electronic Commerce.
A short, early version appeared at the Second
International Conference on Multi-Agent Systems
(ICMAS), pages 299-306, 1996.

M. A. Satterthwaite. Strategy-proofness and Arrow’s
conditions: existence and correspondence theorems for
voting procedures and social welfare functions.
Journal of Economic Theory, 10:187-217, 1975.

[24] W. Vickrey. Counterspeculation, auctions, and
competitive sealed tenders. Journal of Finance,
16:8-37, 1961.

[25] R. V. Vohra. Research problems in combinatorial
auctions. Mimeo, version Oct. 29, 2001.



