Approximation Algorithm for Security Games
with Costly Resources

Sayan Bhattacharya, Vincent Conitzer, and Kamesh Munagala

Department of Computer Science, Duke University
Durham, NC 27708, USA
{bsayan, conitzer,kamesh}@cs.duke.edu

Abstract. In recent years, algorithms for computing game-theoretic so-
lutions have been developed for real-world security domains. These games
are between a defender, who must allocate her resources to defend po-
tential targets, and an attacker, who chooses a target to attack. Existing
work has assumed the set of defender’s resources to be fixed. This as-
sumption precludes the effective use of approximation algorithms, since a
slight change in the defender’s allocation strategy can result in a massive
change in her utility. In contrast, we consider a model where resources
are obtained at a cost, initiating the study of the following optimization
problem: Minimize the total cost of the purchased resources, given that
every target has to be defended with at least a certain probability. We
give an efficient logarithmic approximation algorithm for this problem.

1 Introduction

Taking a game as input and computing a solution of it is one of the core problems
of algorithmic game theory. To be more precise, it is a collection of problems, one
for each combination of a representation scheme and a solution concept. Perhaps
the best-known example is the problem of computing a Nash equilibrium of a
normal-form game, which is now known to be PPAD-complete for two-player
games [2, 3] and FIXP-complete for games with three or more players [5].

In contrast, this paper deals with an alternative solution concept, correspond-
ing to a “Stackelberg” model. In this model, there are two players, a “leader”
and a “follower”. The leader first commits to a mixed strategy, and the follower
responds only after observing the commitment. Recently, algorithms for comput-
ing optimal leader strategies have been developed for various real-world security
domains, including US airports [11,12], the US Federal Air Marshals [13], and
the US Coast Guard [1].

Motivated by such applications, Kiekintveld et al. [8] proposed a general
model of security games. The players are a defender and an attacker. There
is a set of targets that the attacker may want to attack (in the Federal Air
Marshal example, these would be individual flights), and the defender has a set
of resources (Federal Air Marshals). The defender can assign each resource to a
schedule, which consists of a subset of the targets (for example, a tour of multiple
flights that a single Federal Air Marshal can take). In general, not every resource

can be assigned to every schedule. If a resource is assigned to a schedule, then
it defends all the targets contained in that schedule.

A pure (resp., mixed) strategy for the defender is a deterministic (resp.,
randomized) assignment of the resources to schedules. The typical motivation
given for the Stackelberg model, where the defender (the leader) commits to a
mixed strategy and the attacker (the follower) subsequently best-responds, is
as follows. Every day, the defender draws an assignment from her distribution.
Over the course of time, the attacker observes the realized assignments and
eventually learns the probabilities with which each target is defended on any
given day. Then, the attacker decides to attack a single target that maximizes
her expected utility. The utilities of both players usually depend on: (a) the
target that is attacked, and (b) whether or not that target is defended on the
day of the attack. In the existing literature on this topic, the typical problem is
to find the optimal mixed strategy for the defender to commit to, that is, the
one that will maximize the defender’s expected utility.

In this paper, we explore the setting where the resources can be purchased by
the defender at a cost. To be more specific, we consider the following problem.
Some resources are to be (deterministically) purchased in advance. Next, they
are to be randomly assigned to schedules, ensuring that each target is defended
with at least a certain probability. The objective is to minimize the total cost of
the purchased resources.

For example, suppose that the Federal Air Marshal Service can hire a set of
Marshals on a contractual basis for one year, thereby incurring a certain cost.
During each day of the following year, the hired Marshals are (randomly) as-
signed to the schedules, according to the mixed strategy chosen. It is important
to emphasize that we require a set of resources to be purchased deterministi-
cally, after which these resources can be randomly assigned to schedules. It is
impractical to randomize the resource supply itself each day, since, for example,
security personnel cannot be hired as day laborers.

Existing literature [8, 9] on security games assumes a fixed set of resources. In
contrast, our model assumes that the resources are available in unlimited supply,
but they can be purchased at a cost. There is a connection between these two
settings: Given a fixed set of resources, there is an efficient algorithm to compute
the optimal commitment strategy for a defender if and only if we can decide in
polynomial time whether each target can be defended with a certain probability.
The proof of this claim appears in the full version of our paper.

Our Results and Techniques. In Section 2, we formally state our problem and
show that it is a generalization of Set Cover, and hence the problem is unlikely
to admit an approximation ratio better than O(log |7 |), where |7 | is the number
of targets [6]. Section 3 gives an O(log |7 |+ log|S|) approximation algorithm for
this problem, where |S| is the number of schedules. The algorithm partitions the
set of targets into two subsets, depending on whether their required coverage
probabilities are small or big, and separately deals with these two subsets.

In Section 3.1, we show that the subproblem of defending the targets with big
probabilities admits an LP relaxation (LP (3)), and it can be converted to the

LP relaxation for Set Cover (LP (6)) while losing at most a constant factor in the
objective value. Thus, a greedy algorithm (Figure 1) gives a good approximation
for this case. Unfortunately, this analysis cannot be extended to defend the
targets with small probabilities, because the gap between the optimal objective
value of LP (3) and the cost of the optimal solution can become arbitrarily large.

Section 3.2 considers the remaining subproblem—to defend the targets with
small probabilities. For this, we present an exponentially sized covering integer
program (IP (9)) that bounds the cost (Lemma 3) of the optimal solution. In-
terestingly, the LP relaxation of IP (9) can again be far away from the optimal
solution, and thus, it is necessary to impose the integrality constraints.

IP (9) has the additional property that all of its constraint data are integral.
Under such circumstances, a simple greedy heuristic (see Dobson [4]) gives a
logarithmic approximation to the integer optimum (Lemma 4). The idea is to
treat every variable as a set that covers part of the constraints, and during each
iteration, increment the variable that gives maximum coverage per unit cost.
However, TP (9) has exponentially many variables, and hence, we cannot directly
apply Dobson’s algorithm to solve it in polynomial time. Instead, we show that
the subroutine of selecting the variable with maximum coverage per unit cost
is exactly equivalent to maximizing a submodular function subject to a budget
constraint. Hence, we can use another greedy algorithm [10] to implement this
subroutine upto a constant factor approximation. Accordingly, we solve IP (9),
and its outcome determines the resources we purchase and the way in which we
randomly assign them to the schedules (Theorem 2).

Remark. All the missing proofs appear in the full version of this paper.

2 Notations and Preliminaries

There are a set of targets 7, a set of schedules S, and a set of resource-types ©.
There is an unlimited supply of resources of each type. Any resource of type 6 € ©
has cost ¢(f). In addition, there is a subset S(f) C S such that any resource of
type 6 can be assigned to at most one schedule in S(#). The type of a resource
r is denoted by 6, € ©. Whenever some resource is assigned to schedule s € S,
it defends all targets in the subset T'(s) C 7. Furthermore, each target t € 7
has a threshold requirement 0 < q; < 1. In the SECURITY GAME problem, we
want to (deterministically) purchase some resources, and randomly assign them
to schedules so that every target t € 7 is defended with probability at least g;.
We want to minimize the sum of the costs of the purchased resources.!
Consider an example. There are 4 targets, 3 schedules, and 2 different types
of resources. Target ¢ (resp. t4) needs to be defended with probability 2/3 (resp.

! Note that the unlimited availability of resources guarantees the existence of a fea-
sible solution satisfying all the threshold requirements: simply purchase a sufficient
number of resources of each type. This assertion holds provided each target can be
defended by some schedule, and for each schedule, there is some resource that can
be assigned to it. We will make these assumptions without any loss of generality.

1/3), whereas each of the targets in {to,t3} has a threshold requirement of 1.
Any resource of type 0; costs 2, and any resource of type 05 costs 3. A resource
of type 61 (resp. 02) can be assigned to at most one schedule in the set {s1, s2}
(resp. {s2,s3}). Finally, whenever it has some resource assigned to it, schedule
s1 defends target t1; schedule so defends both the targets to, t3; and schedule s3
defends both the targets t3,t4. In terms of notations, we have

T ={t1,t2,t3,t4}, S = {51, 82,83}, O = {61,602}
q, =2/3, q, = qts = 1, qu, = 1/3

c(6h) =2, c¢(b2) =3

S(61) = {s1, 82}, S(02) = {s2,s3}

T(s1) ={t1}, T(s2) = {t2,t3}, T(s3) = {t3,ta}

The optimal solution will purchase one resource r; of type 6; and one resource
ro of type 0y so that 6,, = 61, 6,, = 0; thereby incurring a total cost of
243 = 5. Next, with probability 2/3, it will simultaneously assign resource r1 to
schedule s; and resource 75 to schedule so; and with the remaining probability
1-2/3 = 1/3, it will simultaneously assign resource r; to schedule s5 and resource
ro to schedule s3. It is important to note how the optimal solution correlates the
random assignments of the resources to schedules.

The SECURITY-GAME problem is a generalization of SET-COVER. Consider
an instance of the SECURITY-GAME problem where the threshold requirements
of all the targets are equal to 1, and there is only one resource-type. In this
case, the task of finding the optimal solution is equivalent to finding a minimum
cardinality subset of schedules to defend all the targets, which is exactly the
SET-COVER problem. As a consequence, the SECURITY-GAME problem is NP-
hard and unless NP has slightly superpolynomial time algorithms, we cannot
even approximate it to a factor better than O(log|7]) [6]. In the next section,
we give an O(log |T| + log |S|) approximation algorithm.

3 Approximation Algorithm

First, we partition the set of targets into two groups depending on their threshold
requirements. Define

Toig={teT : 1/e<q <1} (1)
Toman ={t €T : ¢ <1/e} (2)

We deal with the two subsets separately. In Section 3.1, we consider the
subproblem where we need to defend only the subset 7y, of targets, and give an
O(log |T|) approximation algorithm for this task. On the other hand, Section 3.2
deals with the subproblem where we have to defend only the targets t € Tgmau-
For this task, we present an O(log |7 |+log |S|) approximation algorithm. Finally,
we take the union of the two solutions, and this results in an O(log |7| + log |S])
approximation for the SECURITY-GAME problem.

3.1 Targets with Big Threshold Requirements

Let OP1Ty;4 denote the minimum-cost solution that only defends the targets in
the subset 7;q € 7 according to their threshold requirements, and ignores the

remaining targets in Tgman = 7 \ Tpig- We now derive an LP-relaxation.
min Z c(0) Z w(6, s) (3)
9o s€S(0)

s.t. Z Z w(f,s) > qi, Yt € Tiig (4)

0€O seS5(0):teT(s)
w(f,s) >0 , V0€O,scS0) (5)

Let R* be the set of resources purchased by OPTy,,. For all r € R*,s € S(6,),
let y;, be the probability that OPTj;, assigns resource r to schedule s. Recall
that the type of a resource r is denoted by 0,.. Define

O, = Y

r€R:0,.=60

It is easy to verify that the w*(6,s) values are a feasible solution to LP (3).
Constraint (4) holds since OPTy,;, defends every t € Tp;, with probability at
least ¢; and by the union bound, the left hand side of the constraint is an
overestimate of the probability with which target ¢ is defended. The relaxation
assumes that the resources can be purchased partially and hence, the objective
value is at most the total cost incurred by OPTy;,. This leads us to Lemma 1.

Lemma 1. LP (3) gives a lower bound on the total cost incurred by OPTy;q.

Consider the following linear program (6). It replaces the right hand of Con-
straint (4) by 1. Recall that all targets in the subset 73,4 C 7 have g, > 1/e.
Therefore, if we solve LP (3) optimally and multiply every w(#, s) by e, then we
get a feasible solution to LP (6). However, the objective value also increases by
a factor of e. Combining this observation with Lemma 1, we obtain Fact 1.

min Zc(@) Z w(#, s) (6)

EE) s€S(0)

sty S wlls) =1, Ve Ty (7)
0€O seS5(0):teT(s)
w(f,s) >0 , V9eO,seS0) (8)

Fact 1 The optimal objective value of LP (6) is at most O(1) (specifically, e)
times the cost incurred by OPTy;,.

We note that LP (6) is an LP-relaxation for the SET-COVER problem, where
the targets ¢ € Tp;4 behave like elements that have to be covered, and each pair
(0,s) acts like a set T'(s) N Tp;q having a cost ¢(6). Hence the greedy algorithm
described in Figure 1 gives a O(log|7|) approximation [7] to LP (6). Hence,
Fact 1 implies the following Theorem 1.

Initialize D « (), F « (.
While D # Ty;y do
Find an ordered pair (0',s") € arg maxgeco,ses(0) |(L(s) N Toig) \ D|/c(0)
F— Fu{®,s)}
D — DU(T(s) N Toig)
For all (0, s) € F do
Buy a resource of type 0, and deterministically assign it to schedule s.

Fig. 1. Greedy algorithm for targets with big threshold requirements. It defends every
target t € Tpig with probability 1.

Theorem 1. The greedy algorithm described in Figure (1) gives an O(log|T|)
approzimation to OPTy;g.

3.2 Targets with Small Threshold Requirements

Let SGgnau be the problem where we must defend each target ¢ € 70 With
probability at least ¢;, but we are free to ignore the remaining targets in Zp;5. A
solution to the SGg,,q; problem purchases some resources and randomly assigns
them to schedules so that each target ¢t € T pqn is defended with probability g;.

Definition 1. Given any solution to the SGgmay problem, every purchased re-
source r can be associated with an assignment vector. It is a vector with |S)|
components, where the value of component s equals yrs if s € S(6,) and is zero
otherwise. Here, y,s is the probability that resource v is assigned to schedule s.

Lemma 2 shows that we can restrict our attention to a subset of feasible
solutions to the SGg,q;; problem. Specifically, we focus on those solutions where
the values of all components of the assignment vectors come from a discrete set.

Lemma 2. Let OPT be the minimum-cost solution to the SGgnan problem.
There exists a solution DISCRETE-OPT to the SGesman problem such that:

1. The cost incurred by DISCRETE-OPT is at most 2 times the cost of OPT.
2. For every resource purchased by DISCRETE-OPT, all the components of the
corresponding assignment vector are integral multiples of 1/|S|?.

Fix any target t € Tgman with 0 < ¢; < 1/|S|?. The solution DISCRETE-OPT
defends this target according to its threshold requirement. Thus, DISCRETE-OPT
purchases some resource of type 6, and assigns it with non-zero probability to
some schedule s € S(6) such that ¢t € T'(s). However, the probability of assigning
the resource to schedule s is an integral multiple of 1/|S|? (Lemma 2), and hence
the target ¢ is defended with probability at least 1/|S|2.

Corollary 1. The solution DISCRETE-OPT defends each target t € Tgman with
probability at least min(g;, 1/|S|?).

Let P denote the set of all assignment vectors that have been discretized ac-
cording to Lemma 2. More formally, the set P consists of all possible |S|-tuples
where the value of each component is an integral multiple of 1/|S|?, and the sum
of the values of all the components is at most 1. For all p € P,s € S, let p(s)
denote the component of the assignment vector p corresponding to schedule s.

Suppose that a resource r cannot be assigned to some schedule s, that is,
s ¢ S(0,), and a valid solution assigns the resource r to different schedules with
probabilities that are given by the components of the vector p € P. In this case,
we must have p(s) = 0. Definition 2 formalizes this concept.

Definition 2. An assignment vector p € P is feasible for a resource-type 6 € ©
if p(s) =0 for all schedules s € S\ S(0). Define Py to be the set of all feasible
assignment vectors for resource type 0 € O.

Now we present an Integer Program to bound the cost of DISCRETE-OPT.

min Z c(0)z(6,p) (9)

0eO, pePy

s.t. Z Z n(p,s)z(0,p) > X, Vt € Toman (10)
0€0,pEPy s:teT(s)
z(0,p) eN , Y0eO, pePy (11)

IP (9) introduces some new notation. In Constraint (11), the set of all non-
negative integers is denoted by N. In Constraint (10), we have

e = [e x ¢ x |S|?] for all t € Tomau (12)
n(p,s) = p(s) x |S|? forallpe P, seS (13)

By definition, each p(s) € [0,1] is an integral multiple of 1/|S|?, and ¢; €
[0,1/e] for all t € Tgpman. These observations lead to the the following fact.

Fact 2 IP (9) is a covering integer program where all the coefficients in the
constraint data, that is, all the values of n(p, s) and A, are integers lying between
0 and |S|*.

Lemma 3. The optimal objective value of the Integer Program (9) is at most 4
times the cost incurred by DISCRETE-OPT.

We now describe some intuitions behind IP (9). The variable x(6, p) denotes the
number of purchased resources that satisfy both of the following conditions.

1. The resource is of type 6 € 6, and
2. For all s € S, the probability that the resource is assigned to schedule s is

given by p(s).
Each resource of type 0 costs ¢(0). Therefore, summing over all possible resource

types and feasible assignment vectors, we see that the total cost is given by the
objective function. We now proceed towards verifying Constraint (10). Applying

union-bound, we can show that the left hand side of Constraint (10) is at least
|S|? times the probability of defending target t. Glossing over some of the details,
the constraint holds since, the right hand side is roughly equal to |S|? times the
probability of defending target ¢.2

—_

Let § denote a vector with |Zsmqu| components, where §(t) gives
the value of the component corresponding to target t € Tomaii-
FOR ALL t € Tgmau : Initialize §(t) «— A¢.
FOR ALL 6 € O, p € Py : Initialize X (6,p) < 0.
WHILE 6§ # 0 Do

FORr ALL p € P, and t € Tomair

Acon(p, 8,1) = min (8(6), ., e P(s) X ISI?).
FORALLp € P Acou(p,8) — X ier., ., Acon(p,6,1).

6

7. Find some (0, p) € argmaxgpco, pep, { Acov(p,8)/c(6)}.
8. X(0,p) — X(0,p)+1.
9
1

U W

. FOR ALL t € Toman : 6(t) «— 8(t) — Acou(p, 5, 1).
0. Return the X (6, p) values for all § € O, p €€ Py.

Fig. 2. Dobson’s Algorithm applied to LP (9)

If a covering integer program has a constraint matrix with integral entries,
then a simple greedy heuristic returns a logarithmic approximation to the integral
optimum (Dobson [4]). Fact 2 tells us that we can apply Dobson’s heuristic
to IP (9). A simple intuition behind the algorithm (Figure 2) comes from an
alternate way of viewing the problem: Each target ¢ has to be covered by a
threshold amount \;. The total coverage required is ZtETS o At This coverage
can be achieved by incrementing the columns {(6, p)}, where each column (4, p)
corresponds to the variable (6, p). We want to increment the columns so that
the required coverage is attained at minimum cost.

At the beginning of a typical iteration of the WHILE loop (Steps 4-9), the
value of d(t) equals the remaining coverage required for target ¢ before we can
attain its threshold A:. If we increment a column (6, p) by 1, then the cost of
our solution will increase by ¢(#), and at the same time, the coverage of target ¢
will increase (Step 5) by the amount Ac,,(p, d,t). Hence, the increase in total
coverage of all the targets (Step 6) will be equal to Acey(p,d). Let us term
this quantity Ace, (P, d) as marginal coverage. The algorithm myopically selects
the column that has the maximum marginal coverage to cost ratio (Step 7),
and increments that column by 1 (Step 8). The remaining coverage required for
all the targets are adjusted accordingly (Step 9). The WHILE loop terminates

2 To be more precise, the RHS is equal to [e x g; x |S|?]. While converting the IP solu-
tion to a feasible (random) assignment of resources to schedules, the final algorithm
(Figure 3) looses a factor of e in the probability of defending any target ¢ € Tgmair-

(Step 4) when 8 = 0, that is, when all the targets in Tgnqy have been covered
up to their corresponding thresholds.

Note that IP (9) contains exponentially many variables x(6, p). This follows
from the fact that the set P of possible assignment vectors is exponential in
size. Hence, we have to prove that Dobson’s algorithm can be implemented in
polynomial time. We also need to establish a bound on the approximation ratio.

Lemma 4. Dobson’s algorithm (Figure 2) can be used to solve the Integer Pro-
gram (9). Although IP (9) contains exponentially many variables, an approxi-
mate version of Dobson’s algorithm can be implemented in polynomial time. It
returns a feasible solution to IP (9), where each variable x(0,p) is assigned a
nonnegative integral value X (0,p). The solution satisfies two properties.

1. The objective value of the solution is at most O(log|T| + log |S|) times the
optimal objective value of IP (9).
2. The number of variables taking nonzero values are polynomially bounded.

Proof (Sketch). The approximation ratio of Dobson’s algorithm [4] grows loga-
rithmically with the maximum column sum of the coefficient matrix. Recall that
(Fact 2) each n(p, s) is an integer lying between 0 and |S|?, and the number of
constraints in IP (9) is at most |7|. Thus, in case of IP (9), the maximum col-
umn sum is upper bounded by |S|? x | 7|. Hence the approximation ratio is given
by O(log(|S?|71])) = O(log|S| + log|7|). Next, we will show that an approx-
imate version of Dobson’s algorithm can be implemented in polynomial time,
and asymptotically, it gives the same approximation ratio of O(log|S|+1log |T]).

It is sufficient to discuss the implementations of Step 3, the WHILE loop
(Steps 4-9) and Step 10. We implement Step 3 by implicitly assuming that all the
X (0, p) values have been initialized to zero. During the course of the algorithm,
we keep track of only those X (6, p) values that have been incremented at least
once. Since each); is an integer lying between 0 and |S|? (Fact 2), the total
coverage required of all targets is at most |7| x |S|%. Every iteration of the
WHILE loop (Steps 4-9) contributes at least 1 towards this total coverage, and
it increments exactly one X (6, p). Therefore, at the termination of the WHILE
loop, the number of nonzero X (6, p) values is upper bounded by the polynomial
|7| x |S|?. In Step 10, the algorithm returns only these nonzero X (6, p) values,
and all other variables are implicitly set to zero.

Regarding the WHILE loop (Steps 4-9), note that the marginal coverage
Acou(p, d), as a function of the assignment vector p, is monotone and submod-
ular. To be more precise, fix some resource type 6. Next, take any two assignment
vectors p, p’ € Py such p is dominated by p’, that is, p(s) < p/(s) for all s € S.
Furthermore, suppose that) s p'(s) < 1. Fix some schedule s* € S(#) and
consider two new assignment vectors p1,p} € Py with the following properties.
For all s € S\ {s*}, we have pi(s) = p(s), and p}(s) = p'(s). We also have
pi(s*) = p(s*) + 1/|S|?, and p(s*) = p'(s*) + 1/|S|?. Now, submodularity of
marginal coverage means that the next inequality will always be satisfied.

ACov(p,17 6) - ACO’U (p,7 6) S ACov(pla 6) - ACO’U(p) 6)

We can exploit this submodularity condition as follows. While implementing
Step 7, suppose we have correctly guessed the resource type 6 that maximizes
the marginal coverage to cost ratio.? All we need to do is to find an assignment
vector p € Py with maximum marginal coverage, subject to the constraints that
each component of the vector p is an integral multiple of 1/|S|?, and the sum of
all the components is at most one (Lemma 2). This is equivalent to maximizing
a monotone submodular function subject to a budget constraint [10]. A simple
greedy algorithm is known to give a (1 — 1/e) approximation for this problem.
To summarize, in polynomial time we can obtain a column (6, p) that gives a
constant approximation to the optimal ratio of marginal coverage to cost. Going
through Dobson’s proof [4], it is easy to verify the following statement. Even if
we implement Step 7 in this approximate fashion, the algorithm will have the
same asymptotic approximation guarantee. This concludes the proof. a

We are now ready to present our algorithm for the SGg,qn problem (Fig-
ure 3). First, we solve IP (9) according to Lemma 4. Let B* denote the set
of columns of IP (9) where the corresponding variable is set to some nonzero
value, that is, B* = {(0,p) : X(0,p) # 0}. For each (0, p) € B*, we purchase
X (0, p) resources of type 8 and tag them with the assignment vector p. Finally,
each purchased resource is randomly assigned to some schedule according to its
assignment vector; and this process occurs independently of all other resources.

Solve IP (9) according to Lemma 4.
Define P; = {p € Py : X(0,p) # 0} for all 6 € 6.
Let Ro be the set of resources of type 6 that will be purchased.
Let R = Uee@ Re be the set of all resources that will be purchased.
Let Rg,p € Ro denote the resources in Rg whose
assignment probabilities are specified by p € Py .
For all resource-types 6 € ©
|R9| = Zpepg X(G,p).
Forall p e P;: |Reop|=X(0,p).
Randomly assign each resource r € Ry, to schedules, according to the
assignment probabilities specified by p, independently of all other resources.

Fig. 3. Approximation Algorithm for the SGgyqu Problem

Theorem 2. The algorithm described in Figure 3 gives an O(log |T| + log|S|)
approzimation to the SGgpman problem.

Proof. If we purchase the resources according to Figure 3, then the total cost
is equal to the objective value of the IP solution returned by Lemma 4. Now
Lemma 2, Lemma 3 and Lemma 4 imply that this cost is at most O(log|7T| +
log|S]|) times the cost incurred by OPT. It remains to show that the solution

3 Clearly, in O(]|©|) time we can iterate over all possible resource types.

defends all the targets in 7,41 according to their threshold requirements. Fix
some target t € Tgp,q1 for the rest of this proof. Given any purchased resource r €
R, let p,- be its assignment vector according to Figure 3. Since the X (6, p) values
constitute a feasible solution to IP (9), we have that =, . 3> er(s) 1(Pr, 8) =
At. Recall that n(p,,s) = p,(s) [S|> and A = [e x ¢ x |S|?] > eq: |S|?. For all
r € R, define ¢ (t) = 3 . 1eq(s) Pr(s). Therefore, we get

So0=Y Y p) e (14

reR r€R s:t€T(s)

The probability that resource r does not defend target ¢ is given by the expression
1 =% s te7(s) Pr(s) = 1 — ¢(t). Since the event of assigning a resource to some
(random) schedule occurs independently of other resources, the probability that
no resource defends the target ¢ is equal to [], (1 — ¢ (t)). Since ¢; < 1/e,

[T =60 < [T exp(=6.(1)) = exp (— > ¢r(t)> < exp(—eqy)

reR r€R reR

Thus, the probability of defending target ¢ is at least 1 — exp(—eqt) > ¢:. a

Remark. We note that it is possible to devise a polynomial time algorithm that
gives an O(log |7|) approximation to the SGgmay problem. We have to consider
an exponential sized Linear Program that is similar to IP (9), solve it approx-
imately using an approximate separation oracle for its dual, and then directly
employ randomized rounding. However, the running time of such an algorithm
might become prohibitive. We omit the details due to space constraints.

4 Conclusion

We investigated the security game problem when there is an unlimited supply
of resources that can be purchased at a cost. We designed an algorithm for (de-
terministically) purchasing some resources at minimum cost, and then randomly
assigning them to schedules so that each target is defended with at least a certain
probability. The algorithm is efficient and gives a logarithmic approximation.

Since this problem is a generalization of SET-COVER, we cannot get a sub-
logarithmic approximation ratio. However, if each target has at most two sched-
ules that are capable of defending it (a generalization of the VERTEX-COVER
problem) and resources are homogeneous, then we can get a constant factor ap-
proximation algorithm. We omit the proof due to lack of space. We leave open
the questions of exploring other settings with better approximation guarantees,
and investigating the fixed parameter tractability of the problem.

Acknowledgements. The authors thank Dmytro Korzhyk and Ronald Parr
for several helpful discussions. This research was supported by NSF under award
numbers IIS-0812113, I1S-0953756, CCF-1101659, CCF-0745761, CCF-1008065,
a gift from Cisco, by Conitzer’s Alfred P. Sloan Research Fellowship, and by
Munagala’s Alfred P. Sloan Research Fellowship.

References

1.

10.

11.

12.

13.

B. An, J. Pita, E. Shieh, M. Tambe, C. Kiekintveld, and J. Marecki. GUARDS
and PROTECT: next generation applications of security games. ACM SIGecom
Ezchanges, 10(1):31-34, 2011.

X. Chen and X. Deng. Settling the complexity of two-player Nash equilibrium. In
FOCS, pages 261-272, 2006.

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of
computing a Nash equilibrium. In STOC, pages 71-78, 2006.

G. Dobson. Worst-case analysis of greedy heuristics for integer programming with
nonnegative data. Mathematics of Operations Research, 7(4):515-531, 1982.

. K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other

fixed points. SIAM J. Comput., 39(6):2531-2597, 2010.

U. Feige. A threshold of Inn for approximating set-cover. Journal of the ACM,
45(4):634-652, 1998.

D. Hochbaum. Approzimation Algorithms for NP-hard Problems. PWS Publishing
Company, 1997.

C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordéniez, and M. Tambe. Computing
optimal randomized resource allocations for massive security games. In AAMAS,
pages 689-696, 2009.

. D. Korzhyk, V. Conitzer, and R. Parr. Complexity of computing optimal Stack-

elberg strategies in security resource allocation games. In AAAI pages 805-810,
2010.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maxi-
mizing submodular set functions. Mathematical Programming, 14(1):265-294, 1978.
J. Pita, M. Jain, F. Ordéniez, C. Portway, M. Tambe, and C. Western. Using game
theory for Los Angeles Airport security. AI Magazine, 30(1):43-57, 2009.

J. Pita, M. Jain, C. Western, C. Portway, M. Tambe, F. Ordénez, S. Kraus, and
P. Parachuri. Deployed ARMOR protection: The application of a game-theoretic
model for security at the Los Angeles International Airport. In AAMAS - Industry
and Applications Track, pages 125-132, 2008.

J. Tsai, S. Rathi, C. Kiekintveld, F. Ordénez, and M. Tambe. IRIS - a tool for
strategic security allocation in transportation. In AAMAS - Industry Track, pages
37-44, 2009.

