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Abstract

We present BL-WoLF, a framework for learn-
ability in repeated zero-sum games where the
cost of learning is measured by the losses the
learning agent accrues (rather than the number of
rounds). The game is adversarially chosen from
some family that the learner knows. The oppo-
nent knows the game and the learner’s learning
strategy. The learner tries to either not accrue
losses, or to quickly learn about the game so as
to avoid future losses (this is consistent with the
Win or Learn Fast (WoLF) principle; BL stands
for “bounded loss”). Our framework allows for
both probabilistic and approximate learning. The
resultant notion oBL-WoLFlearnability can be
applied to any class of games, and allows us to
measure the inherent disadvantage to a player
that does not know which game in the class it is
in.

We presentguaranteed BL-WoLF-learnability
results for families of games with deterministic
payoffs and families of games with stochastic
payoffs. We demonstrate that these families are
guaranteed approximately BL-WoLF-learnable
with lower cost. We then demonstrate families of
games (both stochastic and deterministic) that are
not guaranteed BL-WoLF-learnable. We show
that those families, nevertheless, &ke-WoLF-
learnable To prove these results, we use a key
lemma which we derivé.

first is to learn the relevant aspects of the environment, so
that eventually, its behavior is optimal or near optimal with
regard to the given objective. The second is to minimize
the cost of learning to behave well. This can be done by
minimizing the time necessary to learn enough to perform
well, but also by ensuring that its behavior in the learning
process, while not yet optimal or near optimal, is at least
reasonably good with regard to the objective. There is of-
ten an exploration/exploitation tradeoff here: attempting to
learn fast often requires disastrous short term results, while
slow learning may accumulate large losses even if the loss
per unit time is small.

Learning in games (for a review, see (Fudenberg & Levine,
1998)) is made additionally difficult because the learner is
confronted with another player (or multiple other players).
If the other player plays in a predictable, repetitive manner,
this is no different from learning in an impersonal, disin-
terested environment. Usually, however, the other player
changes its strategy over time. One reason for this may be
that the other player is also learning. A less benign reason,
however, may be that the opponent is aware of the learner’s
predicament and is trying to exploit its superior knowledge.
This is the case that we study.

In the case where an opponent is trying to exploit the
learner’s lack of knowledge about the game, it becomes
especially important to focus on the cumulative cost of
learning rather than the time the learning takes. It is likely
that the opponent will allow the learner to learn the game
very quickly, if the opponent can take tremendous advan-
tage of the learner in the short run. A learning strategy
on the learner’s part that allows this should not be consid-

ered good. On the other hand, a learning strategy that may
learn the relevant structure of the game only very late or
When an agent is inserted into an unfamiliar environmengven never at all, but allows the opponent to take only min-
with some objective, two goals present themselves. Thémal advantage, should be considered good. This analysis
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those of the equilibrium (e.g. (Jehiel & Samet, 2001; Singhln this paper, we introduce th&_-WoLFframework, where

et al., 2000)). It suggests a Win-or-Learn-Fast, or WoLF,a learner’s strategy is evaluated by the loss it can expect to
approach (a term coined by Bowling and Veloso (Bowlingaccrue as a result of its lack of knowledge. (We consider
& Veloso, 2002), though they actually just pursued converthe worst-case loss across all possible opponents as well as
gence results). Various previous work has considered thall possible games within the class considered. BL stands
case where learning players are concerned with their longfor “bounded loss”.) We presentguaranteedversion of

term losses, for instance when players have beliefs abodgarnability where the learner is guaranteed to lose no more
the opponents’ strategies (Kalai & Lehrer, 1993). than a given amount, andreonguaranteedersion where

. N . . the agent loses no more than a given amanrgxpecta-
Much of the prior work on learning in games in the machine_; : L
tion. We also allow forapproximatdearning in both cases,

learning literature did not consider such a metric of the per-

formance of a learning strategy (Littman, 1994; Hu & Well- .Where we only require that the' agent.comes close to act-
) ; ing optimally. The framework is applicable to any class
man, 1998). In contrast, our work is especially closely re-

lated to recent work by Brafman and Tennenholtz on Iearn-mc (repeated) games, and allows us to measure the inherent

ing in stochastic games (Brafman & Tennenholtz, 2000)dlsadvantage in that class to a player that initially cannot

where the opponent can make it difficult to learn parts ofdIStInguISh which game is being played. It does not assume

. . .. a probability distribution over the games in the class.
the game, leading to a complex exploration vs. exploita-

tion tradeoff (building upon closely related work (Kearns We do not consider difficulties of computation in games;
& Singh, 1998; Monderer & Tennenholtz, 1997)); and rather we assume the players can deduce all that can be
on learning equilibrium (Brafman & Tennenholtz, 2002), deduced from the knowledge available to them. While
where the agents’ learning algorithms over a class of gamesome of the most fundamental strategic computations
are considered as strategies themselves. in game theory have unknown (Papadimitriou, 2001) or
high (Conitzer & Sandholm, 2003) complexity in general,
. . 7 - " zero-sum (Luce & Raiffa, 1957) and repeated (Littman &

problem of learning a game with the goal of minimizing

) : ) tone, 2003) games tend to suffer fewer such problems,
the cumulative loss due to the learning process, with an a hereby at least partially justifying this approach. In the
versarial opponent (Auer et al., 1995). (This problem is y b Y 9 PP ’

studied towards the end of that paper.) They study the casgme families in this paper, computation will be simple.
where the learner knows nothing at all about the game (ex¥he rest of this paper is organized as follows. In Section 2,
cept the learner’s own actions and bounds on the payoffsjye give some basic definitions and known results. We
and they derive an algorithm for this general case, whiclpresent guaranteed BL-WoLF learnability in Section 3, and
improves over previous algorithms by fzs (Banos, 1968) its approximate version in Section 4. We present nonguar-
and Megiddo (Megiddo, 1980). (Some closely related re-anteed BL-WoLF learnability in Section 5, and its approx-
search makes the additional assumption that the learnamate version in Section 6.

at the end of each round, gets to see the expected payoff

for all the actipns the learner might have cho_sen, given th?_ Basic definitions

opponent’s mixed strategy (Freund & Schapire, 1999; Fu-

denberg & Levine, 1995; Foster & Vohra, 1993; Hannan,Throughout the paper, there will be two players: the learner
1957). We will not make this assumption here.) The main(player 1) and the opponent (playe). Because we try
difference between that line of work and the frameworkto assess the worst-case scenario for the learner, restrict-
presented here is that our framework allows the learner ting ourselves to only one opponent is without loss of
take advantage of partial knowledge about the game (thajenerality—if there were multiple opponents, the worst-
is, knowledge that the game belongs to a certain familycase scenario for the agent would be when the opponents
of games). This allows the learner to potentially performall colluded and acted as a single opponent.

much better than a general-purpose learning algorfthm.

In another strand of research, Augtral. also study the

In this paper, the two players play a one-shot gtage
“The gap between the two approaches in the case of partiaero-sum game over and over. Plageknows the game;
k?g‘.’;’f'edgf of th?s?g‘me b bﬁ.p?rtilalli/ggr;?geg throukgh the usgayer1 (at least initially) only knows that it is in a larger
of differentexpert{Cesa-Bianchi et al., , who make recom- : - , i :
mendations t(F))the agents as to which actions to play. Forinstancg,jlmlly of games. I'n this Sec“‘?”' we will first d'eflne the_
the Aueret al. paper (Auer et al., 1995) also studies how to learnStage game, and discuss what it means to play it well on its
which is the best of a set of given experts. These experts coul@wn. We then define the uncertainty that play&as about
capture some of the known structure of the game: for instancethe game. Finally, we define what strategies the players can
there could be an expert recommending the optimal strategy fopaye in the repeated game. Definitions on what it means for

each game in the family. However, the learning algorithm for de- :
ciding on an expert will typically still not make full use of the the learner to play the repeated game well are presented in

known structure. later sections.



2.1. Zero-sum game theory for the stage game deterministic (stochastic) payoffs defined by action sets

Definition 1 A (stage) gameconsists of sets of actions A1 and Ay, a parameter spacé(, and a functiory : & —
9 9 Ga(A1, A2) (g + K — G.(A1, Ay)), whereGy(Ay, Ay)

Ay, Ay for players1 and 2 respectively, together with (in (Go(A1, Ay)) is the set of all zero-sum stage games with

the case of deterministic payoffs) a function A; x Ay — L . : . A
U, x Us, wherel; is the space of possible utilities for deterministic (stochastic) payoffs with action sdts As.

playeri (usually simplyR); or (in the case of stochastic
payoffs) a functiom,, : Ay x Ay — P(U; x Us), where
P(U; x Us) is the set of probability distributions over util-
ity pairs. We say the game iero-sumif the utilities of
agentl and?2 always sum to a constant.

Here, playerl does not know the parametere K cor-
responding to the game being playeth the examples in
this paper, the elements &f will take many forms, such as
integers, permutations, and subsets. Playan eliminate
values ofK on the basis of outcomes of games played.

We often say that the random selection of an outcome iwe note that there is no probability distribution on the fam-
a game with stochastic payoffs is doneMgture Forthe ily of games. Rather, we assume the game is adversarially

following strategic aspects, it is irrelevant whether Naturechosen relative to the learner’s learning strategy.
plays a part or not.

. 2.3. Strategies in th ted
Definition 2 A (stage-game) stratedgr player: is a prob- rategies in the repeated game

ability distribution overA;. (If all of the probability massis A strategy in the repeated game (in the case of player
on one action, it is gure strategyotherwise it is anixed  learning strategy) prescribes a stage-game strategy given
strategy) A pair of strategies;, o5 for playersl and2 are  any history of what happened in previous stage games.
in Nash equilibriumif neither player can obtain higher ex- Thus, the stage-game strategy can be conditional on the
pected utility by switching to a different strategy, given theplayers own past actions, the other player’s past actions,
other player’s strategy. A strategy is amaximinstrategy  and past payoffs. In our paper, it will usually be sufficient
if o; € arg max,, ming_, Efu;|o;, 0_;].2 for it to just be conditional on players knowledge about
the game. To evaluate how well playkefs doing, we de-
The following theorem shows the relationship betweenfine player1's (cumulative) lossas the sum of all stage-
maximin strategies and Nash equilibria in zero-sum gamesgame losses. Thus, if playérknew the game, playing the
Informally, it shows why, against a knowledgeable oppo-maximin strategy forever would give an expected loss of at
nent, a player is playing well if and only if that player is most0 against any opponent. (We do not use a discounting
playing a maximin strategy. rate; rather, when we aggregate utilities, we consider the

) sum of utilities across finite numbers of games.)
Theorem 1 (Known) In zero-sum games, a pair of strate-

giesoy, oo constitute a Nash equilibrium if and only if they .
are both maximin strategies. The expected utility that eacts- Guaranteed BL-WoLF-learnability

player gets in an equilibrium is the same for every equilib-|, yhe simplest form of learning in our framework, there is a
rium; this expected utility (for playet) is called thevalue o 5rning strategy for playarsuch that, having accumulated
V' of the game. a given amount of loss, playdris guaranteedto know

Thus, playerl is guaranteed to get an expected utility of e_nough about the game to play it well. In this section, we

at leasty” by plaving a maximin strateqv (and plavecan  9V€ the formal definition of this type of Iear_r!abilifcy, anq
make sureyp?ay)ét gets at mosV’ by p%;ing apmf)s(imin demonstrate that some example game families (including

strategy). We call a strategy ane-approximatemaximin games with stochastic payoffs) are learnable in this sense.
strategy if it guarantees an expected utilitylof— e. The
stage-game lossf player1 in playing the stage game once
is V minus the utility playen received.

Definition 4 A parameterized family of gamesgsiaran-
teed BL-WoLF-learnabl&vith loss! if there exists a learn-
ing strategy for playerl such that, for any game in the

2.2. What player 1 does not know family, against any opponent, the loss incurred by player

L . . “The parameter spadé is not strictly necessary (all that mat-
Playerl (at least initially) does not know which offamily  ters for our purposes is the subset of games in the imagg, of
of zero-sum stage games is being played. Such a family ibut it is often convenient to think of the missing knowledge as a
defined as follows: parameter of the game.
SItis crucial to distinguish between the learning strategy and
Definition 3 A parameterized family of stage games with the stage-game strategies it produces. When we talk about a max-
- imin strategy or about learning a strategy, we are referring to
Here we use the common game theory notatiarfor “the stage-game strategies. Otherwise, we will make it clear which
player other thar”. one we refer to.



1 before learning enough about the game to construct &Given the actions by the players, the outcome of the game
maximin strategy is never more than is as follows (winning gives utility, losing utility —1):

Game family description 1 ¢ For a givenn, the game ® !fonly one player plays a dud, that player loses;

family get-close-to-the-targes defined as follows. Play- e If neither player plays a dud and(a;) = fla_;) +

ers 1 and 2 both have action spage = {1,2,...,n}.  1(modm), playeri wins (effectively, the nonduds are ar-
The outcome function is defined by a parameterc  ranged in a circle, and playing the action right after your
{1,2,... ,n}, that the players try to get close to. Given gpponent’s in the circle gives you the win);

the actions by the players, the outcome of the game is as ,

follows (winning gives utility, losing utility —1): * Otherwise, we have a draw.

Player1 initially does not know:the permutationf. (We
observe that form = 3 andn = 0, we have the classic
o |f ap =az = a 7é k, playerl wins ifa < k, and pIayerQ rock-paper-scissors game_)

winsifa > k;

o If |a; — k| < |a—; — K[, then playeri wins;

Theorem 3 The game family generalized-rock-paper-
scissors-with-duds guaranteed BL-WoLF-learnable with

Player1 initially does not knowthe parametek. lossm —1if m is even, or with loss: if m is odd. Ifn = 0,
it is guaranteed BL-WoLF-learnable with lo8s

e Otherwise ¢; — k = k — a3), we have a draw.

Theorem 2 The game fam|Iyget-.close-to-the-targets Proof: Consider the following learning strategy for player
guaranteed BL-WoLF-learnable with logg(n)]. 1. Keep playing actiorl first; then, whenever player
Proof: We first observe that if we ever have a draw, playerwins a round, switch to the action that he just won with,
1 can immediately infek—it is the average of the players’ and keep playing that until play@rwins again. Because
actions. Also, after any number of rounds, the set of possiit is impossible to win when playing with a dud, the first
ble values fork that are consistent with the outcomes so faraction that playef wins a round with must be a nondud.
is always an interva{ k™™, k™™ +1,...  k™a*}, (The  After this, player2 can win only by playing the next ac-
set of possible values fdrthat are consistent with a single tion in the circle of nonduds. Thus, every loss reveals the
outcome is always an interval, and the intersection of twanext element in the circle. Thus, afterlosses, the whole
intervals is always an interval.) Now consider the follow- circle of nonduds is revealed and playecan choose a
ing learning strategy for playér always play the action in maximin strategy. (For instance, randomizing uniformly
the middle of the remaining intervat; = LMJ- over the nonduds.) In the case wherés even, onlym — 1

If player 1 loses, it can be concluded thiais on the sid losses are needed, as this reveals the whole circle but one—
of a; where player played. 6> < a1 = k < a; and and whenm is even, it is a maximin strategy to randomize
as > a1 = k > a1.) Thus the remaining interval is cut in uniformly over all the nondudasuch thatf (i) is even (or
half (sometimes the remainder is less than half, because tifl the nonduds such thatf (i) is odd), and we can deter-
action playerl played is also eliminated:; it is never more). mine one of these two sets even with a “gap” in the circle.
So, after[log(n)] losses, playet knowsk, and the max-  Finally, if n = 0, we need not learn anything abouat all:
imin strategy (which is simply to plag). = simply randomize uniformly over all the actions. m

The parameter to be learned need not always be an integépame families with stochastic payoffs can also be guaran-
In the next example, it is a permutation of a finite set. teed BL-WoLF-learnable. The following modification of
the previous game illustrates this.

Game family description 2 For givenm > 2 andn, the ] o ]

game familygeneralized-rock-paper-scissors-with-dugls Game family description 3 The game familyrandom-

defined as follows. Players 1 and 2 both have action spac@rientation-generalized-rock-paper-scissors-with-duds

A={1,2,... ,m+n}. The outcome function is defined by IS defined exactly asgeneralized-rock-paper-scissors-

apermutationf : {1,2,... ,m+n} — {1,2,... ,m-+n}. with-duds except each rounq, Nature flips a coin

The set ofludsis given by{i : m + 1 < f(i) < m+n}. Over the orientation of the circle of nonduds. That

— .. _ ] is, with probability % if neither player plays a
When describing a family of games, we usually describe thedud and f(a;) = fla_;) + 1(modm), player i

family for some arbitrary variables. Thus, the definition starts . therwi if ith | | dud d
with “For given X, the family of gamed” is defined by...” These WINS, Otherwise, 1 neither player plays a dud an

X arenot the parameters to be learned; they are known by ev-f(ai) = f(a—;) — 1(modm), playeri wins. The other
eryone. Effectively, we have a family of families of games, one cases are as before: nonduds still (always) beat duds, and
family for each value ofX'. The parametek € K to be learned e have a draw in any other case.

with such a family is pointed out in the end of the definition, under

the headePlayer1 initially does not know: Playerl initially does not knowthe permutatiory.



Theorem 4 The game family random-orientation- learnability; we show that it is strictly weaker than guaran-
generalized-rock-paper-scissors-with-duids guaranteed  teed BL-WoLF-learnability; we present a useful lemma for
BL-WoLF-learnable with los$ (or loss0 if n = 0). showing this type of BL-WoLF-learnability; and we apply

Proof: We simplv observe that plavi nondud action this lemma to show BL-WoLF-learnability for some games
' Py playirgny that are not guaranteed BL-WoLF-learnable.

is @ maximin strategy in this case. (Any nondud action is as

likely to lose against it as to win.) Play&mwill know such -

an action upon being beaten once (or, if there are no dudg','l' Definition

player1 will know such an action immediately). = Definition 6 A parameterized family of games BL-

WoLF-learnablewith lossl if there exists a learning strat-

) egy for playerl such that, for any game in the family,

4. Guaranteed approximate against any opponent, and for any integ®t player1's

BL-WoLF-learnability expected loss over the firt rounds is at most

We now introduce approximate BL-WoLF-learnability. We now show that BL-WoLF-learnability is indeed a

. . ) . weaker notion than guaranteed BL-WoLF-learnability.

Definition 5 A parameterized family of gamesdsiaran-

teed approximately BL-WoLF-learnableith lossi and  tpeqrem 6 If a parameterized family of games is guaran-
precisione if there exists a learning strategy for player ;o4 BL-WoLF-learnable with logs it is also BL-WOLF-
such that, for any game in the family, against any opponenty, o -n-ble with loss.

the loss incurred by player before learning enough about

the game to construct anapproximate maximin strategy Proof: Given the learning strategy that will allow player
is never more than 1 to learn enough about the game to construct a maximin

strategy with loss at mogt consider the learning strat-

To save space, we only present one straightforward appro)egy o’ which playso until the maximin strategy has been
imate learning result on a game family we have studied allearned, and plays the maximin strategy forever after that.
ready, to illustrate the technique. A similar result can beThen, afterV rounds, if we are given that no maximin strat-
shown forgeneralized-rock-paper-scissors-with-duds egy has been learned yet, the loss must be lesd ti@iaen

that a maximin strategy was learned aftex N rounds,
Theorem 5 The game familyget-close-to-the-targets  the loss up to and including thiéh round must have been
guaranteed approximately BL-WoLF-learnable with less less tharl, and the expected loss after rounig at most)
and precisionl — %—L (for r < log(n)). (because a maximin strategy was played in every round af-

i i ter this). It follows that the expected loss is at mbst =
Proof: We consider the same learning strategy as before,

where we always play the middle of the remaining interval.
After r losses, the remaining interval has size at mpgst 5.2, A central lemma
Randomizing over the remaining interval will give at least

a draw with probability at least- — 2- - The next lemma will help us prove the BL-WoLF-

learnability of games that are not guaranteed BL-WOLF-
learnable.
5. Nonguaranteed BL-WoLF-learnability , .
Lemma 1 Consider a learning strategy for playdrthat
Guaranteed learning (even approximate) is not always poglays the same stage-game strategy every round until some
sible. In many games, no matter what learning strategyearning event. (Call a sequence of rounds between learn-
player1 follows, it is possible that an unlucky sequence ing events throughout which the same stage-game strategy
of events leads to a tremendous loss for playerithout is played anepoch) Suppose that the following two facts
teaching playet anything about the game. Such unlucky hold for any game in the parameterized family:
sequences of events can easily occur in games with stocha.s-FOr anv enochi's stage-game strateay? for plaver 1
tic payoffs, but also in games with deterministic payoffs Y €p 9e-9 91 player .,

where playerl’s only hope of learning against an adver- 2"~ stage-game strategy, for player 2 will either with
play y hop 9 ag nonzero probability cause the learning event that changes

sarial opponent is by using a mixed strategy. (We will se . . X
examples of both these cases later in this section.) Nev%?e epoch ta + 1, or will not give player2 any advantage

theless, it is possible that there are learning strategies i 'ie' playerls expected loss from the round when plager
these games than all likelihood will allow player 1 to playses is at moso).

learn about the game without incurring too much of a losse For any of those strategies, that with nonzero proba-

In this section, we present a more probabilistic definition ofbility cause the learning event that changes the epoch to



A(o],02)
. pi(aivﬂ‘l)
(Here A(d%, 02) is the expected one-round loss to player
1, and pi(ot, 09) is the probability of this round causing
the learning event that changes the epoch+ol.)

< ¢ for some giveny; > 0. Get-close-to-one-of-two-targetss not guaranteed BL-
WoLF-learnable, for the following reason. Consider the
scenario wheré; is to the left of the middleks is to the
right of the middle, and playeXis consistently playing ex-
actly in the middle. Now, regardless of which action player
Then with this learning strategy, the family of games is BL-1 plays, for one of the:;, player2 will win if this k; is ac-
WoLF-learnable with los$  ¢;. tive; and playerl will be able to infer nothing more than

‘ which side of the middle thak; is on. Thus, if Nature
happens to keep pickirnig in this manner, player will ac-

7 + 1, we have

Proof: Given the numben of rounds, divide up player's cumulate a huge loss without learning anything more than
total lossl over the epochs. That is, for epoghwe have g g anything

= ‘ = , ) 3 which sides of the middle thk; are on. It is easy to show
b = j<]%;jei)‘7 where); is playerl’s loss in roundj; and that, if one of thek; is much more likely and valuable than
l = ili- Consider now an opponent that seeks to maxithe other, this can leave us arbitrarily far away from know-

. 1h . f 2 qi f there i ion th ing a maximin strategy. Nevertheless, with the probabilis-
mize the expectation of a given If there is no action that ;. definition,get-close-to-one-of-two-targesBL-WoLF-

gives this opponent any advantage in this epoch (player learnable for a large class of values of the parametgrs
is already playing a maximin strategy), the expected value

£ d < If there | ion that gi D2, 71, andry (which includes those cases where one of the
ofi; cannot exceed < c;. Ifthere Is an-act|on t_ at gives k; is much more likely and valuable than the other), as the
the opponent some advantage, by the first fact, it causes t%xt theorem shows
end of the epoch with some nonzero probability. In this '

case, playing an action that does not cause the end of thgheorem 7 If p1r; > 2pors, then the game fam-

epoch with some nonzero probability is a bad idea for thely get-close-to-one-of-two-targets BL-WoLF-learnable
opponent, because doing so gives the opponent no advagith loss[log(n)]r;.

tage and just brings us closer to the limit to the number - . .
of roundsN. So we can presume that the opponent onIyPrO.Of' First we observe that jf,r, > 2pars, then playing
1 is then a maximin strategy. (To prove this, all we need

plays actions that cause the end of the epoch with somto show is that both players playirig is an equilibrium.

nonzero probability. Now suppose that there is no limit to ! : : .
the number of rounds, but the opponent is still restricted toWhen the other player is playing, also playingk; gives

playing actions that cause the end of the epoch with somsxpeCted utility at least;, and any other pure strategy

nonzero probability. (This is still a preferable scenario toIVES at mospg_rz, which is the same or Iess:) From the
the opponent.) In this scenario, we havex,, (E[l;]) — rewards given in a round, playércan tell which of the
. y o) 7

maxy, (Ao}, 09) + (1 — pi (0%, 09)) maxe, (E[L]), and it k; was actlv_e (becausg # 7). No_w, consider the fo_l-
(ot 03) lowing learning strategy for playdr. ignore the rounds in
follows thatmax,, (E[li]) = maxe,(577755) < ¢ It which k, was active, and use the same learning strategy

follows that the expectation of arlyis bounded by:;, for  as we did forget-close-to-the-targein the proof of The-
any opponent. Thus (by linearity of expectation) the totalorem 2, as ifk; was thek of that game. That is, always
expected loss is bounded by ;. = play the action in the middle of the remaining interval for

k1, Settinga1 = L%

- |. The only difference is that

we do not update our stage-game strategy untilage or
draw a roundwherek; is active This is so that we can
We first give an example of a game family with stochasticapply Lemma 1: such a change in strategy will be the end
payoffs where guaranteed BL-WoLF learning is impossibleof an epoch. By similar reasoning as in Theorem 2, we
because Nature might be noncooperative. will know the value ofk; after at most[log(n)] epochs
(after which there is one more epoch where we play the
maximin strategyk; and player2 can have no advantage).
We now show that the required preconditions of Lemma 1
are satisfied. First, if a stage-game strategy for pl&yer
has no chance of changing the epoch, that means that with
that stage-game strategy, play@zhas no chance of win-
ning or drawing ifk; is active; it follows that playe? can

get at mospor, < 5% with this stage-game strategy, and
thus has no advantage. Second, if a stage-game strategy for
player2 causes the change with probabilitythe expected
utility of that stage-game strategy for play2rcan be at
Playerl initially does not knowthe parameterg, andks. mostpry + pare < pri 4+ 25, so that the expected loss

5.3. Specific game families

Game family description 4 For given n,p1,ps, 71,72,
the game familyet-close-to-one-of-two-targeis defined
exactly agyet-close-to-the-targegxcept now there are two
ki,ko € {1,2,... ,n}, with ky # ko. Each round, Nature
randomly chooses which of the two is “active;(is active
with probability p;). The winner is the player that would
have wonget-close-to-the-targetith that k;. The utility
of winning is dependent of1 the winner receives; (with
r1 # ra; the loser get9).




in the round to playet is at mostpr,. Thus we can set all dud, which will happen with probability at mo%twhereq

the ¢; to r; (apart from theflog(n)] + 1th one which we  is the number of actions playéris randomizing over. Be-

can set ta), because in the corresponding epoch we willcauseg > m, this means playe2 wins with probability

be playing the maximin strategy), and we can conclude byess than%, and thus gets no advantage from this. So the

Lemma 1 that the game family is BL-WoLF-learnable with first precondition is satisfied. Second, if in a given epoch

loss[log(n)]r;. = where playerl is randomizing over actions (then non-
duds plusg — m duds), playee plays a stage-game strat-

We now give an example of a game family with determinis-egy that plays a nondud with probabiljtythis will end the

tic payoffs where guaranteed BL-WoLF learning is impos-epoch with probability at leagt’_™. Also, the probability

sible because the opponent might be lucky enough to keeghat player2 wins is at mosp4=" + 1 < pi=m™ 4 %

winning without revealing any of the structure of the game.so that the expected lossin the round to playet is at
mostpZ="". Thus we can set all the to 1 (apart from the

Game family description 5 For givenm > 0 andn,  , 4 1th one which we can set @ because in the corre-

the game familygeneralized-matching-pennies-with-duds sponding epoch we will be playing the maximin strategy),

is defined as follows. Players 1 and 2 both have aCtiorb_nd we can conclude by Lemma 1 that the game fam||y is

spaced = {1,2,...,m + n}. The outcome function is B|-WoLF-learnable with loss. =

defined by a subsd? C A, with |D| = n, of duds. Given

the actions by the players, the outcome of the game is as )

follows (the winner gets, the loser0): if one player plays 6. Nonguaranteed approximate

a dud and the other does not, the latter wins. Otherwise, BL-WOLF-learnability

if both players play the same action, playzwins; and if

they play different actions, playérwins. Playerl initially

does not knowthe subsef. (We observe that far, = 2

andn = 0, we have the classic matching-pennies game.)

Definition 7 A parameterized family of gamesapprox-
imately BL-WoLF-learnablevith loss/ and precisiore if
there exists a learning strategy for playersuch that, for
any game in the family, against any opponent, and for any
integer NV, player1’'s expected loss over the firaAt rounds

Generalized-matching-pennies-with-duslaot guaranteed
})s at mostl + Ne.

BL-WoLF-learnable, because for any learning strateg
for player 1, it is possible that playe? will happen to ] o
keep picking the same action as playein every round. We now show that approxmate BL—WoLF-Iearna_1b|I|ty is
In this case, playerl accumulates a huge loss with- indeed aweakgr notion than guaranteed approximate BL-
out learning anything at all about the subget Nev-  WOLF-learnability.
erthelessgeneralized-matching-pennies-with-dud<BL- ) ) )
WoLF-learnable, as the next theorem shows. Theorem 9 If a parameterized family of games is guar-

anteed approximately BL-WoLF-learnable with ldsand
Theorem 8 The game fam||y genera”zed_matching_ preCiSion €, it is also appl’OXimater BL-WoLF-learnable
pennies-with-dudis BL-WoLF-learnable with loss. with lossl and precisiore.

Proof: We first observe that playéris guaranteed towin at  Proof: Given the learning strategy that will allow player
least”—1 of the time when randomizing uniformly over all 1 to learn enough about the game to constructean
nonduds; this is in fact the maximin strategy. Now considerapproximate maximin strategy with loss at maéstcon-

the following learning strategy for playér in every round,  sider the learning strategy’ which playso until the e-
randomize uniformly over all the actions besides the onegpproximate maximin strategy has been learned, and plays
playerl knows to be duds. We will again use Lemma 1. Anthe e-approximate maximin strategy forever after that.
epoch here ends when playiecan classify another action Then, afterV rounds, if we are given that nreapproximate

as a dud; thus, there can be at most 1 epochs, and in  maximin strategy has been learned yet, the loss must be less
the last epoch playeris playing the maximin strategy and thanl. Given that are-approximate maximin strategy was
player2 can have no advantage. We now show that the relearned aftef < N rounds, the loss up to and including the
quired preconditions of Lemma 1 are satisfied. First, in anyth round must have been less thiaand the expected loss
epoch but the last, playérplays duds with some nonzero after roundi is at most(NV —i)e (because an-approximate
probability; and if player2 plays a nondud when player maximin strategy was played in every round after this). It

1 plays a dud, playet will realize that it was a dud and follows that the expected loss is at most Ne. =

the epoch will end. Thus, if playe plays a nondud with

nonzero probability, the epoch will end with some proba-A version of Lemma 1 for approximate learning that takes
bility. On the other hand, if playe? always plays duds, advantage of the fact that we are allowed to loper round
player2 will win only if player 1 happens to play the same is straightforward to prove. We will not give it or any ex-



amples of its application here, because of space constrairdnteed BL-WoLF-learnable—some of which have stochas-
tic payoffs (for example, theget-close to-one-of-two-

7. Conclusions and future research targetsfamily) and some of which have deterministic pay-
offs (for example, th@eneralized-matching-pennies-with-

We presented a general framework for characterizing theludsfamily). We showed that those families, nevertheless,

cost of learning to play an unknown repeated zero-sunare BL-WoLF-learnable. To prove these results, we used a

game. In our model, the game falls within some family key lemma which we derived.

that the learner knows, and subject to that, the game is aq:- . . o
) : uture research includes giving general characterizations
versarially chosen. In playing the game, the learner faces

) of families of zero-sum games that are BL-WoLF learn-
an opponent who knows the game and the learner’s learn- . . _
ing strategy. The opponent tries to give the learner highable with some given cost (for each of our four definitions

X of BL-WOLF learnability)—as well as characterizations of

losses while revealing little about the game. Conversely, .- . :
. . . <families that are not. Future work also includes applying
the learner tries to either not accrue losses, or to quickl .
hese techniques to real-world zero-sum games.

learn about the game so as to be able to avoid future losses
(this is consistent with the/in or Learn Fast (WoLFjprin-
ciple). Our framework allows for both probabilistic and References
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