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Barriers to Manipulation in Voting
Vincent Conitzera and Toby Walshb

6.1 Introduction

In many situations, voters may vote strategically. That is, they may declare prefer-

ences that are not their true ones, with the aim of obtaining a better outcome for

themselves. The following example illustrates this.

Example 6.1 Consider an election with three alternatives, a, b, and c, and three

voters, 1, 2, and 3. Suppose the rule used is plurality—an alternative gets a point

each time it is ranked first by a voter, and the alternative with the most points

wins—with ties broken towards alternatives earlier in the alphabet. Suppose voter

3 knows (or strongly suspects) that voter 1 will rank a first in her vote, and that

voter 2 will rank b first. Voter 3’s true preferences are c � b � a. If she votes

truthfully, this will result in a three-way tie, broken in favor of a which is 3’s least

preferred alternative. If, instead, voter 3 ranks b first, then b will win instead. Hence,

voter 3 has an incentive to cast a vote that does not reflect her true preferences.

This is often referred to as manipulation or strategic voting; we will use “ma-

nipulation” throughout.1 Voting rules that are never manipulable are also referred

to as strategy-proof. We start by reviewing the Gibbard-Satterthwaite impossibility

result (discussed also in Chapter 2 (Zwicker, 2015)), which states that with unre-

stricted preferences over three or more alternatives, only very unnatural rules are

strategy-proof. The main focus of the chapter is on exploring whether computa-

tional complexity can be an effective barrier to manipulation. That is, we may not

be concerned about manipulation of a voting rule if it is computationally hard to

discover how to manipulate it.

a Department of Computer Science, Duke University, USA
b NICTA and Department of Computer Science and Engineering, University of New South Wales,

Australia
1 Of course, one may disagree, at least in some circumstances, that strategic voting is really

“manipulative” in the common sense of the word. We simply use “manipulation” as a technical
term equivalent to strategically reporting one’s preferences incorrectly. Nevertheless, we will give
some reasons why it can be undesirable in what follows.
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6.2 Gibbard-Satterthwaite and its implications

An important axiomatic result about the properties of voting rules is the Gibbard-

Satterthwaite theorem:

Theorem 6.2 (Gibbard (1973); Satterthwaite (1975)) Consider a (resolute2) vot-

ing rule that is defined for some number m of alternatives with m ≥ 3, with no

restrictions on the preference domain. Then, this rule must be at least one of the

following:

1. dictatorial: there exists a single fixed voter whose most-preferred alternative is

chosen for every profile;

2. imposing: there is at least one alternative that does not win under any profile;

3. manipulable (i.e., not strategy-proof).

Properties 1 and 2 are not acceptable in most voting settings. Hence, under the

conditions of the theorem, we are stuck with property 3: there will exist profiles

such that at least one of the voters has an incentive to misreport her preferences.

Before discussing how we might address this, we should first discuss why ma-

nipulability is a significant problem. It may not seem so. For example, consider a

plurality election with three alternatives. If one of the candidates3 is considered to

have a poor chance of winning the election (consider, for example, a third party in

the United States), then everyone might vote for one of the other two candidates, in

order to avoid wasting their votes. Is this a significant problem? Will it not simply

result in the same winner that plurality-with-runoff (or STV)4 would have chosen

(if everyone had voted truthfully), and is that so bad? Additionally, there are those

who argue that democrats should not be worried about manipulation (Dowding

and Hees, 2008). There are, however, several potential downsides to such manipu-

lation, including the following. (Formalizing all these downsides would go beyond

the scope of this chapter, so we present them informally; we hope the reader would

be able to formalize these concepts if needed.)

• Bad equilibria. In the above example, it is not at all clear that the resulting winner

will be the same as the true plurality-with-runoff winner. All that is required is

that voters expect the third alternative to have poor chances. It is possible that

this alternative is actually very much liked across the electorate, but nobody is

aware of this. Even more strikingly, it is possible that everyone is aware of this,

and yet the alternative is expected to perform poorly—for example, because

2 Recall that a voting rule is resolute if it returns only a single alternative for every profile.
3 We use “alternatives” and “candidates” interchangeably.
4 Recall that under the plurality-with-runoff rule, the alternatives with the top two plurality scores

proceed to a runoff round, and the one that is preferred to the other by more voters wins. Under
STV (also known as Instant Runoff Voting), only the alternative with the lowest plurality score is
eliminated in each round; it is then removed from all the votes, so that votes that ranked it first
now rank another alternative first. This procedure is repeated until only one alternative—the
winner—remains. (For an axiomatization of this rule, see Freeman et al. (2014).)
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nobody is aware that others are aware of the alternative’s popularity. Hence, an

alternative that is very much liked, and perhaps would have won under just about

any reasonable rule had everyone voted truthfully, may not win.

• Lack of information. Even if the bad equilibria described above are in fact

avoided, we cannot be sure that this is the case, because we will never know

exactly how popular that third alternative really was. This also interferes with

the process of identifying more desirable alternatives in the next election.

• Disenfranchisement of unsophisticated voters. Voters who are less well informed

may end up casting less effective votes than those who are well informed (for

example, votes for the third alternative). Knowledge is power—but in many elec-

tions, this is not considered desirable.

• Wasted effort. Even if all agents manipulate to the same extent, still much effort,

whether of the computational, information gathering, or communicational variety,

is expended in figuring out how to manipulate well, and presumably this effort

could have been more productively spent elsewhere. This can be seen as a type

of tragedy of the commons; everyone would be better off if nobody spent effort

on manipulation, but individually voters are still better off manipulating.

In the theory of mechanism design—which applies not only to the design of

voting rules but also to that of auctions, matching mechanisms, and any other

setting where a decision must be made based on the preferences of multiple strategic

agents—there is generally a focus on designing mechanisms in which agents have

no incentive to misreport their preferences. This is justified by a result known as

the revelation principle. Stating it formally here would take us too far afield, but

roughly speaking, it says that for any mechanism that results in a good equilibrium

(in a game-theoretic sense), there exists another mechanism that results in the

same outcomes, but in which agents report their preferences directly and they

have no incentive to misreport them.5 That is, at some level, we should be able

to get incentives to report truthfully (i.e., use a truthful mechanism) for free. The

revelation principle has been criticized on the basis that it implicitly assumes agents

to be computationally unbounded, and indeed it has been shown that in some cases

there exist mechanisms (that are not truthful) that will perform at least as well as

any truthful mechanism, and strictly better if agents are unable to compute their

strategically optimal actions (Conitzer and Sandholm, 2004).

Taken together, there seem to be several arguments for attempting to erect bar-

riers to manipulation. However, the Gibbard-Satterthwaite theorem poses a funda-

mental limit to such barriers. How can we get around it? We will first discuss some

5 It should be noted that the notion of not having any incentive to misreport here is weaker than
strategy-proofness. Rather, it is Bayes-Nash equilibrium, which means that an agent is best off
telling the truth in expectation over a prior distribution over the other agents’ preferences—but the
agent might be better off misreporting for a particular realization of the reports. There is a version
of the revelation principle that results in a strategy-proof mechanism, but this requires the original
mechanism to have dominant strategies for all agents.
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avenues that are not computational in nature. Then, we devote most of the chapter

to computational avenues.

6.3 Non-computational avenues around Gibbard-Satterthwaite

One way of sidestepping the Gibbard-Satterthwaite theorem is to restrict the do-

main of preferences. Probably the best-known such restriction is that of single-

peaked preferences. Here, the assumption is that there exists an ordering < of the

alternatives—for example, political candidates may be ordered on the left-to-right

political spectrum, or the alternatives may be tax rates, locations along a single

road, etc. Moreover, the following assumption is made: if voter i’s most-preferred

alternative is a, and a < b < c or c < b < a, then b �i c (i prefers b to c). In this

case (assuming, for simplicity, an odd number of voters) consider the median voter

rule: order the voters by their most-preferred alternatives, and choose the median

voter’s most-preferred alternative. (Note that this rule does not require voters to

specify preferences beyond their top choice.) This rule is strategy-proof and always

elects a Condorcet winner6. Of course, the usefulness of this result is limited by the

fact that we cannot simply make the voters’ preferences single-peaked when they

are not. We could declare any vote that is not single-peaked invalid, but this just

comes down to forcing voters to manipulate. For more discussion of single-peaked

preferences, see Chapter 2 (Zwicker, 2015).

Another possible avenue is to use randomized rules, which map every profile of

votes to a probability distribution over the alternatives. For example, if we break

the ties of a voting rule randomly, then we have a randomized voting rule. How-

ever, there are many other ways to obtain a randomized voting rule. The Gibbard-

Satterthwaite theorem above applies to deterministic rules only, so one might hope

that randomized rules are not subject to such an impossibility. Unfortunately, as

it turns out, there is a subsequent result by Gibbard that generalizes the Gibbard-

Satterthwaite theorem to randomized rules. To present this result, we first need

to define strategy-proofness in the context of randomized rules, and for that, we

need to define preferences over lotteries over alternatives. For example, if a voter’s

preferences are a � b � c, should the voter prefer b, or a 50-50 lottery over a

and c? Both could be reasonable. For example, if the voter has utilities 3, 2, and

0 for the alternatives respectively, b would give higher expected utility (2 > 1.5),

but if the voter has utilities 3, 1, and 0, then the 50-50 lottery over a and c gives

higher utility (1.5 > 1). Therefore, in this context, a quite conservative definition

of strategy-proofness is often used: a randomized rule is strategy-proof if and only

if for every utility function over the alternatives that is consistent with the voter’s

preferences over the (pure) alternatives, the voter maximizes her utility by report-

6 Recall that an alternative a is a Condorcet winner if it wins all its pairwise contests. That is, for
every other alternative b, more voters prefer a to b than vice versa.
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ing these true preferences (regardless of how the others vote).7 We can now present

Gibbard’s result:

Theorem 6.3 (Gibbard (1977)) If there are no restrictions on the preference

domain, any strategy-proof randomized rule is a randomization over a collection of

the following types of rules:

• unilateral rules, under which at most one voter’s vote affects the outcome;

• duple rules, under which there are at most two alternatives that have a possibility

of winning (i.e., that win under some profile).

The result makes it clear that randomization is not the answer to all our problems.

A coin flip results in the discarding of all but one of the votes, or in the discarding of

all but two of the alternatives. In many situations, these rules will not be acceptable.

Still, the result allows for some randomized rules that are perhaps not entirely

unreasonable. For example, we can randomly choose a dictator (the theorem implies

that, with three or more alternatives, this is in fact the only way to guarantee a

Pareto-optimal outcome), or randomly choose two alternatives and have a majority

election between them. Barberà (1979) gives some characterizations of randomized

strategy-proof rules as well; these are consistent with Gibbard’s result above, but

seem to cast the rules in a more positive light. More recently, Procaccia (2010)

studied the extent to which strategy-proof randomized rules can achieve formal

approximations to the scores from common voting rules.

A final possible avenue is to use irresolute rules, which return a set of alternatives

(possibly larger than one) and leave it at that. Can such a rule be strategy-proof

(and simultaneously reasonable)? To make sense of this question, we first need

to say something about what an agent’s preferences over sets of alternatives can

be. Building on earlier results, Brandt (2011) and Brandt and Brill (2011) have

recently provided results that show that various irresolute rules are in fact strategy-

proof with respect to various extensions of preferences to sets of alternatives.8

While these positive results are encouraging, they do face a major limitation. In

many voting settings, in the end, we require a single winning alternative. If we

add any procedure for going from the winning set of alternatives to a single one—

for example, choosing the lexicographically first alternative in the set—then the

combination of the irresolute rule and the subsequent procedure is a resolute rule,

and we run right back into the Gibbard-Satterthwaite impossibility result. Similarly,

if we randomly choose from the winning set, we run into the impossibility results

for randomized rules. Thus, for these positive results to apply, the procedure for

going from the selected set of alternatives to a single alternative fundamentally

7 For studies of other ways of extending strategy-proofness to randomized voting rules, see Aziz et al.
(2013a) and Aziz et al. (2014).

8 Other extensions lead to negative results (Duggan and Schwartz, 2000). For more on
strategy-proofness and other notions of monotonicity in this context, see Sanver and Zwicker (2012)
and the references cited in that work.
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needs to remain unspecified, and moreover the voters need to respond to this lack

of information in a particular way. For more detail, see Chapter 3 (Brandt et al.,

2015).

6.4 Computational hardness as a barrier to manipulation

Another potential barrier to manipulation is computational hardness. Even if we

cannot prevent a voting rule from being manipulable in principle, this may not be a

significant concern as long as determining how to manipulate it is computationally

prohibitive.

The argument that the complexity of computing a manipulation might be a

barrier to strategic voting was first put forward in an influential paper by Bartholdi

et al. (1989). A whole subfield of social choice has since grown from this proposal,

studying the computational complexity of manipulating different voting rules under

several different assumptions (e.g., Conitzer et al. (2007)). For two recent surveys,

see Faliszewski et al. (2010) and Faliszewski and Procaccia (2010); Brandt et al.

(2013) also discuss the topic at some length. In the remainder of this section, we

discuss this line of work in more detail.

6.4.1 The basic variant

The original paper (Bartholdi et al., 1989) defined a basic model which has since

been investigated extensively. We suppose all but one voter, the manipulator, have

voted and that these votes and the rule to be used are known to the manipulator.

We ask whether it is possible for the manipulator to ensure that a given alternative

wins. More formally, we can define the following decision problem.

Manipulation problem.
Given. A profile of votes Π cast by everyone but the manipulator, and a preferred alter-
native a.
Question. Is there a vote that the manipulator can cast so that a wins?

This problem is typically in NP as a simple witness is a vote that ensures a

wins. Supposing that the voting rule is polynomial to execute,9 this witness can

be checked in polynomial time. There is also a destructive variant of this ques-

tion, where we ask if it is possible for the manipulator to cast a vote so that a

given alternative does not win. Note that these problems correspond exactly to the

predicament of voter 3 in Example 6.1, with the exception that the question is now

whether she can make a particular alternative win. One may wonder if a more natu-

ral problem would be to determine the best (according to her own true preferences)

alternative that she can make win. This problem is effectively equivalent; to answer

it, it is sufficient to evaluate for each of the alternatives in turn whether she can

9 See earlier chapters in the book for discussion of rules for which this is not the case.
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make it win (and, conversely, it is necessary to at least evaluate whether she can

make her most-preferred alternative win).

Of course, when the rule is plurality, this problem is computationally trivial: to

see if you can make alternative a win, it suffices to see what would happen if you

submitted a vote that ranks a first. Indeed, for many rules, the problem is in P.

Bartholdi et al. (1989) provided an algorithm that solves the problem in polynomial

time for many voting rules.

Definition 6.4 Say that a voting rule satisfies the BTT conditions if

1. it can be run in polynomial time,

2. for every profile Π and every alternative a, the rule assigns a score S(Π, a) to a,

3. for every profile Π, the alternative with the maximum score wins,10 and

4. the following monotonicity condition holds: for any Π,Π′, for any alternative a, if

for each voter i we have that {b : a �i b} ⊆ {b : a �′i b}, then S(Π, a) ≤ S(Π′, a).

(That is, if we modify a vote in a way that does not rank anyone ahead of a that

was previously ranked behind a, then a’s score cannot have decreased.)

Theorem 6.5 (Bartholdi et al. (1989)) The manipulation problem can be solved

in polynomial time for any rule satisfying the BTT conditions.

The algorithm for constructing a manipulator vote that successfully makes al-

ternative a win (if any such vote exists) is quite straightforward. Rank a first. For

the next position in the vote, find some remaining alternative b that can be ranked

there so that a still wins. (To check this, complete the rest of the vote arbitrarily,

and calculate b’s score; by the monotonicity condition above, a and b’s scores will

not depend on how the rest of the vote is completed. This is because if we change

the relative ordering of the remaining alternatives, this is a modification that sat-

isfies the condition, and so cannot decrease a or b’s score; it can also not increase

these scores, because then the reverse modification would decrease it.) If no such

alternative can be found, declare failure; if the vote is completed, declare success;

otherwise, repeat for the next position. This algorithm applies not only to positional

scoring rules such as plurality and Borda, but also to rules such as Copeland and

maximin.11

Bartholdi et al. (1989) were also the first to show that the problem is NP-hard

for some rules. Specifically, they showed NP-hardness for manipulating the second-

order Copeland rule, under which an alternative’s score is the sum of the Copeland

10 Assume, say, a fixed tie-breaking order.
11 Recall that the Borda rule gives an alternative m− 1 points each time it is ranked first, m− 2

points each time it is ranked second, ..., and 0 points each time it is ranked last. More generally, a
positional scoring rule associates a score with each rank, and the alternative with the highest score
wins. Under the Copeland rule, an alternative a gets a point for each other alternative b such that
more votes rank a ahead of b than vice versa (and some fraction of a point if the number of votes
ranking a ahead of b is the same as vice versa). Finally, under the maximin rule, we find, for each
alternative a, the alternative b that minimizes the number of votes that rank a ahead of b (the worst
pairwise outcome for a); this number is a’s score, and the alternative with the maximum score wins.
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scores of the alternatives that it defeats. (Note that this way of scoring violates the

third condition above: if in some vote, we change the relative ordering of the alterna-

tives ranked (say) behind a only, this can affect those alternatives’ Copeland scores,

and thereby a’s second-order Copeland score.) They also showed NP-hardness of

manipulation for the (first-order) Copeland rule when ties are broken by the second-

order Copeland rule; we will say more about the importance of the tie-breaking

procedure later in this chapter. Shortly after, Bartholdi and Orlin (1991) proved

that the better-known STV rule is NP-hard to manipulate in this sense. The prob-

lem has been shown to be NP-hard for several other rules more recently, including

ranked pairs (Xia et al., 2009), and Nanson and Baldwin’s rules (Narodytska et al.,

2011). The ranked pairs rule orders the pairwise outcomes by the size of the vic-

tory. It then constructs a total ordering over alternatives by taking these pairs in

order and fixing the order unless this contradicts previous decisions. The top of the

order constructed in this way is the overall winner. Nanson and Baldwin’s rules are

elimination versions of Borda voting. Nanson’s rule repeatedly eliminates all alter-

natives with less than the average Borda score. Baldwin’s rule, on the other hand,

successively eliminates the alternative with the lowest Borda score. Figure 6.1 gives

a representative sample of complexity results for this manipulation problem, as well

as for some related manipulation problems discussed in the next subsections.

6.4.2 Coalitions of manipulators

So far, we have considered the computational complexity of just one voter trying

to manipulate the election. In practice, multiple voters may collude to manipulate

the result. Indeed, it is often the case that we need a coalition of manipulators to

be able to change the result.

Coalitional manipulation problem.
Given. A profile of votes Π cast by everyone but the manipulators, a number of manip-
ulators, and a preferred alternative a.
Question. Is there a way for the manipulators to cast their votes so that a wins?

Again, it can be debated if this should be called “manipulation” since the manipu-

lators might not have to vote strategically to ensure their preferred alternative wins.

However, as has become common in the literature, we will refer to this problem as

coalitional manipulation. Coordinating even a small coalition of voters introduces

fresh computational challenges. For example, with the Borda rule, a simple greedy

procedure will compute an optimal strategic vote for one voter, but it is NP-hard

to compute how two voters together can manipulate the result (Davies et al., 2011;

Betzler et al., 2011). Similar results hold for Copeland voting (the first rule for

which it was shown that the problem is easy with one manipulator but hard with

two) (Faliszewski et al., 2008), other scoring rules (Xia et al., 2010), maximin (Xia

et al., 2009), and Black’s rule (Narodytska and Walsh, 2013). Intriguingly, in all
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these cases, it requires only two manipulators to make manipulation hard. Black’s

rule is the voting rule that elects the Condorcet winner if it exists, and otherwise

the Borda winner.

One criticism that can be made about the complexity results considered so far

is that they require the number of alternatives to grow in an unbounded fashion.

If the number of alternatives is held constant, then a single manipulator would

have only a constant number (m!) of votes to consider. Even for a coalition of

n′ manipulators, if the rule is anonymous, then the total number of joint votes

for the coalition is the number of ways n′ indistuingishable balls (voters) can be

placed into m! urns (possible votes), which is
(
n′+m!−1
m!−1

)
, which is polynomial in n′.

Hence, as long as there is a polynomial-time algorithm for executing the rule, a

manipulation (if one exists) can be computed in polynomial time when the number

of alternatives is constant. However, this argument fundamentally relies on the

voters being indistinguishable, which is not the case when voters have weights.

6.4.3 Weighted votes

Weighted votes occur in a number of real-world settings (e.g., shareholder elections

and various parliaments). Weights are typically integers and a vote of weight k can

be seen as k identical and unweighted votes. It turns out that with weighted votes,

we encounter complexity in manipulation problems even with a small number of

alternatives. We consider the following decision problem for weighted votes.

Coalitional weighted manipulation problem.
Given. A profile of weighted votes Π cast by everyone but a coalition of manipulators, a
weight for each of the manipulators, and a preferred alternative a.
Question. Is there a way for the manipulators to cast their votes so that a wins?

There is again a destructive variant of this problem where the coalition wants a

given alternative not to win.

With two alternatives, most common voting rules degenerate to majority voting.

In addition, by May’s theorem, this is the only voting rule over two alternatives

that is anonymous, neutral, and positively responsive. With majority voting, the

manipulators’ best action even when their votes are weighted is always to vote for

the alternative that they wish to win. With three or more alternatives, however,

computing a manipulation can be computationally hard, provided we have a coali-

tion of manipulators (whose size is allowed to increase) and votes that are weighted.

For example, computing how to manipulate the veto (aka. antiplurality) rule12 is

polynomial with unweighted votes but NP-complete with weighted votes and just

3 alternatives (Conitzer et al., 2007). Some intuition for this result is as follows.

The manipulators could find themselves in the situation where, after counting the

12 Recall that under the veto rule, the winner is the alternative that is ranked last in the fewest votes.
Equivalently, it is the positional scoring rule in which the bottom rank receives 0 points and all
other ranks receive 1 point.



10 Barriers to Manipulation in Voting

nonmanipulators’ votes, two alternatives (b and c) are tied for the lead (i.e., they

have been vetoed the least), but the third alternative (a) is the one that the ma-

nipulators want to win. Clearly the manipulators do not want to veto a. To make a

win, however, they may need to divide their total veto weight very evenly between

b and c, so that a comes out just barely ahead of each of them. Thus, the manip-

ulators face the problem of partitioning a set of integers (their weights) into two

subsets (vetoing b or vetoing c) so that each subset has the same weight—and this

is an NP-complete problem. This intuition can be turned into a formal NP-hardness

reduction as follows.

Theorem 6.6 The coalitional weighted manipulation problem is NP-complete un-

der the veto rule, even with only three alternatives.

Proof The problem is in NP because a profile of votes for the manipulators will

serve as a certificate (since the veto rule is computationally easy to execute). To

prove NP-hardness, we reduce from the PARTITION problem, in which we are

given a set of integers w1, . . . , wn′ with
∑n′

i=1 wi = W (where W is even) and are

asked whether there exists a subset S ⊆ {1, . . . , n′} such that
∑

i∈S wi = W/2. We

reduce this problem to the coalitional weighted manipulation problem under the

veto rule with three alternatives, as follows. Let a, b, and c be the alternatives,

where a is the alternative that the manipulators would like to win. Create one

non-manipulator vote with weight W − 1 that ranks a last. Furthermore, for each

i ∈ {1, . . . , n′}, create a manipulator (the ith manipulator) with weight 2wi.

We now show that the manipulators can succeed in this instance if and only if the

original partition instance has a solution. If the partition instance has a solution S,

then let the manipulators in S rank b last, and let the ones outside S rank c last.

Then, a wins, appearing in last place only for W − 1 of the weight, whereas b and

c each appear in last place for
∑

i∈S 2wi = 2W/2 = W of the weight.

Now suppose that the partition instance has no solution. This implies that for

each subset S ⊆ {1, . . . , n′}, either
∑

i∈S wi ≤ W/2 − 1 or
∑

i/∈S wi ≤ W/2 − 1

(due to the integrality of the wi and W/2). Then, for any profile of votes for the

manipulators, let S be the set of manipulators that rank b last. Then, we have

either
∑

i∈S 2wi ≤ W − 2 < W − 1, so that b ranks ahead of a, or
∑

i/∈S 2wi ≤
W − 2 < W − 1, so that c ranks ahead of a. So the manipulators cannot make a

win.

Note that the reduction is set up in such a way that a cannot end up tied for

the win, so it does not matter how ties are handled. On the other hand, note that

this is only a weak NP-hardness result because the reduction is from PARTITION.

Indeed, we can compute a manipulation for a coalition of voters using dynamic

programming in pseudopolynomial time—that is, in polynomial time when the

weights are represented in unary (or equivalently, when the weights are small).

Similar (though often more involved) reductions can be given for many other rules.
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In fact, a dichotomy result holds for positional scoring rules in general: every scoring

rule that is not isomorphic to plurality is NP-hard to manipulate with three or

more alternatives and weighted votes (Hemaspaandra and Hemaspaandra, 2007;

Procaccia and Rosenschein, 2007b; Conitzer et al., 2007).

unweighted votes, weighted votes,

constructive manipulation constructive destructive

# alternatives 2 3 4 ≥5 2 3 ≥4

# manipulators 1 ≥ 2

plurality P P P P P P P P P

plurality with runoff P P P NP-c NP-c NP-c P NP-c NP-c

veto P P P NP-c NP-c NP-c P P P

cup P P P P P P P P P

Copeland P P P P NP-c NP-c P P P

Borda P NP-c P NP-c NP-c NP-c P P P

Nanson NP-c NP-c P P NP-c NP-c P P NP-c

Baldwin NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c

Black P NP-c P NP-c NP-c NP-c P P P

STV NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c

maximin P NP-c P P NP-c NP-c P P P

Bucklin P P P NP-c NP-c NP-c P P P

fallback P P P P P P P P P

ranked pairs NP-c NP-c P P P NP-c P P ?

Schulze P P P P P P P P P

Figure 6.1 Computational complexity of deciding the manipulation problem with a small
number of voters (unweighted votes) or a coalition of voters (weighted votes), for var-
ious voting rules. P means that the problem is polynomial, NP-c that the problem is
NP-complete. For example, constructive manipulation of the veto rule is polynomial for
unweighted votes or for weighted votes with a coalition of 2 manipulators, but NP-hard
for 3 or more manipulators. On the other hand, destructive manipulation of the veto rule
is polynomial for weighted votes with a coalition of 2 or more manipulators. We consider
the variant of Copeland where an alternative gets 1 point if it defeats an opponent, 0.5
points for a draw, and 0 if it loses. “?” indicates that the computational complexity is
open at the time of writing this chapter. For references, see: Faliszewski et al. (2008) and
Conitzer et al. (2007) for Copeland; Davies et al. (2011), Conitzer et al. (2007), and Betzler
et al. (2011) for Borda; Narodytska et al. (2011) and Davies et al. (2014) for Nanson and
Baldwin; Narodytska and Walsh (2013) for Black; Xia et al. (2009) for maximin; Xia et al.
(2009) and Faliszewski et al. (2014) for Bucklin; Faliszewski et al. (2014) for fallback; Xia
et al. (2009) and Hemaspaandra et al. (2014) for ranked pairs; Parkes and Xia (2012) and
Gaspers et al. (2013) for Schulze; and Conitzer et al. (2007) for other results or references
to them.
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6.4.4 Tie-Breaking

For complexity-of-manipulation results like these, it is important to specify pre-

cisely how ties are broken. This perhaps should not be surprising, because a single

manipulator can only change the result if the election is close to being tied. A

common assumption is that we break ties in favor of the manipulator. That is, we

suppose that the preferred alternative wins if it is amongst the set of co-winners.

This is usually justified on the grounds that if ties are broken, say, at random, then

this corresponds to increasing the probability that the given alternative wins. How-

ever, the choice of the tie-breaking procedure is not a minor detail. It can actually

change the computational complexity of computing a manipulation. We can get

different results if we break ties against the manipulator (that is, we suppose that

the manipulator’s preferred alternative wins only if it is the unique winner).

The importance of tie-breaking can be seen in the earliest literature on com-

putational social choice. Recall that Bartholdi et al. (1989) proved that a single

agent can manipulate the result of a Copeland election (with “straightforward”

tie-breaking schemes) in polynomial time using their greedy algorithm, but when

the second-order tie-breaking rule is added manipulation becomes NP-hard.

Faliszewski et al. (2008) proved that for Copeland voting, changing the way

that pairwise ties (two alternatives that are each ranked above the other equally

often) are handled can change the computational complexity of manipulation. For

example, with weighted votes and three alternatives, if ties result in a score of 0,

then it is NP-hard for a coalition to compute a manipulation that makes a given

alternative the unique winner of the election, but this problem becomes solvable in

polynomial time if ties are given any other score. (Note that this is an “internal”

form of tie-breaking, rather than tie-breaking between multiple winners at the end

of applying an irresolute rule.) Also, if instead the manipulators seek to make that

alternative just one of the winners, then the problem is solvable in polynomial time

when a tie results in a score of 1, but NP-hard if ties are given any other score.

To study tie-breaking at random in more detail, Obraztsova et al. (2011) set up a

model where the manipulators have utilities over the alternatives and the goal is to

increase the expected utility of the result. All scoring rules, as well as Bucklin and

plurality with runoff, can be manipulated in polynomial time in such a situation.

On the other hand, Copeland, maximin, STV and ranked pairs are NP-hard to

manipulate in this case (Obraztsova and Elkind, 2011).

Another method to deal with ties is to select a vote at random and select the

highest-ranked of the tied alternatives from this vote (Tideman, 1987).13 Aziz et al.

(2013b) show that, in general, there is no connection between the complexity of

computing a manipulating vote when tie-breaking with a random alternative or with

a random vote. However, for common rules like k-approval, Borda, and Bucklin, the

computational complexity increases from polynomial to NP-hard when tie-breaking

13 For more on tiebreaking schemes in computational social choice, see Freeman et al. (2015).
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with a random vote rather than at random amongst the co-winners. For other rules

like plurality, veto, and plurality with runoff, it remains possible to compute a

manipulating vote in polynomial time. Finally, for rules like STV, computing a

manipulation is NP-hard irrespective of the tie-breaking method as it is possible to

prove NP-hardness with a class of elections in which there are never any ties.

6.4.5 Incomplete information

So far, we have assumed that the manipulator has complete knowledge of the other

votes. This is a strong assumption that, extreme circumstances aside, is at best a

rough approximation of the truth. It is often defended on the grounds that if it

is NP-hard to compute a manipulation with complete information then it must

remain so when we have probabilistic information about the nonmanipulators’

votes (Conitzer et al., 2007). There has, however, been some work relaxing this

assumption. For example, Conitzer et al. (2011) consider the complexity of com-

puting manipulations given only partial information about the nonmanipulators’

votes. Given such partial information, they consider whether the manipulator has

a dominating non-truthful vote that makes the winner always at least as prefer-

able as, and sometimes more preferable than, the alternative that would win if the

manipulator voted sincerely. This was further studied by Reijngoud and Endriss

(2012).

6.4.6 Building in hardness

Once we accept hardness of manipulation as a desirable property of voting rules, it

becomes an interesting question whether we can engineer voting rules to be more

computationally complex to manipulate. One general construction is to “hybridize”

together two or more existing voting rules. For example, we might add one elimi-

nation pre-round to the election, in which alternatives are paired off and only the

one preferred by more voters goes through (Conitzer and Sandholm, 2003). This

generates a new voting rule that is often computationally hard to manipulate. In

fact, the problem of computing a manipulation can now move to complexity classes

higher than NP depending on when the schedule of the pre-round is announced.

Such hybrid voting rules also inherit some (but not all) of the properties of the

voting rules from which they are constructed. For example, if the initial rule is

Condorcet consistent, then adding a pre-round preserves Condorcet consistency.

Other types of voting rules can be hybridized together. For example, we can

construct a hybrid of the Borda and Copeland rules in which we run two rounds

of Borda, eliminating the lowest-scoring alternative each time, and then apply the

Copeland rule to the remaining alternatives. Such hybrids are often resistant to

manipulation. For example, many hybrids of STV and of Borda are NP-hard to
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manipulate (Elkind and Lipmaa, 2005). More generally, voting rules that have mul-

tiple stages successively eliminating alternatives tend to be more computationally

difficult to manipulate than one-stage rules (Coleman and Teague, 2007; Narodyt-

ska et al., 2011; Davies et al., 2012; Walsh and Xia, 2012).

Another way to combine together two or more voting rules is to use some aspect

of the particular election (the votes, or the names of the alternatives) to pick which

voting rule is used to compute the winner. For example, suppose we have a list of

k different voting rules. If all the alternatives’ names (viewed as natural numbers)

are congruent, modulo k, to i then we use the ith voting rule, otherwise we use

the default last rule. Such a form of hybridization gives elections which are often

computationally difficult to manipulate (Hemaspaandra et al., 2009). Another pos-

sibility is to just leave it ambiguous which of the voting rules will be used; Elkind

and Erdélyi (2012) have studied how hard it is for the manipulators to select their

votes so that they succeed for any of a given set of rules. Finally, another possibility

is that we have a runoff between the winners of two voting rules. This also often

makes manipulations more difficult to compute (Narodytska et al., 2012).

6.5 Can manipulation be hard most of the time?

NP-hardness is a worst-case notion. For NP-hard manipulation problems, supposing

P6=NP, any manipulation algorithm will face some families of instances on which it

does not scale polynomially. But it is not at all clear that these are the instances that

manipulators would need to solve in practice. They may be pathological. Hence, it is

possible that these NP-hardness results lull us into a false sense of security regarding

the manipulability of our voting rules. A much better type of result would be that

the manipulation problem is usually hard. Is such a result feasible, and what exactly

does “usually” mean here? To investigate this, it is helpful to first consider some

actual manipulation algorithms for voting rules that are NP-hard to manipulate.

6.5.1 Some algorithms for NP-hard manipulation problems

Assuming P6=NP, a manipulation algorithm for a voting rule that is NP-hard to

manipulate can only hope to either (1) succeed on all instances and require more

than polynomial time in the worst case, but still scale “reasonably,” particularly on

“typical” instances; or (2) run in polynomial time and succeed on many, but not

all, instances.

For instance, under the STV rule, Coleman and Teague (2007) give a simple enu-

merative method for a coalition of k unweighted voters to compute a manipulation,

which runs in O(m!(n+mk)) time (where n is the number of voters voting and m

is the number of alternatives). For a single manipulator, Conitzer et al. (2007) give

an O(n1.62m) time recursive algorithm to compute the set of alternatives that can

win an STV election.
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Such algorithms have been shown to perform well in practice. For example, Cole-

man and Teague (2007) showed experimentally that only a small coalition is needed

to change the elimination order of the STV rule in many cases. As a second example,

Walsh (2010) showed that the Conitzer et al. (2007) algorithm could often quickly

compute manipulations of the STV rule even with hundreds of alternatives. Walsh

(2009, 2011) also empirically studied the computational cost of manipulating the

veto rule by a coalition of weighted voters. Except in rather artificial and “hung”

elections, it was easy to find manipulations or prove that none exist.

An algorithm designed for the manipulation of one specific rule, however effective

it may be, may just be exploiting an idiosyncratic property of that particular rule.

It may well be the case that other desirable rules do not have this property and are,

in fact, “usually” hard to manipulate. One approach to addressing this criticism

is to design manipulation algorithms that are not specific to one voting rule. Such

algorithms, to the extent that they avoid exhaustive search, are heuristic in nature

and do not always succeed. This category of algorithms includes some of the earliest

work providing technical results that cast doubt on whether worst-case hardness

of manipulation has any significant implications for the “typical” case. Procaccia

and Rosenschein (2007b) provide a greedy algorithm for rules based on a score,

in which the manipulators create their votes in sequence, at each point ranking

their preferred alternative first and the remaining alternatives in increasing order

of their current score. Conitzer and Sandholm (2006) provide an algorithm that

attempts to find two possible winners, by first choosing an arbitrary vote profile

for the manipulators to find one possible winner a1, and then, for every remaining

alternative a, choosing a vote profile for the manipulators where everyone ranks a

first and a1 last. It is argued (and supported by simulations) that usually, if the

manipulators are pivotal (have a possibility of changing the outcome of the election)

at all, then they can only make two alternatives win. For instances where this is

so, and where the voting rule satisfies a weak monotonicity property, the algorithm

can be proved to find all alternatives that the manipulators can make win.

All these empirical results suggest that we need to treat results about the NP-

hardness of manipulation with some care. Voters may still be able to compute a

manipulation successfully using rather simple and direct methods. The theoret-

ically inclined reader, however, may feel dissatisfied with these types of results.

Beyond getting intuition from simulations, can we actually prove that voting rules

remain vulnerable to manipulation in the typical case? In what follows we discuss

some of the approaches that researchers have taken to answer this question in the

affirmative.

6.5.2 Approximation methods

For almost all voting rules, we can easily make any alternative win provided we

have enough manipulators; the hardness results are merely due to a limited supply
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of manipulators. With this in mind, we can consider manipulation as an optimiza-

tion problem, where we try to minimize the number of manipulators required to

achieve a given outcome. One option is to use approximation methods to tackle

such optimization problems.14

For example, Zuckerman et al. (2009) consider a variant of the algorithm by

Procaccia and Rosenschein (2007b) (presented above) to compute manipulations

of the Borda rule. Again, the algorithm constructs the vote of each manipulator in

turn. The alternative that the manipulators wish to win is put in first place, and the

remaining alternatives are placed in the manipulator’s vote in increasing order of

their current Borda scores. The method continues constructing manipulating votes

until the desired alternative wins. A rather long and intricate argument shows that

this method requires at most one additional manipulator relative to the optimal

solution. Based on a connection to a scheduling problem, Xia et al. (2010) provide

an algorithm that works for all positional scoring rules, though it may require as

many as m− 2 additional manipulators.

6.5.3 Frequency of manipulability

Again, whether the manipulators can achieve the result they want depends in large

part on their number. We may then wonder whether, given an instance of the

coalitional manipulation problem, we can quickly eyeball whether the manipulators

are likely to be successful, purely based on the size of their coalition relative to the

size of the electorate. It turns out that this is indeed the case. Building on earlier

work by Procaccia and Rosenschein (2007a),15 Xia and Conitzer (2008a) showed

that for an extremely large class16 of voting rules called generalized scoring rules,

under some assumptions on the distribution of votes, if the number of manipulators

is O(np) for p < 1/2, the probability that a random profile is manipulable goes to

zero; whereas if it is Ω(np) for p > 1/2, it goes to one. This leaves the knife-edge

case of p = 1/2, which has been studied both experimentally (Walsh, 2009) and

analytically (Mossel et al., 2013).

Another line of research along these lines proves quantitative versions of the

Gibbard-Satterthwaite impossibility result. Here, the idea is not to be satisfied

with a statement that says that somewhere in the space of all possible profiles,

there exists a manipulable one; rather, these results state that, under Gibbard-

Satterthwaite-like conditions, a randomly chosen profile has a significant proba-

bility of being manipulable. After a sequence of earlier partial results along this

line (Friedgut et al., 2008; Dobzinski and Procaccia, 2008; Xia and Conitzer, 2008b;

14 Another notion of approximation in manipulation problems is to approximately maximize an
alternative’s increase in score, given a fixed set of manipulators (Brelsford et al., 2008). Theorem 4
in that paper relates that notion of approximability to the one discussed here.

15 See also Slinko (2004) and Pritchard and Wilson (2009).
16 Xia and Conitzer (2009) characterize this class as those rules that are anonymous and finitely

locally consistent.
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Isaksson et al., 2012), Mossel and Rácz (2012) seem to have achieved the gold stan-

dard. They prove that under a voting rule with 3 or more alternatives that is

ε-far away from the set of nonmanipulable rules,17 a randomly chosen profile has

a probability of being manipulable that is at least inverse polynomial in n,m, and

1/ε.

6.5.4 Restricted preferences

Finally, it is important to realize that it is unrealistic to assume that profiles of

votes are drawn uniformly at random; generally, the voters’ preferences over the al-

ternatives are quite structured. For example, the profile may be single-peaked. How

does this affect the complexity of the manipulation problem? Several papers have

addressed this question, showing that this restriction often, but not always, makes

the manipulation problem easier (Walsh, 2007; Faliszewski et al., 2009; Brandt

et al., 2010). While it may seem odd in this context to focus on single-peaked

preferences—for which, after all, a desirable strategy-proof voting rule is available

in the form of the median voter rule18—these results nevertheless provide impor-

tant insight into how restricting the space of profiles can cause complexity barriers

to manipulation to fall apart.

6.6 Fully game-theoretic models

The computational problems studied in this chapter so far all make some major

simplifying assumptions. In most cases it is assumed that the votes of the other

voters are known exactly; even when this is not assumed, the other voters are

not modeled as strategic agents. If we do model them this way, this leads us into

fully game-theoretic models, and indeed these have received some attention in the

computational social choice community.

To make sense of this, a first issue that needs to be addressed is the staggering

multiplicity of equilibria in most voting scenarios.19 Often, most profiles will not

allow any single individual to change the outcome, and all of these profiles are Nash

equilibria as an immediate consequence. Many of these profiles will have voters vote

in ways that make no sense with respect to their true preferences. Based on this

observation, we may be able to rule out many of these equilibria—for example,

we might require voters not to play weakly dominated strategies.20 However, other

17 Here, the distance between two rules is the fraction of inputs on which they differ.
18 Moreover, under some assumptions on strategic behavior by the voters and/or candidates, even

rules such as plurality and STV end up returning the same winner as the median voter rule when
preferences are single-peaked (Brill and Conitzer, 2015).

19 Recall that, given the voters’ true preferences, a Nash equilibrium consists of a profile of votes such
that no individual voter can obtain an outcome she prefers to the current one by unilaterally
changing her vote.

20 Recall that one strategy weakly dominates another if the former always delivers at least as good a
result for the agent, and in some cases a strictly better one.
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issues are more difficult to address. For example, in a plurality election, any two of

the alternatives might be cast in a “front-runner” role, resulting in an equilibrium

where everyone votes for one of these two, because to do otherwise would be to

waste one’s vote. This also illustrates that there will be many alternatives that win

in some equilibrium.21

As it turns out, these issues are avoided when the voters, instead of voting simul-

taneously, vote in sequence, so that each voter has full knowledge of all the previous

votes. If we additionally assume that all the preferences are common knowledge (as

well as the order in which the voters vote, and the voting rule used), and all pref-

erences are strict, then there is a unique alternative that wins in subgame-perfect

Nash equilibrium.22 This can be proved by induction on the number of voters,

roughly as follows. Suppose it is true for n−1 voters. Then, in the case of n voters,

consider the first voter. For every vote that she might cast, she can, by the induction

assumption, determine the alternative that will win in equilibrium from that point

on. From all these options, she will then choose the one that ranks highest in her

own preferences. (There may be multiple votes for the first voter that achieve this,

so the equilibrium votes are not unique.) This raises several interesting questions.

First of all, will this result in good outcomes? Of course, it is tricky to give a general

definition of what “good” means in this context. As it turns out, though, for many

rules, there exist profiles of preferences that, in equilibrium, result in outcomes that

are quite unambiguously bad. Specifically, Xia and Conitzer (2010b) show that this

is the case for rules with a low domination index, which indicates how many more

than half of the voters are needed to force the outcome.23 Some counterintuitive

examples for the plurality rule are also given by Desmedt and Elkind (2010).

Another question is whether these equilibria can be efficiently computed. A nat-

ural approach is to use a dynamic programming algorithm corresponding to the

backward induction process in game theory, as follows. First compute what the last

voter would do for every situation in which she might be placed; then compute

what the second-to-last voter would do for every situation in which she might be

placed (which is now possible because it is known at this point how the last voter

would respond to any vote that the second-to-last voter might cast); and so on.

This algorithm is correct, but its runtime depends on the number of possible “sit-

uations.” What is a “situation,” anyway? One might interpret this as the entire

partial profile of votes cast so far (i.e., the node in the extensive form of the game),

but this will scale very poorly. It is also overkill: for example, for a positional scoring

21 A recent article investigates what game structures can emerge when multiple voters are considering
strategically changing their votes (Elkind et al., 2014).

22 Recall that in a subgame-perfect Nash equilibrium, the strategies constitute a Nash equilibrium in
every subgame. In our case, when a subset of the voters has cast specific votes, the remainder of the
voting game constitutes a subgame.

23 A similar negative result is given by Xia et al. (2011) in a different context, where multiple related
binary decisions must be made and these issues are voted on in sequence (but with all the voters
voting at the same time on each issue). For more on voting in such combinatorial domains, please
see Chapter 9 (Lang and Xia, 2015).



6.6 Fully game-theoretic models 19

rule, all that is needed is the total scores of the alternatives so far, not the precise

votes that led to this score. More generally, the amount of information necessary to

summarize the votes of a subelectorate is known as the compilation complexity of

a voting rule (Chevaleyre et al., 2009; Xia and Conitzer, 2010a). Xia and Conitzer

(2010b) exploit the connection to this concept to obtain algorithms for solving

the game that, while still exponential, scale much better than the näıve approach.

(Desmedt and Elkind (2010) give a similar algorithm for plurality.) Intriguingly,

from simulations performed by Xia and Conitzer (2010b), the game-theoretic out-

comes on random profiles do not look as bad as the worst-case results above might

suggest. The exact complexity of the computational problem is not known; it may

be PSPACE-complete.

Still, is there nothing substantial that we can say about the equilibria of voting

games in which voters vote simultaneously? In fact, we can, if we are willing to

make some further assumptions about voters’ preferences in voting. One natural

assumption is that voters are truth-biased (Meir et al., 2010). This can be interpreted

as follows: voters derive most of their utility from the outcome of the election, but

they also derive a small amount of utility from voting truthfully. Hence, if it makes

no difference to the outcome, voters slightly prefer to tell the truth. Thompson et al.

(2013) show experimentally that for the plurality rule this dramatically reduces the

set of equilibria. (They also study Bayes-Nash equilibria of games in which voters

are not sure about each other’s preferences.) Obraztsova et al. (2013) study this

model from a theoretical perspective, again under the plurality rule.24 Another

direction is to substitute the slight preference for voting truthfully with a slight

preference for abstaining (Desmedt and Elkind, 2010). Yet another direction is to

add dynamics where voters start at some initial profile and iteratively update their

vote to make themselves better off, until this process converges (Meir et al., 2010;

Lev and Rosenschein, 2012; Reyhani and Wilson, 2012; Rabinovich et al., 2014).

The above approaches all rely on noncooperative game theory. However, as we

have already seen, it is natural to think about coalitions of voters coordinating

their actions. Doing so in a game-theoretic framework is tricky, because the voters

in a coalition may not all have the same preferences. This leads us to cooperative

(or coalitional) game theory. A common solution concept there is that of the core,

which is the set of all outcomes such that no coalition of agents could break off

in a way that would make all of its members happier. In the context of elections,

when a group of agents deviates, how happy this makes them depends on how

the agents outside of the coalition end up voting. For example, will the agents

outside the coalition be able to react to the votes of the coalition, or vice versa?

These modeling choices correspond to the notions of the α-core and the β-core. The

24 They also consider strong Nash equilibria, in which no subset of the agents can deviate in a way
that makes them all better off, and draw a connection to Condorcet winners. More about the
relationship between strong equilibrium and Condorcet winners can be found in papers by Sertel
and Sanver (2004), Messner and Polborn (2007), and Brill and Conitzer (2015).
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computational complexity of these concepts in the context of elections is studied

by Zuckerman et al. (2011). Bachrach et al. (2011) study the complexity of problems

in cooperative game theory models of manipulation where payments are possible.

6.6.1 Other topics

So far, we have supposed that the manipulating coalition can communicate and

coordinate perfectly. In practice, this may be optimistic. For example, if the coali-

tion is large, then it may be difficult for the coalition to communicate, as well as to

ensure everyone votes appropriately. To address this, Slinko and White (2008) pro-

pose a more restricted model of strategic voting in which a single coalition member

broadcasts a strategic vote and every member of the coalition either casts this vote

or votes sincerely. In such a situation, a safe strategic vote is a broadcast vote that

never results in an undesirable outcome, however many or few of the coalition fol-

low it. The Gibbard-Satterthwaite theorem extends to this notion of manipulation.

Polynomial-time algorithms for computing a safe strategic vote have been given for

k-approval, Bucklin, and Borda (Hazon and Elkind, 2010; Ianovski et al., 2011).

Another type of manipulation is for a single agent to vote more than once. This

is often a concern in elections run in highly anonymous environments, such as

Internet voting. A rule is said to be false-name-proof (Yokoo et al., 2004) if there is

never an incentive for a voter to cast more than one vote. Conitzer (2008) gives a

characterization of false-name-proof rules similar in spirit to the characterization of

strategy-proof rules by Gibbard (1977) that, perhaps unsurprisingly, is even more

negative. Unlike in the case of strategy-proofness, under the constraint of false-

name-proofness, even the restriction of single-peaked preferences does not allow

very appealing rules (Todo et al., 2011).

6.7 Conclusions

Besides being of interest in their own right, the computational manipulation prob-

lems discussed in this chapter are also important because of their implications for

other, closely related problems in computational social choice. For example, the

constructive manipulation problem is a special case of the possible winner problem,

which asks, given a profile of partial votes and a given alternative, whether it is pos-

sible to complete the profile in such a way that that alternative wins. Similarly, the

destructive manipulation problem is a special case of the necessary winner problem.

For detailed analysis of the complexity of these problems, see, for example, Konczak

and Lang (2005), Walsh (2007), Betzler and Dorn (2010), Xia and Conitzer (2011),

and Baumeister and Rothe (2012). The necessary winner problem, in turn, is im-

portant in settings in which we incrementally elicit voters’ rankings rather than

collecting them all at once. In this problem, we would like to be able to compute

when we have elicited enough information to announce the winner (Conitzer and
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Sandholm, 2002). For further discussion of all of this, see also Chapter 10 (Boutilier

and Rosenschein, 2015). There are also relations to control and bribery problems,

which will be discussed in Chapter 7 (Faliszewski and Rothe, 2015).
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E. Elkind and G. Erdélyi. Manipulation under voting rule uncertainty. In Proceed-
ings of the Eleventh International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pages 627–634, Valencia, Spain, 2012.

E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manipulation.
In X. Deng and D.-Z. Du, editors, Proceedings of 16th International Symposium
on Algorithms and Computation (ISAAC 2005), volume 3827 of Lecture Notes
in Computer Science, pages 206–215. Springer, 2005.

E. Elkind, U. Grandi, F. Rossi, and A. Slinko. Games Gibbard-Satterthwaite manip-
ulators play. In Fifth International Workshop on Computational Social Choice
(COMSOC’14), Pittsburgh, PA, USA, 2014.

P. Faliszewski and A. Procaccia. AI’s war on manipulation: Are we winning? AI
Magazine, 31(4):53–64, 2010.

P. Faliszewski and J. Rothe. Control and bribery in voting. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of
Computational Social Choice, chapter 7. Cambridge University Press, 2015.

P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland voting: ties matter. In
L. Padgham, D. Parkes, J. Müller, and S. Parsons, editors, 7th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), pages 983–990, 2008.

P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. The shield
that never was: Societies with single-peaked preferences are more open to ma-
nipulation and control. In Theoretical Aspects of Rationality and Knowledge
(TARK), pages 118–127, Stanford, CA, USA, 2009.

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Using complexity to
protect elections. Communications of the ACM, 53(11):74–82, 2010.



References 25

P. Faliszewski, Y. Reisch, J. Rothe, and L. Schend. Complexity of manipula-
tion, bribery, and campaign management in Bucklin and fallback voting. Au-
tonomous Agents and Multi-Agent Systems, 2014. Published online 2 October
2014.

R. Freeman, M. Brill, and V. Conitzer. On the axiomatic characterization of runoff
voting rules. In Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, pages 675–681, Québec City, Québec, Canada, 2014.
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