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Abstract. A (randomized, anonymous) voting rule maps any multiset of total
orders (aka. votes) over a fixed set of alternatives to a probability distribution over
these alternatives. A voting rule f is false-name-proof if no voter ever benefits
from casting more than one vote. It is anonymity-proof if it satisfies voluntary
participation and it is false-name-proof. We show that the class of anonymity-
proof neutral voting rules consists exactly of the rules of the following form. With
some probability kf ∈ [0, 1], the rule chooses an alternative uniformly at random.
With probability 1 − kf , the rule first draws a pair of alternatives uniformly at
random. If every vote prefers the same alternative between the two (and there
is at least one vote), then the rule chooses that alternative. Otherwise, the rule
flips a fair coin to decide between the two alternatives. We also show how the
characterization changes if group strategy-proofness is added as a requirement.

1 Introduction

In many settings, a decision must be made on the basis of the preferences of multiple
agents. Common examples include auctions and exchanges (where we must decide on
an allocation of resources, as well as payments to be made or received by the agents)
and elections (where we must decide on, say, one or more political representatives), but
there are many other applications. A (direct-revelation) mechanism takes each agent’s
reported preferences as input, and produces a decision as output. An important issue
is that self-interested agents will lie about their preferences if they perceive it to be to
their advantage to do so. Mechanism design studies how to design mechanisms that
produce good outcomes in spite of this. A key concept in mechanism design is that of
strategy-proofness: a mechanism is strategy-proof if no agent can ever benefit from ly-
ing about her preferences. Strategy-proofness is roughly synonymous with truthfulness
and incentive compatibility.1 In mechanism design, attention is usually restricted to in-
centive compatible direct-revelation mechanisms. This is justified by a result known
as the revelation principle [Gibbard, 1973; Green and Laffont, 1977; Myerson, 1979,
1981], which states (roughly) that, given that agents will misreport their preferences if

1 To be more precise, strategy-proofness as the term is used here corresponds to dominant-
strategies incentive compatibility. There are weaker notions of incentive compatibility, such as
Bayes-Nash incentive compatibility, where in expectation over the other agents’ preferences
an agent is best off reporting her true preferences (assuming the others do so as well).



they perceive this to be to their benefit, anything that can be achieved by some mecha-
nism can also be achieved by an incentive compatible direct-revelation mechanism.2

In mechanism design, the spaces of possible outcomes and preferences often display
a great deal of structure, which facilitates the designer’s job. For example, in auctions
and exchanges, it is often assumed that agents can make and receive payments, that
their utility is linear in this payment, and that the effect of the payment on utility is in-
dependent of the rest of the outcome. This enables, for example, Vickrey-Clarke-Groves
mechanisms [Vickrey, 1961; Clarke, 1971; Groves, 1973], which always choose the ef-
ficient allocation. However, such structure is not always available: for example, in an
election, payments can typically not be made. If we do not assume any structure on the
agents’ preferences, then agents can rank the possible outcomes (aka. alternatives) in
any possible way. These general settings, in which each agent ranks all the alternatives,
and the mechanism chooses an alternative based on these rankings, are commonly re-
ferred to as voting settings. The rankings are the votes, and the mechanism is usually
called a voting rule.

The revelation principle applies to voting settings just as it does to any other mech-
anism design setting, so we should ask which rules are strategy-proof. Gibbard [1977]
provides a complete characterization of strategy-proof voting rules that are allowed to
use randomization. (This characterization generalizes the better-known, earlier Gibbard-
Satterthwaite theorem [Gibbard, 1973; Satterthwaite, 1975].) He shows that any strategy-
proof rule is a randomization over unilateral rules, in which only one vote affects the
outcome, and duple rules, in which only two alternatives have a chance of winning.
(Because the overall rule is a randomization over such rules, it can still be the case that
every voter affects the probability with which an alternative is chosen, and that every
alternative has a positive probability of winning. Hence, Gibbard’s characterization is
not universally seen as a negative result [Barbera, 1979a].) He also provides some addi-
tional conditions on these rules to obtain an exact characterization of the strategy-proof
voting rules.

However, strategy-proofness is often not sufficient. In open, anonymous environ-
ments such as the Internet, an agent can manipulate the mechanism in other ways. For
one, if an agent does not participate in the mechanism, then the party running the mech-
anism (aka. the center) is not even aware of her existence. Perhaps more significantly,
an agent can open multiple accounts and participate in the mechanism multiple times
under different identifiers—and the center cannot know which identifiers correspond to
the same agent. This led to the concept of false-name-proofness [Yokoo et al., 2004]. A
mechanism is false-name-proof if an agent can never benefit from using multiple iden-
tifiers. Some positive and negative results on false-name-proofness have been obtained
for combinatorial auctions and similar settings (e.g., Yokoo et al. [2001]; Yokoo [2003];
Yokoo et al. [2004, 2006]; Rastegari et al. [2007]), but to our knowledge this concept
has not yet been studied in voting settings.

In this paper, we define a (possibly randomized) voting rule to be anonymity-proof if
it is false-name-proof, and it never hurts an agent to cast her (true) vote. Under the same

2 To predict what will happen under a mechanism that is not incentive compatible, some solution
concept from game theory must be used, and the version of incentive compatibility in the
revelation principle depends on the choice of solution concept.



model as Gibbard [1977], we obtain a complete characterization of the anonymity-proof
neutral voting rules. (A voting rule is neutral if it treats all alternatives symmetrically.)
The proof is from first principles and (arguably) of reasonable length. The resulting
class of voting rules is very limited (hence the result is mostly negative), but it does
allow a modicum of responsiveness to the votes in cases where there is complete agree-
ment among the voters on some pairs of alternatives. For example, in the special case
where there are only two alternatives, the characterization tells us that if all votes prefer
the same alternative, we can choose that alternative; but otherwise, we have to flip a fair
coin to decide between them. This is in stark contrast to the case where we require only
strategy-proofness, or even group strategy-proofness: for example, simply choosing the
alternative that is preferred by more voters (the majority rule) is group strategy-proof.

1.1 Additional motivation

Our primary reason for studying false-name-proofness in general social choice (voting)
settings is that these settings lie at the heart of mechanism design, and hence provide the
most natural starting point for a thorough study of the concept of false-name-proofness.
Nevertheless, perhaps surprisingly, anonymous voting is in fact a very real and growing
phenomenon on the Internet. It may seem that anonymous elections are unlikely to
result in outcomes that reflect society’s preferences well (and, in fact, this paper can be
seen as a commentary on just how unlikely this is). However, it appears that in practice,
often, the party organizing the election has more interest in publicity than in a properly
chosen outcome; moreover, the convenience of anonymous Internet voting appeals to
the voters as well.

A very recent example of this phenomenon is the “New 7 Wonders of the World”
election, a global election that was organized by businessman Bernard Weber to elect
contemporary alternatives to the ancient wonders. Anyone could vote, either by phone
or over the Internet; for the latter, an e-mail address was required. One could also buy
additional votes (of course, using another e-mail address was a much cheaper alterna-
tive). In spite of various irregularities (including unreasonably large numbers of votes
in some cases) and UNESCO distancing itself from the election, the election seems to
have attained some legitimacy in the public’s mind.

For better or worse, mechanisms such as these are going to feature increasingly
prominently in our economy and social infrastructure. Hence, the theory of mechanism
design must be extended so that it can provide guiding principles to maximize the ef-
ficiency and trustworthiness of such mechanisms. The sooner this happens, the fewer
bad mechanisms will take hold.

Our results also apply to Internet rating systems in which anonymous reviewers
rate products, sellers, etc. Here, the set of alternatives is the set of possible (final,
aggregate) ratings. It should be noted that in this context, it makes sense for agents’
preferences to be restricted: for example, it makes little sense for an agent to pre-
fer high�low�medium for a product’s final rating. Specifically, single-peaked pref-
erences [Black, 1948] are a natural restriction in this domain; we will discuss such
preferences in the conclusion.



2 Definitions

Let X , |X| = m, be the set of alternatives over which the voters are voting. A voter’s
preferences are given by a total order � over the alternatives, together with a vector
of utilities u = (u1, . . . , um) where ui is the voter’s utility for the alternative that she
ranks ith. (It is required that ui > ui+1 for all 1 ≤ i ≤ m.) Each voter seeks to
maximize her expected utility. As in Gibbard [1977], voters only report a total order
(ranking) of the alternatives (not their utilities); a reported ranking is called a vote.
Again as in Gibbard [1977], we do not allow for indifferences (real or reported) between
alternatives. We will use the notation v = a1 � . . . � am for a vote. We will sometimes
also use subsets in the order notation: for example, if B = {b1, b2, b3}, then a1 � b1 �
b2 � b3 � a2 and a1 � b3 � b1 � b2 � a2 are both of the form a1 � B � a2

(but, for instance, a1 � b3 � b2 � a2 � b1 is not of this form). A voting rule f
takes a multiset3 of votes V as input, and chooses the winning alternative based on
these votes (possibly using randomization). Let Pf (V, a) denote the probability with
which f chooses a given votes V ; the function Pf defines the rule f . A voting rule is
neutral if it treats all alternatives symmetrically—that is, if π is a permutation of the
alternatives, then Pf (π(V ), π(a)) = Pf (V, a) (where π(V ) is the multiset that results
from replacing each alternative a by π(a) in each vote in V ). In fact, the following
weaker definition of neutrality will also suffice for our purposes: if a subset B of the
alternatives is symmetric in V (that is, for any permutation π for which π(a) = a for
all a ∈ X − B, π(V ) = V ), then Pf (V, b1) = Pf (V, b2) for all b1, b2 ∈ B. We are
only interested in neutral voting rules.4

Definition 1 A voting rule f is false-name-proof if for any multiset of votes V , for any
v ∈ V, v = a1 � . . . � am, for any decreasing u = (u1, . . . , um), and for any multiset
of votes V ′, we have

∑m
j=1 Pf (V, aj)uj ≥

∑m
j=1 Pf (V ∪ V ′, aj)uj . That is, the voter

corresponding to v cannot increase her expected utility by additionally casting votes
V ′.

It should be noted that under this definition, a voter who uses false names is as-
sumed to cast at least one vote representing her true preferences. This only weakens the
requirement. All of the rules in the characterization result of this paper are also false-
name-proof in the stronger sense where none of the votes cast by the false-name voter
are required to represent her true preferences. Hence, the characterization remains the
same if this stronger requirement is used.

Definition 2 A voting rule f satisfies participation if for any multiset of votes V , for
any v ∈ V, v = a1 � . . . � am, for any decreasing u = (u1, . . . , um), we have∑m

j=1 Pf (V, aj)uj ≥
∑m

j=1 Pf (V − {v}, aj)uj . That is, the voter corresponding to v
cannot increase her expected utility by not casting her vote.

3 This is implicitly assuming that every vote is treated equally; anything else would seem unrea-
sonable in open, anonymous environments. Rules that treat every vote equally are commonly
called anonymous; this is not to be confused with the definition of anonymity-proofness.

4 Sometimes rules that are not neutral are of interest, for example if one alternative is the incum-
bent and should be treated specially; but in most settings, only neutral rules are of interest.



Definition 3 A voting rule is anonymity-proof if it is false-name-proof and it satisfies
participation.

Anonymity-proofness does not directly mention strategy-proofness. Thus, it may
appear that even if a rule is anonymity-proof, it is possible that a voter can benefit
from misreporting her preferences. However, all of the rules in the characterization
result of this paper are also strategy-proof (this is implied by the fact that they satisfy
the stronger version of false-name-proofness). Hence, the characterization remains the
same if strategy-proofness is added as a requirement.

3 The characterization of anonymity-proof rules

In this section, we prove the main result. Showing that all the rules in the proposed
class are anonymity-proof is not difficult; most of the proof consists of showing that all
rules that are anonymity-proof are in the class. We prove the latter part using a sequence
of six lemmas. Assuming the rule is anonymity-proof, these lemmas demonstrate how
to transform any multiset of votes to a particular multiset of only two votes, without
affecting one given alternative’s probability of winning; and they demonstrate that this
alternative’s probability of winning in those two votes is as the theorem states.

The first lemma is a fundamental building block of the proof. It states that if we add
a vote that agrees with an existing vote on the top k and bottom l − k alternatives, then
the probability of winning for each of those alternatives does not change.

Lemma 1 Consider a multiset of votes V , and suppose that for some v ∈ V , v is of the
form a1 � . . . � ak � B � ak+1 � . . . � al. (Please note that l is equal to m only if
B is empty.) Let v′ (not necessarily in V ) be another vote of the form a1 � . . . � ak �
B � ak+1 � . . . � al (that is, it is identical to v except for the internal ordering of B).
Then, if f is anonymity-proof, for any 1 ≤ i ≤ l, Pf (V, ai) = Pf (V ∪ {v′}, ai).

Proof. First, let us suppose that for some 1 ≤ i ≤ k, Pf (V, ai) 6= Pf (V ∪ {v′}, ai).
Without loss of generality, suppose that for any 1 ≤ j < i, Pf (V, aj) = Pf (V ∪
{v′}, aj). Consider the utility vector u = (1− ε, 1− 2ε, . . . , 1− iε, (m− i)ε, (m− i−
1)ε, . . . , ε). First, let us suppose that Pf (V, ai) < Pf (V ∪ {v′}, ai). Then, if the true
preferences are given by V , the voter casting v has utility vector u, and ε is sufficiently
small, then the voter casting v has an incentive to cast v′ as well. This is because (as
ε → 0) she effectively seeks to maximize the probability of one of a1, . . . , ai winning,
and casting v′ as well does not affect the probabilities of a1, . . . , ai−1 winning and
increases that of ai. On the other hand, suppose that Pf (V, ai) > Pf (V ∪ {v′}, ai).
Then, if the true preferences are given by V ∪ {v′}, the voter casting v′ has utility
vector u, and ε is sufficiently small, then the voter casting v′ has an incentive to not
participate. This is because (as ε → 0) she effectively seeks to maximize the probability
of one of a1, . . . , ai winning, and not participating does not affect the probabilities of
a1, . . . , ai−1 winning and increases that of ai. Hence, for any 1 ≤ i ≤ k, Pf (V, ai) =
Pf (V ∪ {v′}, ai).

The case where Pf (V, ai) 6= Pf (V ∪ {v′}, ai) for some k + 1 ≤ i ≤ l can be
shown to contradict either false-name-proofness or participation by a symmetric argu-
ment (where, supposing without loss of generality that Pf (V, aj) = Pf (V ∪ {v′}, aj)



for all i < j ≤ l, the voter casting v or v′ effectively tries to minimize the probability of
one of the last l − i + 1 alternatives winning).

We obtain the following corollary, which states that it does not matter if the same
vote is cast more than once. (This corollary is usually not powerful enough to use in-
stead of the more general Lemma 1, but it provides some insight. In particular, for any
fixed number of alternatives, this leaves only a finite number of multisets of votes to
consider.)

Corollary 1 For an anonymity-proof rule f , given that a vote is cast at least once, it
does not matter how often it is cast.

Proof. This follows from setting B = ∅ in Lemma 1.

The next few lemmas (2, 3, and 4) demonstrate how to transform any multiset of
votes into a multiset of only two votes, without affecting one given alternative a’s prob-
ability of winning (assuming that the rule is anonymity-proof).

Lemma 1 allows us to prove the following lemma, which states that reordering the
alternatives after a given alternative a in a vote, as well as reordering those before a,
does not affect a’s probability of winning, unless we move alternatives past a.

Lemma 2 Consider a multiset of votes V , and suppose that for some v ∈ V , v is of the
form B � a � C. Let v′ (not necessarily in V ) be another vote of the form B � a � C
(that is, it is identical to v except for the internal ordering of B and C). Then, if f is
anonymity-proof, Pf (V, a) = Pf ((V − {v}) ∪ {v′}, a). That is, we can permute the
alternatives on either side of a in a vote without affecting a’s probability of winning.

Proof. Suppose first that we permute only C, that is, that B is ordered the same way in
both v and v′. Then, we can apply Lemma 1 (letting a correspond to ak in that lemma)
to obtain Pf (V, a) = Pf (V ∪ {v′}, a), and similarly Pf ((V − {v}) ∪ {v′}, a) =
Pf (V ∪ {v′}, a), hence Pf (V, a) = Pf ((V − {v}) ∪ {v′}, a). The case where we
permute only B can be proven symmetrically. But then, in the general case where both
B and C are permuted, we can transform v into v′ in two steps, as follows. Let v′′ be
the vote of the form B � a � C that agrees with v on B but with v′ on C. By the
above, we have Pf (V, a) = Pf ((V − {v}) ∪ {v′′}, a) = Pf ((V − {v}) ∪ {v′}, a).

The next lemma shows that we can move an alternative b past a given alternative a
in a vote, without affecting a’s probability of winning, if the other votes disagree on the
relative ranking of a and b.

Lemma 3 Consider a multiset of votes V , and suppose that for some v ∈ V , a is
ranked before b. Additionally, suppose there is another vote v′ ∈ V that ranks a before
b, and a third vote v′′ ∈ V that ranks b before a. Let v′′′ be a vote (not necessarily
in V ) that is obtained from v by improving b’s position, placing it somewhere ahead
of a (while not changing the order in any other way). Then, if f is anonymity-proof,
Pf (V, a) = Pf ((V − {v}) ∪ {v′′′}, a). That is, we can move b to the other side of a in
a vote without affecting a’s probability of winning, if there are other votes that rank a
before b and b before a.



Proof. Let us first assume that a and b are adjacent in v and v′′′. That is, a is ranked
directly before b in v, and v′′′ is obtained from v simply by swapping a and b. By
Lemma 1 (letting {a, b} correspond to B in that lemma), for any alternative c /∈ {a, b},
Pf (V, c) = Pf (V ∪ {v′′′}, c), and also Pf ((V − {v})∪ {v′′′}, c) = Pf (V ∪ {v′′′}, c).
Now, if we suppose that Pf (V, a) < Pf (V ∪ {v′′′}, a), then, if the true preferences are
given by V , the voter corresponding to v′ would be better off casting v′′′ as well (since it
will only affect the probabilities of a and b being elected, and v′ prefers a). Conversely,
if Pf (V, a) > Pf (V ∪{v′′′}, a), then the voter corresponding to v′′ would be better off
casting v′′′ as well. Hence, since f is false-name-proof, Pf (V, a) = Pf (V ∪ {v′′′}, a).
It similarly follows that Pf ((V −{v})∪{v′′′}, a) = Pf (V ∪{v′′′}, a) (since v′ and v′′

are still present in (V − {v}) ∪ {v′′′}). Hence, Pf (V, a) = Pf ((V − {v}) ∪ {v′′′}, a).
Now let us return to the general case where a and b are not necessarily adjacent in v

and v′′′. Let v′′′′ be the result of improving b’s position in v to just after a, and let v′′′′′

be the result of swapping a and b in v′′′′. Using Lemma 2, Pf (V, a) = Pf ((V −{v})∪
{v′′′′}, a); using the above argument, Pf ((V − {v}) ∪ {v′′′′}, a) = Pf ((V − {v}) ∪
{v′′′′′}, a); and using Lemma 2 again, Pf ((V − {v}) ∪ {v′′′′′}, a) = Pf ((V − {v}) ∪
{v′′′}, a).

In the next lemma, we use the previous lemmas to reduce a set of votes to a particular
pair of votes, without affecting a’s probability of winning. (The proofs of the remaining
lemmas and corollaries are omitted due to space constraint.)

Lemma 4 Given a nonempty multiset of votes V and a distinguished alternative a, let
B be the set of alternatives that are ranked before a by every vote in V , let C be the
set of alternatives that are ranked before a by some votes in V and after a by others,
and let D be the set of alternatives that are ranked after a by every vote in V . Let
v (not necessarily in V ) be a vote of the form B � a � C ∪ D, and let v′ (not
necessarily in V ) be a vote of the form B ∪C � a � D. Then, if f is anonymity-proof,
Pf (V, a) = Pf ({v, v′}, a).

It should be noted that Lemma 4 does not cover the case where V = ∅; in this case,
neutrality demands that an alternative be chosen uniformly at random. The next lemma
characterizes the behavior of an anonymity-proof voting rule when only a single vote is
cast.

Lemma 5 Let v = a1 � . . . � am. Let f be anonymity-proof and neutral, and let
pi

f = Pf ({v}, ai). Then, for some constant 0 ≤ kf ≤ 1, pi
f = kf/m + (1− kf )(m−

i)·2/(m(m−1)). That is, with probability kf the rule chooses an alternative at random,
and with probability 1 − kf it draws a pair of alternatives at random and chooses the
preferred one.

The final lemma characterizes the probability of a winning in the special pair of
votes from Lemma 4, using Lemma 5.

Lemma 6 Let v be a vote of the form B � a � C ∪ D, and let v′ be a vote of the
form B ∪ C � a � D. Then, if f is anonymity-proof and neutral, Pf ({v, v′}, a) =
kf/m + (1− kf )(2|D|+ |C|)/(m(m− 1)), where kf is defined as in Lemma 5. That



is, the probability that a wins is the same as under the following rule for selecting the
winner: with probability kf the rule chooses an alternative at random; with probability
1 − kf it draws a pair of alternatives at random, and if every vote prefers the same
alternative between the two, it chooses that alternative, otherwise it flips a fair coin to
decide between the two alternatives.

Using the last three lemmas, the main result is now easy to prove. It states that any
anonymity-proof neutral rule is either the rule that chooses an alternative at random, or
the rule that draws two alternatives at random and runs the unanimity rule on these two
alternatives, or a convex combination of these two rules.

Theorem 1 The class of voting rules f that are anonymity-proof and neutral consists
exactly of the following rules.

– With some probability kf ∈ [0, 1], the rule chooses an alternative uniformly at
random.

– With probability 1− kf it draws a pair of alternatives uniformly at random;
• If every vote prefers the same alternative between the two (and there is at least

one vote), then it chooses that alternative.
• Otherwise, it flips a fair coin to decide between the two alternatives.

(All these rules are also false-name-proof in a stronger sense where the voter need not
cast any vote with her true preferences, and this also implies that they are all strategy-
proof.)

Proof. Let us first show that these rules indeed have the desired properties. They are
clearly neutral. Conditional on a single random alternative being chosen, voters have
no incentive to use false names or to not participate. Conditional on a random pair a, b
of alternatives being drawn, there are four possibilities for a voter (who, without loss of
generality, prefers a):

1. There are no other votes. In this case, the voter has a strict incentive to participate
so that a is chosen, and no incentive to use false names.

2. All other votes prefer a. In this case, the voter has no incentive to use false names
or not participate, since a will be chosen in any case.

3. All other votes prefer b. In this case, the voter has a strict incentive to participate so
that at least a coin is flipped, and no incentive to use false names.

4. There are other votes that prefer a and other votes that prefer b. In this case, the
voter has no incentive to use false names or not participate, since a coin will be
flipped in any case.

We now show that there are no other rules with the desired properties. Let f be
anonymity-proof and neutral. Lemma 5 defines kf for this rule. Now, for an arbitrary
multiset of votes V and an arbitrary alternative a, Lemma 4 shows how to convert V to
a particular set of two votes {v, v′}, in a way that preserves a’s probability of winning,
and also preserves a’s relationship to any other alternative b in the following sense:

– If all votes prefer a to b in V , the same is true in {v, v′}.



– If all votes prefer b to a in V , the same is true in {v, v′}.
– If some but not all votes prefer a to b in V , the same is true in {v, v′}.

Finally, Lemma 6 shows that for this set of two votes {v, v′}, alternative a’s probability
of winning is as in the claim of this theorem. Because of the preservation properties of
the conversion, this must also be true for the original set of votes V .

4 Discussion

In this section, we study some corollaries of the main result, and make some compar-
isons to rules that are only strategy-proof.

The characterization makes it clear that the optimal anonymity-proof rule (in any
reasonable sense of the word “optimal”) is the one corresponding to kf = 0, since this
rule maximizes the probability that we can at least choose the better of two alternatives
(if all votes agree). Even this rule is limited in the extent to which it can respond to the
votes:

Corollary 2 Under an anonymity-proof rule, the probability of any given alternative a
winning is at most 2/m (for any multiset of votes). This probability is attained if and
only if kf = 0 and all votes rank a first.

This is in sharp contrast to the class of strategy-proof rules. For example, it is
strategy-proof to draw one of the votes at random and choose its most-preferred al-
ternative (often referred to as the “random-dictator” rule). Under this rule, if an alterna-
tive ranks first in all votes, it will be chosen with probability 1. Also, within the class
of strategy-proof rules, there is no rule that is clearly optimal. For example, it is also
strategy-proof to draw a pair of alternatives at random, and choose the one that is pre-
ferred by more voters. Unlike the random-dictator rule, if there is an alternative that
ranks first in all votes, this rule does not necessarily choose it; on the other hand, unlike
the random-dictator rule, this rule does not run the risk of choosing an alternative that
is ranked last by almost every vote (but first by a few).

Another sharp contrast between strategy-proof rules such as the above two and any
anonymity-proof rule is the following. For the winning alternative not to be chosen
uniformly at random, anonymity-proof rules require complete agreement on at least
one pair of alternatives:

Corollary 3 If V and a are such that for any b 6= a, there is a vote in V that prefers
a to b, as well as one that prefers b to a, then for any anonymity-proof voting rule,
Pf (V, a) = 1/m.

5 Extension: group strategy-proofness

A stronger notion than strategy-proofness is group strategy-proofness. A mechanism is
group strategy-proof if there is never a coalition of agents that can jointly misreport their



preferences so that they are all better off. An analogous result to Gibbard’s characteriza-
tion of strategy-proof voting rules has been given for group strategy-proofness [Barbera,
1979b].

Neither of group strategy-proofness and anonymity-proofness implies the other. For
example, with two alternatives, the majority rule is group strategy-proof. On the other
hand, as it turns out, not all of the rules in Theorem 1 are group strategy-proof. The fol-
lowing theorem shows how the characterization in this paper changes if group strategy-
proofness is added as a requirement.

Theorem 2 The class of voting rules f that are anonymity-proof, group strategy-proof,
and neutral consists exactly of the following rules.

– For two alternatives, the rules that satisfy the conditions are the same as in Theo-
rem 1.

– For three or more alternatives, only the rule that chooses an alternative uniformly
at random satisfies the conditions.

Proof. For two alternatives, under any of the rules from Theorem 1, to increase the
probability of one alternative winning, it is necessary to get some of the voters that
prefer the other alternative to change their votes—but of course they have no incentive
to do so. Hence, these rules are group strategy-proof.

For three or more alternatives, all we need to show is that if kf < 1, then the
rule is not group strategy-proof. (The kf = 1 rule is group strategy-proof because it
completely ignores the votes.) For three alternatives, consider the following profile of
preferences: voter one prefers a � b � c, with utilities 3, 1, 0, respectively; voter two
prefers c � b � a, also with utilities 3, 1, 0, respectively. If both voters vote truthfully,
then there is no agreement on any pair of alternatives, so that the winner will be chosen
uniformly at random, and each voter obtains an expected utility of 4/3. However, if the
voters cast the votes a � c � b and c � a � b instead, then the probability that b wins
is kf/3, whereas the probability for each of a and c is kf/3 + (1− kf )/2. This results
in an expected utility of 1(kf/3)+3(kf/3+(1−kf )/2) = 3/2−kf/6 for each voter,
which is strictly more than 4/3 when kf < 1. Hence the rule is not group strategy-
proof. This example is easily extended to more than three alternatives (for example, by
placing the additional alternatives at the bottom of each voter’s preferences).

6 Future research

Although Theorem 1 completely characterizes anonymity-proof neutral voting rules,
much remains to be done in future research. The most natural next direction to take
is to consider settings where the space of possible preferences is restricted. It is well-
known that such restrictions can introduce very satisfactory strategy-proof rules. For
example, in many settings there is a natural order on the alternatives (e.g., in political
elections, we can order candidates by how far to the left of the political spectrum they
are). In such a setting, a voter’s preferences are said to be single-peaked if she always
prefers alternatives that are closer to her most-preferred alternative to alternatives that



are further away (when these alternatives are on the same side of the most-preferred
alternative) [Black, 1948]. It is well-known that when preferences are single-peaked,
choosing the most preferred alternative of the median voter (the voter that, if we sort the
voters by their most preferred alternatives, ends up in the middle) is strategy-proof, and
(if the number of voters is odd) this alternative will be preferred to any other alternative
by more than half of the voters (i.e., it is the Condorcet winner). Single-peakedness can
only be of limited help for anonymity-proofness: for example, when there are only two
alternatives, single-peakedness does not restrict preferences at all, so we cannot do any-
thing more than in the general case. Specific application settings can also allow for more
positive results, as has already been shown to be the case for combinatorial auctions.
In a sense, such settings correspond to a very special way of restricting preferences.
Other directions for future research include dropping the requirement of neutrality, and
extending the result to allow voters to express indifferences.

Finally, if no good anonymity-proof mechanisms turn out to exist for a setting that
we are interested in, then we need to consider other options. One natural solution is
to verify agents’ identities, that is, to check whether multiple preference reports came
from the same agent. It is generally not necessary to verify the identities of all agents;
rather, it suffices to verify those of a select few based on the submitted preference re-
ports [Conitzer, 2007]. Another option is to suppose that each additional identifier used
comes at a small cost to the manipulating agent. Much more positive results can be ob-
tained in that setting [Wagman and Conitzer, 2008].5 In either case, the results in this
paper provide a natural starting point for analysis. A final approach is to try to stop the
problem at the source and make it impossible or impractical for an agent to sign up for
more than one account. It seems difficult to do so without compromising the anonymity
of the Internet, though it is not inconceivable: see Conitzer [2008] for one possible
approach to achieving this using memory tests (which is, for now, far from practical).
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5 Alternatively, it has been suggested to consider the setting where each voter can cast at most
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some of her k votes different from her other votes—but it is easy to see that there is no reason
to do so in, say, a majority election between two alternatives.)
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