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Abstract
We present BL-WoLF, a framework for learn-
ability in repeated zero-sum games where the
cost of learning is measured by the losses the
learning agent accrues (rather than the number of
rounds). The game is adversarially chosen from
some family that the learner knows. The oppo-
nent knows the game and the learner’s learning
strategy. The learner tries to either not accrue
losses, or to quickly learn about the game so as
to avoid future losses (this is consistent with the
Win or Learn Fast (WoLF) principle; BL stands
for “bounded loss”). Our framework allows for
both probabilistic and approximate learning. The
resultant notion ofBL-WoLF-learnability can be
applied to any class of games, and allows us to
measure the inherent disadvantage to a player
that does not know which game in the class it is
in.

We presentguaranteed BL-WoLF-learnability
results for families of games with deterministic
payoffs and families of games with stochastic
payoffs. We demonstrate that these families are
guaranteed approximately BL-WoLF-learnable
with lower cost. We then demonstrate families of
games (both stochastic and deterministic) that are
not guaranteed BL-WoLF-learnable. We show
that those families, nevertheless, areBL-WoLF-
learnable. To prove these results, we use a key
lemma which we derive.1

1. Introduction

When an agent is inserted into an unfamiliar environment
with some objective, two goals present themselves. The

1This material is based upon work supported by the National
Science Foundation under CAREER Award IRI-9703122, Grant
IIS-9800994, ITR IIS-0081246, and ITR IIS-0121678.

first is to learn the relevant aspects of the environment, so
that eventually, its behavior is optimal or near optimal with
regard to the given objective. The second is to minimize
the cost of learning to behave well. This can be done by
minimizing the time necessary to learn enough to perform
well, but also by ensuring that its behavior in the learning
process, while not yet optimal or near optimal, is at least
reasonably good with regard to the objective. There is of-
ten an exploration/exploitation tradeoff here: attempting to
learn fast often requires disastrous short term results, while
slow learning may accumulate large losses even if the loss
per unit time is small.

Learning in games (for a review, see (Fudenberg & Levine,
1998)) is made additionally difficult because the learner is
confronted with another player (or multiple other players).
If the other player plays in a predictable, repetitive manner,
this is no different from learning in an impersonal, disin-
terested environment. Usually, however, the other player
changes its strategy over time. One reason for this may be
that the other player is also learning. A less benign reason,
however, may be that the opponent is aware of the learner’s
predicament and is trying to exploit its superior knowledge.
This is the case that we study.

In the case where an opponent is trying to exploit the
learner’s lack of knowledge about the game, it becomes
especially important to focus on the cumulative cost of
learning rather than the time the learning takes. It is likely
that the opponent will allow the learner to learn the game
very quickly, if the opponent can take tremendous advan-
tage of the learner in the short run. A learning strategy
on the learner’s part that allows this should not be consid-
ered good. On the other hand, a learning strategy that may
learn the relevant structure of the game only very late or
even never at all, but allows the opponent to take only min-
imal advantage, should be considered good. This analysis
is consistent with numerous learning results in the game
theory and machine learning literatures which guarantee
convergence to a strategy OR that the payoffs approach
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those of the equilibrium (e.g. (Jehiel & Samet, 2001; Singh
et al., 2000)). It suggests a Win-or-Learn-Fast, or WoLF,
approach (a term coined by Bowling and Veloso (Bowling
& Veloso, 2002), though they actually just pursued conver-
gence results). Various previous work has considered the
case where learning players are concerned with their long-
term losses, for instance when players have beliefs about
the opponents’ strategies (Kalai & Lehrer, 1993).

Much of the prior work on learning in games in the machine
learning literature did not consider such a metric of the per-
formance of a learning strategy (Littman, 1994; Hu & Well-
man, 1998). In contrast, our work is especially closely re-
lated to recent work by Brafman and Tennenholtz on learn-
ing in stochastic games (Brafman & Tennenholtz, 2000),
where the opponent can make it difficult to learn parts of
the game, leading to a complex exploration vs. exploita-
tion tradeoff (building upon closely related work (Kearns
& Singh, 1998; Monderer & Tennenholtz, 1997)); and
on learning equilibrium (Brafman & Tennenholtz, 2002),
where the agents’ learning algorithms over a class of games
are considered as strategies themselves.

In another strand of research, Aueret al. also study the
problem of learning a game with the goal of minimizing
the cumulative loss due to the learning process, with an ad-
versarial opponent (Auer et al., 1995). (This problem is
studied towards the end of that paper.) They study the case
where the learner knows nothing at all about the game (ex-
cept the learner’s own actions and bounds on the payoffs),
and they derive an algorithm for this general case, which
improves over previous algorithms by Baños (Banos, 1968)
and Megiddo (Megiddo, 1980). (Some closely related re-
search makes the additional assumption that the learner,
at the end of each round, gets to see the expected payoff
for all the actions the learner might have chosen, given the
opponent’s mixed strategy (Freund & Schapire, 1999; Fu-
denberg & Levine, 1995; Foster & Vohra, 1993; Hannan,
1957). We will not make this assumption here.) The main
difference between that line of work and the framework
presented here is that our framework allows the learner to
take advantage of partial knowledge about the game (that
is, knowledge that the game belongs to a certain family
of games). This allows the learner to potentially perform
much better than a general-purpose learning algorithm.2

2The gap between the two approaches in the case of partial
knowledge of the game may be partially bridged through the use
of differentexperts(Cesa-Bianchi et al., 1997), who make recom-
mendations to the agents as to which actions to play. For instance,
the Aueret al. paper (Auer et al., 1995) also studies how to learn
which is the best of a set of given experts. These experts could
capture some of the known structure of the game: for instance,
there could be an expert recommending the optimal strategy for
each game in the family. However, the learning algorithm for de-
ciding on an expert will typically still not make full use of the
known structure.

In this paper, we introduce theBL-WoLFframework, where
a learner’s strategy is evaluated by the loss it can expect to
accrue as a result of its lack of knowledge. (We consider
the worst-case loss across all possible opponents as well as
all possible games within the class considered. BL stands
for “bounded loss”.) We present aguaranteedversion of
learnability where the learner is guaranteed to lose no more
than a given amount, and anonguaranteedversion where
the agent loses no more than a given amountin expecta-
tion. We also allow forapproximatelearning in both cases,
where we only require that the agent comes close to act-
ing optimally. The framework is applicable to any class
of (repeated) games, and allows us to measure the inherent
disadvantage in that class to a player that initially cannot
distinguish which game is being played. It does not assume
a probability distribution over the games in the class.

We do not consider difficulties of computation in games;
rather we assume the players can deduce all that can be
deduced from the knowledge available to them. While
some of the most fundamental strategic computations
in game theory have unknown (Papadimitriou, 2001) or
high (Conitzer & Sandholm, 2003) complexity in general,
zero-sum (Luce & Raiffa, 1957) and repeated (Littman &
Stone, 2003) games tend to suffer fewer such problems,
thereby at least partially justifying this approach. In the
game families in this paper, computation will be simple.

The rest of this paper is organized as follows. In Section 2,
we give some basic definitions and known results. We
present guaranteed BL-WoLF learnability in Section 3, and
its approximate version in Section 4. We present nonguar-
anteed BL-WoLF learnability in Section 5, and its approx-
imate version in Section 6.

2. Basic definitions

Throughout the paper, there will be two players: the learner
(player 1) and the opponent (player2). Because we try
to assess the worst-case scenario for the learner, restrict-
ing ourselves to only one opponent is without loss of
generality—if there were multiple opponents, the worst-
case scenario for the agent would be when the opponents
all colluded and acted as a single opponent.

In this paper, the two players play a one-shot (orstage)
zero-sum game over and over. Player2 knows the game;
player1 (at least initially) only knows that it is in a larger
family of games. In this section, we will first define the
stage game, and discuss what it means to play it well on its
own. We then define the uncertainty that player1 has about
the game. Finally, we define what strategies the players can
have in the repeated game. Definitions on what it means for
the learner to play the repeated game well are presented in
later sections.



2.1. Zero-sum game theory for the stage game

Definition 1 A (stage) gameconsists of sets of actions
A1, A2 for players1 and 2 respectively, together with (in
the case of deterministic payoffs) a functionu : A1×A2 →
U1 × U2, whereUi is the space of possible utilities for
player i (usually simplyIR); or (in the case of stochastic
payoffs) a functionpu : A1 × A2 → P(U1 × U2), where
P(U1×U2) is the set of probability distributions over util-
ity pairs. We say the game iszero-sumif the utilities of
agent1 and2 always sum to a constant.

We often say that the random selection of an outcome in
a game with stochastic payoffs is done byNature. For the
following strategic aspects, it is irrelevant whether Nature
plays a part or not.

Definition 2 A (stage-game) strategyfor playeri is a prob-
ability distribution overAi. (If all of the probability mass is
on one action, it is apure strategy, otherwise it is amixed
strategy.) A pair of strategiesσ1, σ2 for players1 and2 are
in Nash equilibriumif neither player can obtain higher ex-
pected utility by switching to a different strategy, given the
other player’s strategy. A strategyσi is amaximinstrategy
if σi ∈ arg maxσi minσ−i E[ui|σi, σ−i].3

The following theorem shows the relationship between
maximin strategies and Nash equilibria in zero-sum games.
Informally, it shows why, against a knowledgeable oppo-
nent, a player is playing well if and only if that player is
playing a maximin strategy.

Theorem 1 (Known) In zero-sum games, a pair of strate-
giesσ1, σ2 constitute a Nash equilibrium if and only if they
are both maximin strategies. The expected utility that each
player gets in an equilibrium is the same for every equilib-
rium; this expected utility (for player1) is called thevalue
V of the game.

Thus, player1 is guaranteed to get an expected utility of
at leastV by playing a maximin strategy (and player2 can
make sure player1 gets at mostV by playing a maximin
strategy). We call a strategyσ1 anε-approximatemaximin
strategy if it guarantees an expected utility ofV − ε. The
stage-game lossof player1 in playing the stage game once
is V minus the utility player1 received.

2.2. What player1 does not know

Player1 (at least initially) does not know which of afamily
of zero-sum stage games is being played. Such a family is
defined as follows:

Definition 3 A parameterized family of stage games with
3Here we use the common game theory notation−i for “the

player other thani”.

deterministic (stochastic) payoffsis defined by action sets
A1 andA2, a parameter spaceK, and a functiong : K →
Gd(A1, A2) (g : K → Gs(A1, A2)), whereGd(A1, A2)
(Gs(A1, A2)) is the set of all zero-sum stage games with
deterministic (stochastic) payoffs with action setsA1, A2.

Here, player1 does not know the parameterk ∈ K cor-
responding to the game being played.4 In the examples in
this paper, the elements ofK will take many forms, such as
integers, permutations, and subsets. Player1 can eliminate
values ofK on the basis of outcomes of games played.

We note that there is no probability distribution on the fam-
ily of games. Rather, we assume the game is adversarially
chosen relative to the learner’s learning strategy.

2.3. Strategies in the repeated game

A strategy in the repeated game (in the case of player1, a
learning strategy) prescribes a stage-game strategy given
any history of what happened in previous stage games.
Thus, the stage-game strategy can be conditional on the
players own past actions, the other player’s past actions,
and past payoffs. In our paper, it will usually be sufficient
for it to just be conditional on player1’s knowledge about
the game. To evaluate how well player1 is doing, we de-
fine player1’s (cumulative) lossas the sum of all stage-
game losses. Thus, if player1 knew the game, playing the
maximin strategy forever would give an expected loss of at
most0 against any opponent. (We do not use a discounting
rate; rather, when we aggregate utilities, we consider the
sum of utilities across finite numbers of games.)5

3. Guaranteed BL-WoLF-learnability

In the simplest form of learning in our framework, there is a
learning strategy for player1 such that, having accumulated
a given amount of loss, player1 is guaranteedto know
enough about the game to play it well. In this section, we
give the formal definition of this type of learnability, and
demonstrate that some example game families (including
games with stochastic payoffs) are learnable in this sense.

Definition 4 A parameterized family of games isguaran-
teed BL-WoLF-learnablewith lossl if there exists a learn-
ing strategy for player1 such that, for any game in the
family, against any opponent, the loss incurred by player

4The parameter spaceK is not strictly necessary (all that mat-
ters for our purposes is the subset of games in the image ofg),
but it is often convenient to think of the missing knowledge as a
parameter of the game.

5It is crucial to distinguish between the learning strategy and
the stage-game strategies it produces. When we talk about a max-
imin strategy or about learning a strategy, we are referring to
stage-game strategies. Otherwise, we will make it clear which
one we refer to.



1 before learning enough about the game to construct a
maximin strategy is never more thanl.

Game family description 1 6 For a given n, the game
family get-close-to-the-targetis defined as follows. Play-
ers 1 and 2 both have action spaceA = {1, 2, . . . , n}.
The outcome function is defined by a parameterk ∈
{1, 2, . . . , n}, that the players try to get close to. Given
the actions by the players, the outcome of the game is as
follows (winning gives utility1, losing utility−1):

• If |ai − k| < |a−i − k|, then playeri wins;

• If a1 = a2 = a 6= k, player1 wins ifa < k, and player2
wins ifa > k;

• Otherwise (a1 − k = k − a2), we have a draw.

Player1 initially does not know:the parameterk.

Theorem 2 The game familyget-close-to-the-targetis
guaranteed BL-WoLF-learnable with lossdlog(n)e.
Proof: We first observe that if we ever have a draw, player
1 can immediately inferk—it is the average of the players’
actions. Also, after any number of rounds, the set of possi-
ble values fork that are consistent with the outcomes so far
is always an interval{kmin, kmin + 1, . . . , kmax}. (The
set of possible values fork that are consistent with a single
outcome is always an interval, and the intersection of two
intervals is always an interval.) Now consider the follow-
ing learning strategy for player1: always play the action in
the middle of the remaining interval,a1 = bkmin+kmax

2 c.
If player 1 loses, it can be concluded thatk is on the side
of a1 where player2 played. (a2 ≤ a1 ⇒ k < a1 and
a2 > a1 ⇒ k > a1.) Thus the remaining interval is cut in
half (sometimes the remainder is less than half, because the
action player1 played is also eliminated; it is never more).
So, afterdlog(n)e losses, player1 knowsk, and the max-
imin strategy (which is simply to playk).

The parameter to be learned need not always be an integer.
In the next example, it is a permutation of a finite set.

Game family description 2 For givenm > 2 andn, the
game familygeneralized-rock-paper-scissors-with-dudsis
defined as follows. Players 1 and 2 both have action space
A = {1, 2, . . . ,m+n}. The outcome function is defined by
a permutationf : {1, 2, . . . ,m+n} → {1, 2, . . . ,m+n}.
The set ofdudsis given by{i : m + 1 ≤ f(i) ≤ m + n}.

6When describing a family of games, we usually describe the
family for some arbitrary variables. Thus, the definition starts
with “For givenX, the family of gamesY is defined by...” These
X arenot the parameters to be learned; they are known by ev-
eryone. Effectively, we have a family of families of games, one
family for each value ofX. The parameterk ∈ K to be learned
with such a family is pointed out in the end of the definition, under
the headerPlayer1 initially does not know:.

Given the actions by the players, the outcome of the game
is as follows (winning gives utility1, losing utility−1):

• If only one player plays a dud, that player loses;

• If neither player plays a dud andf(ai) = f(a−i) +
1(modm), player i wins (effectively, the nonduds are ar-
ranged in a circle, and playing the action right after your
opponent’s in the circle gives you the win);

• Otherwise, we have a draw.

Player1 initially does not know:the permutationf . (We
observe that form = 3 andn = 0, we have the classic
rock-paper-scissors game.)

Theorem 3 The game family generalized-rock-paper-
scissors-with-dudsis guaranteed BL-WoLF-learnable with
lossm−1 if m is even, or with lossm if m is odd. Ifn = 0,
it is guaranteed BL-WoLF-learnable with loss0.

Proof: Consider the following learning strategy for player
1. Keep playing action1 first; then, whenever player2
wins a round, switch to the action that he just won with,
and keep playing that until player2 wins again. Because
it is impossible to win when playing with a dud, the first
action that player2 wins a round with must be a nondud.
After this, player2 can win only by playing the next ac-
tion in the circle of nonduds. Thus, every loss reveals the
next element in the circle. Thus, afterm losses, the whole
circle of nonduds is revealed and player1 can choose a
maximin strategy. (For instance, randomizing uniformly
over the nonduds.) In the case wherem is even, onlym−1
losses are needed, as this reveals the whole circle but one—
and whenm is even, it is a maximin strategy to randomize
uniformly over all the nondudsi such thatf(i) is even (or
all the nondudsi such thatf(i) is odd), and we can deter-
mine one of these two sets even with a “gap” in the circle.
Finally, if n = 0, we need not learn anything aboutf at all:
simply randomize uniformly over all the actions.

Game families with stochastic payoffs can also be guaran-
teed BL-WoLF-learnable. The following modification of
the previous game illustrates this.

Game family description 3 The game familyrandom-
orientation-generalized-rock-paper-scissors-with-duds
is defined exactly asgeneralized-rock-paper-scissors-
with-duds, except each round, Nature flips a coin
over the orientation of the circle of nonduds. That
is, with probability 1

2 , if neither player plays a
dud and f(ai) = f(a−i) + 1(modm), player i
wins; otherwise, if neither player plays a dud and
f(ai) = f(a−i) − 1(modm), player i wins. The other
cases are as before: nonduds still (always) beat duds, and
we have a draw in any other case.

Player1 initially does not know:the permutationf .



Theorem 4 The game family random-orientation-
generalized-rock-paper-scissors-with-dudsis guaranteed
BL-WoLF-learnable with loss1 (or loss0 if n = 0).

Proof: We simply observe that playinganynondud action
is a maximin strategy in this case. (Any nondud action is as
likely to lose against it as to win.) Player1 will know such
an action upon being beaten once (or, if there are no duds,
player1 will know such an action immediately).

4. Guaranteed approximate
BL-WoLF-learnability

We now introduce approximate BL-WoLF-learnability.

Definition 5 A parameterized family of games isguaran-
teed approximately BL-WoLF-learnablewith loss l and
precisionε if there exists a learning strategy for player1
such that, for any game in the family, against any opponent,
the loss incurred by player1 before learning enough about
the game to construct anε-approximate maximin strategy
is never more thanl.

To save space, we only present one straightforward approx-
imate learning result on a game family we have studied al-
ready, to illustrate the technique. A similar result can be
shown forgeneralized-rock-paper-scissors-with-duds.

Theorem 5 The game familyget-close-to-the-targetis
guaranteed approximately BL-WoLF-learnable with lossr
and precision1− 2r

n (for r < log(n)).

Proof: We consider the same learning strategy as before,
where we always play the middle of the remaining interval.
After r losses, the remaining interval has size at mostn

2r .
Randomizing over the remaining interval will give at least
a draw with probability at least1n

2r
= 2r

n .

5. Nonguaranteed BL-WoLF-learnability

Guaranteed learning (even approximate) is not always pos-
sible. In many games, no matter what learning strategy
player 1 follows, it is possible that an unlucky sequence
of events leads to a tremendous loss for player1 without
teaching player1 anything about the game. Such unlucky
sequences of events can easily occur in games with stochas-
tic payoffs, but also in games with deterministic payoffs
where player1’s only hope of learning against an adver-
sarial opponent is by using a mixed strategy. (We will see
examples of both these cases later in this section.) Never-
theless, it is possible that there are learning strategies in
these games thatin all likelihood will allow player 1 to
learn about the game without incurring too much of a loss.
In this section, we present a more probabilistic definition of

learnability; we show that it is strictly weaker than guaran-
teed BL-WoLF-learnability; we present a useful lemma for
showing this type of BL-WoLF-learnability; and we apply
this lemma to show BL-WoLF-learnability for some games
that are not guaranteed BL-WoLF-learnable.

5.1. Definition

Definition 6 A parameterized family of games isBL-
WoLF-learnablewith lossl if there exists a learning strat-
egy for player1 such that, for any game in the family,
against any opponent, and for any integerN , player 1’s
expected loss over the firstN rounds is at mostl.

We now show that BL-WoLF-learnability is indeed a
weaker notion than guaranteed BL-WoLF-learnability.

Theorem 6 If a parameterized family of games is guaran-
teed BL-WoLF-learnable with lossl, it is also BL-WoLF-
learnable with lossl.

Proof: Given the learning strategyσ that will allow player
1 to learn enough about the game to construct a maximin
strategy with loss at mostl, consider the learning strat-
egyσ′ which playsσ until the maximin strategy has been
learned, and plays the maximin strategy forever after that.
Then, afterN rounds, if we are given that no maximin strat-
egy has been learned yet, the loss must be less thanl. Given
that a maximin strategy was learned afteri ≤ N rounds,
the loss up to and including theith round must have been
less thanl, and the expected loss after roundi is at most0
(because a maximin strategy was played in every round af-
ter this). It follows that the expected loss is at mostl.

5.2. A central lemma

The next lemma will help us prove the BL-WoLF-
learnability of games that are not guaranteed BL-WoLF-
learnable.

Lemma 1 Consider a learning strategy for player1 that
plays the same stage-game strategy every round until some
learning event. (Call a sequence of rounds between learn-
ing events throughout which the same stage-game strategy
is played anepoch.) Suppose that the following two facts
hold for any game in the parameterized family:

• For any epochi’s stage-game strategyσi1 for player 1,
any stage-game strategyσ2 for player 2 will either with
nonzero probability cause the learning event that changes
the epoch toi+ 1, or will not give player2 any advantage
(i.e. player1’s expected loss from the round when player2
playsσ2 is at most0).

• For any of those strategiesσ2 that with nonzero proba-
bility cause the learning event that changes the epoch to



i + 1, we have λ(σi1,σ2)

pi(σi1,σ2)
≤ ci for some givenci ≥ 0.

(Here λ(σi1, σ2) is the expected one-round loss to player
1, and pi(σi1, σ2) is the probability of this round causing
the learning event that changes the epoch toi+ 1.)

Then with this learning strategy, the family of games is BL-
WoLF-learnable with loss

∑
i

ci.

Proof: Given the numberN of rounds, divide up player1’s
total lossl over the epochs. That is, for epochi, we have
li =

∑
j≤N,j∈i

λj whereλj is player1’s loss in roundj; and

l =
∑
i

li. Consider now an opponent that seeks to maxi-

mize the expectation of a givenli. If there is no action that
gives this opponent any advantage in this epoch (player1
is already playing a maximin strategy), the expected value
of li cannot exceed0 ≤ ci. If there is an action that gives
the opponent some advantage, by the first fact, it causes the
end of the epoch with some nonzero probability. In this
case, playing an action that does not cause the end of the
epoch with some nonzero probability is a bad idea for the
opponent, because doing so gives the opponent no advan-
tage and just brings us closer to the limit to the number
of roundsN . So we can presume that the opponent only
plays actions that cause the end of the epoch with some
nonzero probability. Now suppose that there is no limit to
the number of rounds, but the opponent is still restricted to
playing actions that cause the end of the epoch with some
nonzero probability. (This is still a preferable scenario to
the opponent.) In this scenario, we havemaxσ2(E[li]) =
maxσ2(λ(σi1, σ2) + (1− pi(σi1, σ2)) maxσ2(E[li])), and it

follows thatmaxσ2(E[li]) = maxσ2( l(σi1,σ2)

pi(σi1,σ2)
) ≤ ci. It

follows that the expectation of anyli is bounded byci, for
any opponent. Thus (by linearity of expectation) the total
expected loss is bounded by

∑
i

ci.

5.3. Specific game families

We first give an example of a game family with stochastic
payoffs where guaranteed BL-WoLF learning is impossible
because Nature might be noncooperative.

Game family description 4 For given n, p1, p2, r1, r2,
the game familyget-close-to-one-of-two-targetsis defined
exactly asget-close-to-the-target, except now there are two
k1, k2 ∈ {1, 2, . . . , n}, with k1 6= k2. Each round, Nature
randomly chooses which of the two is “active” (kj is active
with probability pj). The winner is the player that would
have wonget-close-to-the-targetwith that kj . The utility
of winning is dependent onj: the winner receivesrj (with
r1 6= r2; the loser gets0).

Player1 initially does not know:the parametersk1 andk2.

Get-close-to-one-of-two-targetsis not guaranteed BL-
WoLF-learnable, for the following reason. Consider the
scenario wherek1 is to the left of the middle,k2 is to the
right of the middle, and player2 is consistently playing ex-
actly in the middle. Now, regardless of which action player
1 plays, for one of theki, player2 will win if this ki is ac-
tive; and player1 will be able to infer nothing more than
which side of the middle thatki is on. Thus, if Nature
happens to keep pickingki in this manner, player1 will ac-
cumulate a huge loss without learning anything more than
which sides of the middle theki are on. It is easy to show
that, if one of theki is much more likely and valuable than
the other, this can leave us arbitrarily far away from know-
ing a maximin strategy. Nevertheless, with the probabilis-
tic definition,get-close-to-one-of-two-targetsis BL-WoLF-
learnable for a large class of values of the parametersp1,
p2, r1, andr2 (which includes those cases where one of the
ki is much more likely and valuable than the other), as the
next theorem shows.

Theorem 7 If p1r1 ≥ 2p2r2, then the game fam-
ily get-close-to-one-of-two-targetsis BL-WoLF-learnable
with lossdlog(n)er1.

Proof: First we observe that ifp1r1 ≥ 2p2r2, then playing
k1 is then a maximin strategy. (To prove this, all we need
to show is that both players playingk1 is an equilibrium.
When the other player is playingk1, also playingk1 gives
expected utility at leastp1r1

2 , and any other pure strategy
gives at mostp2r2, which is the same or less.) From the
rewards given in a round, player1 can tell which of the
kj was active (becauser1 6= r2). Now, consider the fol-
lowing learning strategy for player1: ignore the rounds in
which k2 was active, and use the same learning strategy
as we did forget-close-to-the-targetin the proof of The-
orem 2, as ifk1 was thek of that game. That is, always
play the action in the middle of the remaining interval for

k1, settinga1 = bk
min
1 +kmax1

2 c. The only difference is that
we do not update our stage-game strategy until welose or
draw a roundwherek1 is active. This is so that we can
apply Lemma 1: such a change in strategy will be the end
of an epoch. By similar reasoning as in Theorem 2, we
will know the value ofk1 after at mostdlog(n)e epochs
(after which there is one more epoch where we play the
maximin strategyk1 and player2 can have no advantage).
We now show that the required preconditions of Lemma 1
are satisfied. First, if a stage-game strategy for player2
has no chance of changing the epoch, that means that with
that stage-game strategy, player2 has no chance of win-
ning or drawing ifk1 is active; it follows that player2 can
get at mostp2r2 ≤ p1r1

2 with this stage-game strategy, and
thus has no advantage. Second, if a stage-game strategy for
player2 causes the change with probabilityp, the expected
utility of that stage-game strategy for player2 can be at
mostpr1 + p2r2 ≤ pr1 + p1r1

2 , so that the expected lossλ



in the round to player1 is at mostpr1. Thus we can set all
the ci to r1 (apart from thedlog(n)e + 1th one which we
can set to0, because in the corresponding epoch we will
be playing the maximin strategy), and we can conclude by
Lemma 1 that the game family is BL-WoLF-learnable with
lossdlog(n)er1.

We now give an example of a game family with determinis-
tic payoffs where guaranteed BL-WoLF learning is impos-
sible because the opponent might be lucky enough to keep
winning without revealing any of the structure of the game.

Game family description 5 For given m > 0 and n,
the game familygeneralized-matching-pennies-with-duds
is defined as follows. Players 1 and 2 both have action
spaceA = {1, 2, . . . ,m + n}. The outcome function is
defined by a subsetD ⊆ A, with |D| = n, of duds. Given
the actions by the players, the outcome of the game is as
follows (the winner gets1, the loser0): if one player plays
a dud and the other does not, the latter wins. Otherwise,
if both players play the same action, player2 wins; and if
they play different actions, player1 wins.Player1 initially
does not know:the subsetD. (We observe that form = 2
andn = 0, we have the classic matching-pennies game.)

Generalized-matching-pennies-with-dudsis not guaranteed
BL-WoLF-learnable, because for any learning strategy
for player 1, it is possible that player2 will happen to
keep picking the same action as player1 in every round.
In this case, player1 accumulates a huge loss with-
out learning anything at all about the subsetB. Nev-
ertheless,generalized-matching-pennies-with-dudsis BL-
WoLF-learnable, as the next theorem shows.

Theorem 8 The game family generalized-matching-
pennies-with-dudsis BL-WoLF-learnable with lossn.

Proof: We first observe that player1 is guaranteed to win at
leastm−1

m of the time when randomizing uniformly over all
nonduds; this is in fact the maximin strategy. Now consider
the following learning strategy for player1: in every round,
randomize uniformly over all the actions besides the ones
player1 knows to be duds. We will again use Lemma 1. An
epoch here ends when player1 can classify another action
as a dud; thus, there can be at mostn + 1 epochs, and in
the last epoch player1 is playing the maximin strategy and
player2 can have no advantage. We now show that the re-
quired preconditions of Lemma 1 are satisfied. First, in any
epoch but the last, player1 plays duds with some nonzero
probability; and if player2 plays a nondud when player
1 plays a dud, player1 will realize that it was a dud and
the epoch will end. Thus, if player2 plays a nondud with
nonzero probability, the epoch will end with some proba-
bility. On the other hand, if player2 always plays duds,
player2 will win only if player 1 happens to play the same

dud, which will happen with probability at most1
q whereq

is the number of actions player1 is randomizing over. Be-
causeq > m, this means player2 wins with probability
less than1

m , and thus gets no advantage from this. So the
first precondition is satisfied. Second, if in a given epoch
where player1 is randomizing overq actions (them non-
duds plusq −m duds), player2 plays a stage-game strat-
egy that plays a nondud with probabilityp, this will end the
epoch with probability at leastp q−mq . Also, the probability

that player2 wins is at mostp q−mq + 1
q < p q−mq + 1

m ,
so that the expected lossλ in the round to player1 is at
mostp q−mq . Thus we can set all theci to 1 (apart from the
n + 1th one which we can set to0, because in the corre-
sponding epoch we will be playing the maximin strategy),
and we can conclude by Lemma 1 that the game family is
BL-WoLF-learnable with lossn.

6. Nonguaranteed approximate
BL-WoLF-learnability

Definition 7 A parameterized family of games isapprox-
imately BL-WoLF-learnablewith lossl and precisionε if
there exists a learning strategy for player1 such that, for
any game in the family, against any opponent, and for any
integerN , player1’s expected loss over the firstN rounds
is at mostl +Nε.

We now show that approximate BL-WoLF-learnability is
indeed a weaker notion than guaranteed approximate BL-
WoLF-learnability.

Theorem 9 If a parameterized family of games is guar-
anteed approximately BL-WoLF-learnable with lossl and
precision ε, it is also approximately BL-WoLF-learnable
with lossl and precisionε.

Proof: Given the learning strategyσ that will allow player
1 to learn enough about the game to construct anε-
approximate maximin strategy with loss at mostl, con-
sider the learning strategyσ′ which playsσ until the ε-
approximate maximin strategy has been learned, and plays
the ε-approximate maximin strategy forever after that.
Then, afterN rounds, if we are given that noε-approximate
maximin strategy has been learned yet, the loss must be less
thanl. Given that anε-approximate maximin strategy was
learned afteri ≤ N rounds, the loss up to and including the
ith round must have been less thanl, and the expected loss
after roundi is at most(N− i)ε (because anε-approximate
maximin strategy was played in every round after this). It
follows that the expected loss is at mostl +Nε.

A version of Lemma 1 for approximate learning that takes
advantage of the fact that we are allowed to loseε per round
is straightforward to prove. We will not give it or any ex-



amples of its application here, because of space constraint.

7. Conclusions and future research

We presented a general framework for characterizing the
cost of learning to play an unknown repeated zero-sum
game. In our model, the game falls within some family
that the learner knows, and subject to that, the game is ad-
versarially chosen. In playing the game, the learner faces
an opponent who knows the game and the learner’s learn-
ing strategy. The opponent tries to give the learner high
losses while revealing little about the game. Conversely,
the learner tries to either not accrue losses, or to quickly
learn about the game so as to be able to avoid future losses
(this is consistent with theWin or Learn Fast (WoLF)prin-
ciple). Our framework allows for both probabilistic and
approximate learning.

In short, our framework allows one to measure the worst-
case cost of lack of knowledge in repeated zero-sum games.
This cost can then be used to compare the learnability of
different families of zero-sum games.

We first introduced the notion ofguaranteed BL-WoLF-
learnability, where a smart learner is guaranteed to have
learned enough to play a maximin strategy after losing
a given amount (against any opponent). We also intro-
duced the notion ofguaranteed approximate BL-WoLF-
learnability, where a smart learner is guaranteed to have
learned enough to play anε-approximate maximin strategy
after losing a given amount (against any opponent).

We then introduced the notion ofBL-WoLF-learnability
where a smart learner will,in expectation, lose at most
a given amount that does not depend on the number of
rounds (against any opponent). We also introduced the no-
tion of approximate BL-WoLF-learnability, where a smart
learner will, in expectation, lose at most a given amount
that does not depend on the number of rounds, plusε times
the number of rounds (against any opponent). We showed,
as one would expect, that if a game family is guaranteed
(approximately) BL-WoLF-learnable, then it is also (ap-
proximately) BL-WoLF-learnable in the weaker sense.

We presented guaranteed BL-WoLF-learnability results
for families of games with deterministic payoffs (namely,
the families get-close-to-the-targetand generalized-
rock-paper-scissors-with-duds). We also showed that
even families of games with stochastic payoffs can
be guaranteed BL-WoLF-learnabile (for example, the
random-orientation-generalized-rock-paper-scissors-with-
duds game family). We also demonstrated that these
families are guaranteed approximate BL-WoLF-learnable
with lower cost.

We then demonstrated families of games that are not guar-

anteed BL-WoLF-learnable—some of which have stochas-
tic payoffs (for example, theget-close to-one-of-two-
targetsfamily) and some of which have deterministic pay-
offs (for example, thegeneralized-matching-pennies-with-
dudsfamily). We showed that those families, nevertheless,
are BL-WoLF-learnable. To prove these results, we used a
key lemma which we derived.

Future research includes giving general characterizations
of families of zero-sum games that are BL-WoLF learn-
able with some given cost (for each of our four definitions
of BL-WoLF learnability)—as well as characterizations of
families that are not. Future work also includes applying
these techniques to real-world zero-sum games.
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