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Abstract
Models of strategic candidacy analyze the incentives of can-
didates to run in an election. Most work on this topic assumes
that strategizing only takes place among candidates, whereas
voters vote truthfully. In this paper, we extend the analysis
to also include strategic behavior on the part of the voters.
(We also study cases where only candidates or only voters
are strategic.) We consider two settings in which strategic vot-
ing is well-defined and has a natural interpretation: majority-
consistent voting with single-peaked preferences and voting
by successive elimination. In the former setting, we analyze
the type of strategic behavior required in order to guarantee
desirable voting outcomes. In the latter setting, we determine
the complexity of computing the set of potential outcomes if
both candidates and voters act strategically.

1 Introduction
Voting has emerged as a topic of key interest among multi-
agent systems researchers, as it provides a methodology for
a group of agents with distinct preferences to reach a com-
mon decision. When analyzing voting rules, the set of can-
didates is usually assumed to be fixed. In a pathbreaking pa-
per, Dutta, Jackson, and Le Breton (2001) have initiated the
study of strategic candidacy by accounting for candidates’
incentives to run in an election. They assumed that candi-
dates have preferences over other candidates and defined a
voting rule to be candidate stable if no candidate ever has an
incentive not to run. In this model, it is assumed that every
candidate prefers himself to all other candidates. Therefore,
the winner of an election never has an incentive not to run.
Non-winning candidates, on the other hand, might be able
to alter the winner by leaving the election. Dutta, Jackson,
and Le Breton (2001) showed that, under mild conditions,
no non-dictatorial rule is candidate stable.1

This result naturally leads to the question of how vot-
ing outcomes are affected by candidates’ incentives. It is
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1The notion of candidates dropping out naturally suggests that
the candidates themselves are agents. But the model can also make
sense in the context where candidates are (say) joint plans. For ex-
ample, consider the setting where multiple groups bid to host a
conference, and a board eventually votes over the submitted bids.
In this context, one of the groups may well decide to drop its bid in
order to increase the chances of another, perhaps close-by, group.

straightforward to model strategic candidacy as a two-stage
game. At the first stage, each candidate decides whether to
run in the election or not. At the second stage, each voter
casts a ballot containing a ranking of the running candidates.
When analyzing this game, an important ingredient is the as-
sumed voter behavior. That is, what assumptions are made
about the votes in the second stage, conditional on the set of
running candidates?

Most papers on strategic candidacy assume that voters
vote truthfully, i.e., their reported ranking for any given sub-
set of candidates corresponds to their true preferences, re-
stricted to that subset (Dutta, Jackson, and Le Breton 2001;
Ehlers and Weymark 2003; Samejima 2005; Eraslan and
McLennan 2004; Rodrı́guez-Álvarez 2006b; 2006a; Same-
jima 2007; Lang, Maudet, and Polukarov 2013). However, it
is well known that this is an unrealistic assumption (Gibbard
1973; Satterthwaite 1975). It is therefore natural to account
for strategic behavior on the part of the voters as well. Thus,
in the models we consider, both candidates and voters act
strategically.

The technical problem in accounting for strategic voting
is that, generally speaking, too many voting equilibria exist
(Myerson and Weber 1993; De Sinopoli 2000). If we only
consider Nash equilibria, then any profile of votes for which
no single voter can change the outcome is an equilibrium. In
some cases, a straightforward refinement rules out many of
the equilibria. For example, in a majority election between
two candidates, it is natural to rule out the strange equilib-
ria where some voters play the weakly dominated strategy
of voting for their less-preferred candidate. But this reason-
ing does not generally extend to more than two candidates.
In this paper, we focus on two settings that admit natural
equilibrium refinements.

The first setting is that of single-peaked preferences
(Black 1948). It is well known that, if the number of vot-
ers is odd, this domain restriction guarantees the existence
of a Condorcet winner (namely, the median) and admits a
strategyproof and Condorcet-consistent voting rule (namely,
the median rule) (Moulin 1980). Dutta, Jackson, and Le
Breton (2001) observed that any Condorcet-consistent rule
is candidate stable in any domain that guarantees the exis-
tence of a Condorcet winner. Lang, Maudet, and Polukarov
(2013) extended this result by showing that, in this setting,
no coalition of candidates ever has an incentive to change



their strategies as long as the Condorcet winner is run-
ning. We study the effect of strategic candidacy with single-
peaked preferences when the voting rule is not Condorcet-
consistent. Our motivation is that the voting rules that are
most widely used in practice, plurality, plurality with runoff,
and single transferable vote (STV), may fail to select the
Condorcet winner, even for single-peaked preferences. We
consider the class of majority-consistent voting rules, which
are rules that, if there is a candidate that is ranked first by
more than half the voters, will select that candidate. This
class includes all Condorcet-consistent rules, but also other
rules such as plurality, plurality with runoff, STV, and Buck-
lin. For this class, we show that under some assumptions on
strategic behavior, the Condorcet winner does in fact end
up being elected (though for other assumptions this does
not hold).

The second setting is voting by successive elimination.
This voting rule, which is often used in committees, pro-
ceeds by holding successive pairwise elections. In this set-
ting, there is a particularly natural notion of strategic voting
known as sophisticated voting (Farquharson 1969; Moulin
1983; Miller 1995). The outcomes of sophisticated voting
(the so-called sophisticated outcomes) have been character-
ized by Banks (1985) for the case when all candidates run.
Dutta, Jackson, and Le Breton (2002) extended the charac-
terization result by Banks to the case of strategic candidacy.
We study the computational complexity of the latter case and
show that computing the set of sophisticated outcomes is
NP-complete.

Due to space constraints, some proofs are omitted. They
can be found in the full version of this paper.

2 Preliminaries
This section introduces the concepts and notations that are
used in the remainder of the paper. For a finite set X , let
L(X) denote the set of rankings of X , where a ranking is
a binary relation on X that is complete, transitive, and an-
tisymmetric. For a ranking R ∈ L(X), top(R) denotes the
top-ranked element according to R.

2.1 Players and Preferences
Let C be a finite set of candidates and V a finite set of vot-
ers. Throughout this paper, we assume that |V | is odd.2 The
set P of players is given by P = C ∪ V . We assume that
C ∩V = ∅.3 Each player p ∈ P has preferences over the set
of candidates, given by a ranking Rp ∈ L(C). For all can-
didates c ∈ C, we assume that the top-ranked candidate in
Rc is c itself.4 A preference profile R = (Rp)p∈P ∈ L(C)P

2When the number of voters is even, a Condorcet winner is not
guaranteed to exist even if preferences are single-peaked. However,
in this case there will always be at least one weak Condorcet win-
ner. The results in Section 3 extend to the setting with an even
number of voters, with the role of the Condorcet winner taken over
by one of the weak Condorcet winners, namely the one in whose
favor the tie is broken.

3For results without this assumption, see, e.g., (Dutta, Jackson,
and Le Breton 2001; 2002).

4This assumption is known as narcissism. Without it, scenarios
can arise where no candidate has an incentive to run.

contains preferences for all players. For a player p ∈ P and
two candidates a, b ∈ C, we write a �p b if (a, b) ∈ Rp and
a �p b if a �p b and a 6= b.

For a preference profile R and a candidate c, let VR(c)
denote the set of voters that have c as their top-ranked can-
didate, i.e., VR(c) = {v ∈ V : top(Rv) = c}. Moreover,
for a candidate d 6= c, let VR(c, d) denote the set of voters
that prefer c to d, i.e., VR(c, d) = {v ∈ V : c �v d}. Can-
didate c is a majority winner in R if |VR(c)| > |V |/2, and c
is a Condorcet winner in R if |VR(c, d)| > |V |/2 for all
d ∈ C \ {c}. Note that both concepts ignore the preferences
of candidates. Every preference profile can have at most one
majority winner and at most one Condorcet winner. If a can-
didate is a majority winner in R, then it is also a Condorcet
winner in R.

2.2 Single-Peakedness
A well studied structural restriction on preferences is
single-peakedness (Black 1958). Intuitively, preferences are
single-peaked if the candidates can be ordered on a one-
dimensional spectrum in such a way that every voter has an
ideal (most preferred) point on this spectrum, and preference
is declining when moving away from this ideal point. Set-
tings in which the assumption of single-peakedness seems
reasonable include elections in which candidates correspond
to numerical values (e.g., voting over a tax rate) or elections
in which the candidates can be assigned positions on a one-
dimensional political spectrum (e.g., ranging from left-wing
to right-wing political views). Our definition of a single-
peaked preference profile requires not only the preferences
of voters, but also the preferences of candidates to be single-
peaked. The assumption that top(Rc) = c for every can-
didate c implies each candidate’s ideal point coincides with
their position on the spectrum.

Formally, let / ∈ C × C be a strict ordering of the can-
didates. A preference profile R = (Rp)p∈P is single-peaked
with respect to / if the following condition holds for all
a, b ∈ C and p ∈ P : if a / b / top(Rp) or top(Rp) / b / a,
then b Rp a. For a preference profile R that is single-peaked
with respect to /, the median of R is defined as the unique
candidate c for which both

∑
a∈C:a/c |VR(a)| < |V |/2 and∑

a∈C:c/a |VR(a)| < |V |/2. It is well known that the me-
dian is a Condorcet winner in R.

Let c1 / c2 / . . . / cm and let R be a preference profile
that is single-peaked with respect to /. The peak distribution
of R with respect to / is the vector of length m whose j-th
entry is the number |VR(cj)| of voters that rank cj highest.

2.3 Voting Rules
A voting rule f maps a non-empty subset B ⊆ C of candi-
dates and a profile of votes r = (rv)v∈V ∈ L(B) to a can-
didate f(B, r) ∈ B. A voting rule f is majority-consistent
if f(B, (Rv)v∈V ) = c whenever c is a majority winner in
R|B , and f is Condorcet-consistent if f(B, (Rv)v∈V ) = c
whenever c is a Condorcet winner in R|B . Because major-
ity winners are always Condorcet winners, (perhaps confus-
ingly) Condorcet-consistency implies majority-consistency.

A scoring rule is a voting rule that is defined by a se-
quence s = (sn)n≥1, where for each n ∈ N, sn =



(sn1 , . . . , s
n
n) ∈ Rn is a score vector of length n. For a pref-

erence profile R on k candidates, the score vector sk is used
to allocate points to candidates: each candidate receives a
score of skj for each time it is ranked in position j by a voter.
(Again, preferences of candidates are ignored.) The scor-
ing rule then selects the candidate with maximal total score.
In the case of a tie, a fixed tiebreaking ordering is used.
Prominent examples of scoring rules are plurality (sn =
(1, 0, . . . , 0)), Borda’s rule (sn = (n − 1, n − 2, . . . , 0)),
and veto (sn = (0, . . . , 0,−1)).

The plurality winner is a candidate maximizing |VR(·)|.
Plurality is majority-consistent, but not Condorcet-
consistent. Borda’s rule and veto are not majority-consistent
and (hence) not Condorcet-consistent.

2.4 Candidacy and Voting as a Two-Stage Game
We consider the following two-stage game. At the first stage,
each candidate decides whether to run in the election or not.
At the second stage, each voter casts a ballot containing a
ranking of the running candidates. Throughout, we consider
complete-information games: the preferences of the candi-
dates and voters are common knowledge among the candi-
dates and voters. Hence, we do not need to model games as
(pre-)Bayesian and strategies do not have to condition on the
player’s type.

Let Sp be the set of strategies of player p. Then for each
candidate c ∈ C, the set Sc is given by {0, 1}, with the con-
vention that 1 corresponds to “running” and 0 corresponds
to “not running.” For each voter v ∈ V , the set Sv consists
of all functions

sv : 2
C →

⋃
B⊆C

L(B)

that map a subsetB ⊆ C of candidates to a ranking sv(B) ∈
L(B). The interpretation is that sv(B) is the vote of voter v
when the set of running candidates is B. In particular, each
Sv contains a strategy that corresponds to truthful voting for
voter v: this strategy maps every set B to the ranking Rv|B .
In general, however, a voter can rank two candidates differ-
ently depending on which other candidates run.

We are now ready to define the outcomes of the game. A
strategy profile s = (sp)p∈P contains a strategy for every
player. Given a strategy profile s and a voting rule f , define
C(s) = {c ∈ C : sc = 1} (the set of running candidates5)
and r(s) = (sv(C(s)))v∈V ∈ L(C(s))V (the votes cast
for this set of running candidates). The outcome of (s) of s
under f is then given by of (s) = f(C(s), r(s)).

2.5 Equilibrium Concepts
Let s = (sp)p∈P be a strategy profile. For a subset P̃ ⊆ P

and a profile of strategies s′
P̃

= (s′p)p∈P̃ for players in P̃ ,
let (s′

P̃
, s−P̃ ) denote the strategy profile where each player

p ∈ P̃ plays strategy s′p and all remaining players play the

5If C(s) = ∅, define of (s) = >. We assume that each can-
didate prefers himself to the outcome >. This assumption ensures
that at least one candidate will run whenever candidates act strate-
gically.

same strategy as in s. Fix a voting rule f and a preference
profile R. For a strategy profile s and a subset P̃ ⊆ P of
players, say that s is (R, f)-deviation-proof w.r.t. P̃ if for
all s′

P̃
, there exists p ∈ P̃ such that

of (s) �p of (s′P̃ , s−P̃ ).

For a strategy profile s = (sp)p∈P , we sometimes write
s = (sC , sV ), where sC = (sc)c∈C is the profile of can-
didate strategies and sV = (sv)v∈V is the profile of voter
strategies. We can now define equilibrium behavior for both
candidates and voters.

Definition 1. Let R be a preference profile and let f be a
voting rule. A strategy profile s = (sC , sV ) is

• a C-equilibrium for R under f if s is (R, f)-deviation-
proof w.r.t. {c} for all c ∈ C;

• a strong C-equilibrium for R under f if s is (R, f)-
deviation-proof w.r.t. C ′ for all C ′ ⊆ C;

• a V -equilibrium for R under f if for every s′C ∈
{0, 1}C , (s′C , sV ) is (R, f)-deviation-proof w.r.t. {v} for
all v ∈ V ;

• a strong V -equilibrium for R under f if for every s′C ∈
{0, 1}C , (s′C , sV ) is (R, f)-deviation-proof w.r.t. V ′ for
all V ′ ⊆ V .

We omit the reference to R and f if the preference pro-
file or the voting rule is known from the context. In a C-
equilibrium, no candidate can achieve a more preferred out-
come by unilaterally changing their strategy. In a strong
C-equilibrium, no coalition of candidates can change the
outcome in such a way that every player in the coalition
prefers the new outcome to the original one. Thus, (strong)
C-equilibria correspond to (strong) Nash equilibria when
strategies of voters are assumed to be fixed. For voters, the
equilibrium notions are more demanding: In order to be con-
sidered a (strong) V -equilibrium, the strategies of voters are
required to form a (strong) Nash equilibrium for every sub-
set B ⊆ C of running candidates.

It is instructive to relate these definitions to established
game-theoretic solution concepts for extensive-form games,
such as subgame-perfect equilibrium and subgame-perfect
strong equilibrium. A strategy profile s is a subgame-perfect
equilibrium of a game G if for any subgame G′ ⊆ G, the
restriction of s to G′ is a Nash equilibrium of G′, and it
is a subgame-perfect strong equilibrium if for any subgame
G′ ⊆ G, the restriction of s to G′ is a strong Nash equi-
librium of G′. In the candidacy game, every subgame (other
than the game itself) corresponds to a voting game that takes
place after the candidates have decided whether or not to
run. Thus, a proper subgame can be identified with the set of
candidates that run in this subgame.

For candidates, playing a subgame-perfect equilibrium is
not a stronger requirement than playing a Nash equilibrium,
because the only subgame in which they play is the en-
tire game itself. For voters, on the other hand, playing a
subgame-perfect equilibrium entails playing a Nash equilib-
rium for every possible set of running candidates. Therefore,
we have the following.



Fact 1. A strategy profile is a subgame-perfect equilib-
rium of the candidacy game if and only if it is both a C-
equilibrium and a V -equilibrium.

For subgame-perfect strong equilibria, one implication is
straightforward.

Fact 2. Every subgame-perfect strong equilibrium of the
candidacy game is both a strongC-equilibrium and a strong
V -equilibrium.

However, the other direction does not hold in general, be-
cause even if coalitions of either one type of players cannot
successfully deviate, it is possible that a mixed coalition in-
cluding players of both types can.

Splitting up the equilibrium definitions into separate re-
quirements for C and V allows us to capture scenarios in
which only players of one type (candidates or voters) act
according to the corresponding equilibrium notion. In Sec-
tion 3 we will analyze which combinations of equilibrium
notions yield desirable outcomes. We will present both posi-
tive results, stating that a desirable outcome will be selected
whenever a strategy profile meets a certain combination of
equilibrium conditions, and negative results, stating that un-
desirable outcomes may be selected even if certain equilib-
rium conditions hold.

In sufficiently general settings, the existence of solutions
is not guaranteed for any of the equilibrium concepts in Def-
inition 1.6 However, for all the positive results in Section 3,
we also show that every preference profile admits a strategy
profile that meets the corresponding equilibrium conditions.

3 Majority-Consistent Voting Rules and
Single-Peaked Preferences

In this section, we assume that preference profiles are single-
peaked with respect to a given order /. (If the order is not
part of the input, it can be computed in polynomial time
(Bartholdi, III and Trick 1986; Escoffier, Lang, and Öztürk
2008).) Note that our definition of single-peakedness in Sec-
tion 2.1 also requires the preferences of candidates to be
single-peaked with respect to /. Given that the preferences
of voters are single-peaked with respect to /, this does not
appear to be an unreasonable assumption.

We are interested in the following question: which re-
quirements on the strategies of players are sufficient for the
Condorcet winner (which is guaranteed to exist) to be the
outcome? For Condorcet-consistent rules, the answer to this
question is relatively straightforward (Lang, Maudet, and
Polukarov 2013). However, as we have argued in the intro-
duction, most rules that are typically used in practice are
majority-consistent, but not Condorcet-consistent. The sim-
plest and most important such rule is plurality.

It is easy to construct a plurality election in which some
candidates have an incentive not to run (assuming truthful
voting).

6Subgame-perfect equilibria are guaranteed to exist if one al-
lows for mixed strategies and extends the preferences of players to
the set of all probability distributions over C ∪{>} in an appropri-
ate way.

Example 1. Consider a single-peaked preference profile
with candidates a / b / c and peak distribution7 (3, 2, 4).
Under truthful voting, the plurality winner is c. However, if
candidate a does not run, the three voters in VR(a) rank
candidate b first, making b the plurality winner. By single-
peakedness, candidate a prefers b to c.

This example also shows that plurality can fail to select
the Condorcet winner when all candidates run and all voters
vote truthfully. The next example shows that requiring both
candidates and voters to play subgame-perfect equilibrium
strategies is still not sufficient for the Condorcet winner to
be chosen.

Example 2. Consider a single-peaked preference profile
with candidates a / b / c / d / e and peak distribution
(11, 3, 3, 3, 3). The Condorcet winner is b. Let s be the strat-
egy profile in which sx = 1 for all x ∈ {a, b, c, d, e} and sv
is “truthful voting” for all voters v. Then oplurality(s) = a
and no candidate other than a can change that outcome by
unilaterally deviating. Therefore, s is a C-equilibrium. To
see that s is also a V -equilibrium, we need to check that
“truthful voting” is deviation-proof for every subset of run-
ning candidates. Deviation-proofness clearly holds when-
ever at most two candidates run. If at least three candi-
dates run, single-peakedness implies that the leftmost run-
ning candidate has a plurality score of at least 11, whereas
each other running candidate has a score of at most 9. Thus,
no voter can change the outcome by unilaterally deviating.

We go on to show that the Condorcet winner will be cho-
sen if we require stronger equilibrium notions. We first an-
alyze strong V -equilibria. Note that this result does not re-
quire single-peaked preferences.8

Theorem 1. Let R be a preference profile with Condorcet
winner c∗ and let f be a majority-consistent voting rule.

(i) IfR|B has a Condorcet winner for every nonempty sub-
set B ⊆ C, then there exists a subgame-perfect strong
equilibrium (and hence a strategy profile that is both a
strong C-equilibrium and a strong V -equilibrium) for
R under f in which all candidates run.

(ii) If s is a strong V -equilibrium for R under f with
sc∗ = 1, then of (s) = c∗.

The proof of part (i) consists in showing that the fol-
lowing strategy profile is a subgame-perfect strong equilib-
rium: all candidates run and all voters, when faced with a
set B ⊆ C of running candidates, rank the Condorcet win-
ner in R|B first. The main idea of the proof of (ii) is that a
strategy profile s with sc∗ = 1 and of (s) = x 6= c∗ cannot
be a strong V -equilibrium, as it is not deviation-proof w.r.t.
VR(c

∗, x). The following example illustrates this.

Example 3. Let R be a single-peaked preference profile
with candidates a / b / c / d and peak distribution

7We often simplify examples with single-peaked preference
profiles by specifying the peak distribution only. This piece of in-
formation is clearly sufficient to identify both the Condorcet winner
and, in the absence of ties, the plurality winner.

8In particular, note that Theorem 1 does not make any assump-
tions on the preferences of candidates (other than narcissism).



(2, 1, 2, 4). The Condorcet winner is c. Consider the strat-
egy profile s in which all candidates run and all voters vote
truthfully. Then oplurality(s) = d. If all voters in VR(c, d) =
VR(a)∪VR(b)∪VR(c) deviate and rank c first, the outcome
changes to c.

We remark that part (ii) of Theorem 1 can be generalized9

by observing that it is sufficient for f to satisfy the follow-
ing condition, which is considerably weaker than majority-
consistency:

Whenever a set V ′ ⊆ V of voters forms a majority (i.e.,
|V ′| > |V |/2), then for every candidate a ∈ C that is
running and every profile of votes for voters in V \ V ′,
the voters in V ′ can vote in such a way that candidate a
is chosen.

It can be shown that all unanimous C2 functions (Fishburn
1977) satisfy this property.

The following corollary summarizes the consequences of
Theorem 1 for single-peaked preference profiles.

Corollary 1. Let R be a single-peaked preference profile
with Condorcet winner c∗ and let f be a majority-consistent
voting rule.

(i) There exists a subgame-perfect strong equilibrium (and
hence a strategy profile that is both a strong V -
equilibrium and a strongC-equilibrium) forR under f .

(ii) If s is a strong V -equilibrium and a C-equilibrium
(strong or not) for R under f , then of (s) = c∗.

We provide two examples to show that the statements
of Corollary 1 do not hold for rules that are not majority-
consistent.

Example 4. Let R be a single-peaked preference profile
with candidates a / b / c and peak distribution (5, 0, 4). If f
is Borda’s rule, there does not exist a strong V -equilibrium
(and hence no subgame-perfect strong equilibrium). To see
this, consider the case where all candidates run. Observe
that in any strong V -equilibrium, the outcome would have
to be a. (Suppose the outcome is not a. Then, the five voters
in VR(a) can jointly deviate and change the outcome to a.
They can do this by having one voter voting a � b � c, and
the remaining four voters voting exactly the opposite rank-
ings of the voters in VR(c).) However, there is no strong V -
equilibrium that yields outcome a. This is because the voters
in VR(c) prefer both other alternatives to a, and—no mat-
ter how the voters in VR(a) vote—the voters in VR(c) can
jointly deviate and achieve an outcome other than a. (One
of b and c will obtain a score of at least 3 from the voters in
VR(a). Without loss of generality, suppose it is b. Then the
voters in VR(c) can all vote b � c � a, making b win.)

9Sertel and Sanver (2004) prove a similar result in the (stan-
dard) setting where all candidates are assumed to run. A further
strengthening of part (ii) of Theorem 1 was pointed out to us by
François Durand: Instead of requiring that voters play a strong V -
equilibrium for every subset of running candidates, it is sufficient
to require voters to play a strong V -equilibrium only in those sub-
games that actually allow strong V -equilibria (and to not make any
assumptions on voter behavior otherwise).

Example 5. Let R be a single-peaked preference profile
with candidates a / b / c and five voters: three voters
have preferences a � b � c and two voters have pref-
erences b � c � a. The Condorcet winner is a. Let f
be the voting rule veto10 and let s be the strategy profile
where all candidates run and all voters vote truthfully. Then,
of (s) = b. Moreover, s is a strong C-equilibrium and a
strong V -equilibrium. The former holds because any devi-
ation involving a does not change the outcome (provided b
still runs), and c can only change the outcome to the less
preferred alternative a. For the latter, the only interesting
case is when all three candidates run. In this case, the two
voters in VR(b) have no incentive to deviate from truthful
voting (their favorite candidate is winning) and there is no
way for the three voters in VR(a) to jointly deviate and
achieve outcome a. (They can change the outcome to c by
voting a � c � b, but they prefer b to c.) It can further-
more be shown that, when all candidates run, every strong
V -equilibrium yields outcome b.

We now move to the case where candidates play a strong
equilibrium. If voters vote truthfully, the outcome will be the
Condorcet winner.

Theorem 2. Let R be a single-peaked preference profile
with Condorcet winner c∗ and let f be a majority-consistent
voting rule.

(i) There exists a strong C-equilibrium for R under f
where all voters vote truthfully.

(ii) If s is a strong C-equilibrium for R under f where all
voters vote truthfully, then of (s) = c∗.

Proof. For (i), let s be the strategy profile in which only
c∗ runs and all voters vote truthfully. We show that this is a
strong C-equilibrium for R under f . Suppose, for the sake
of contradiction, that C̃ ⊆ C is a coalition of candidates
that can, by changing its strategies, make alternative a 6= c∗

win, and moreover that all candidates in C̃ prefer a to c∗.
Define C− = {c ∈ C : c / c∗} and C+ = {c ∈ C :
c∗ / c}, and without loss of generality suppose that a ∈
C−. Because candidates’ preferences are single-peaked and
they rank themselves first, it follows that C̃ ⊆ C−. But this
implies that still, no candidate in C+ runs. Hence, all voters
with top(Rv) ∈ C+∪{c∗} still rank c∗ first (since they vote
truthfully), and because f is majority-consistent, it follows
that c∗ wins. This gives us the desired contradiction.

For (ii), let s be a strong C-equilibrium for R under f
where all voters vote truthfully. Consider the set C(s) of
candidates that are running under s. Define C−s = {c ∈
C(s) : c / c∗} and C+

s = {c ∈ C(s) : c∗ / c}. Assume
for the sake of contradiction that of (s) = a 6= c∗. Without
loss of generality, suppose that a ∈ C−s . Consider the set
C̃ = C+

s ∪ {c∗}. Define s′
C̃
= (s′c)c∈C̃ by

s′c =

{
1 if c = c∗

0 if c ∈ C+
s

10Veto does not only violate majority-consistency, but also the
weaker property defined after Theorem 1.



and observe that of (s′C̃ , s−C̃) = c∗. The reason for the lat-
ter is that (1) the set of voters v with top(Rv) = c∗ or
c∗ / top(Rv) forms a majority, (2) all of these voters satisfy
top(Rv|C(s′

C̃
,s−C̃)) = c∗, and (3) all voters vote truthfully

by assumption. Moreover, single-peakedness implies that all
candidates in C̃ prefer c∗ to a. Therefore, s is not (R, f)-
deviation-proof w.r.t. C̃, contradicting the assumption that s
is a strong C-equilibrium.

Example 6. Consider again the preference profileR and the
strategy profile s from Example 3. If both a and b deviate to
“not running,” the outcome (under plurality) changes from d
to c. Therefore, s is not a strong C-equilibrium.

Similar to the case of Theorem 1, we now provide exam-
ples that show that Theorem 2 cannot be generalized in cer-
tain ways. Example 7 shows that Theorem 2 does not hold
for Borda’s rule (which is not majority-consistent), and Ex-
ample 8 shows that Theorem 2 does not hold if the prefer-
ences of candidates are not single-peaked.

Example 7. Consider a single-peaked preference profile
with candidates a / b / c and five voters: three voters
have preferences a � b � c and two voters have prefer-
ences b � c � a. The Condorcet winner is a. Let s be
the strategy profile where sa = sb = sc = 1 and sv is
“truthful voting” for all voters v. It is easily verified that s
is a strong C-equilibrium and oBorda(s) = b. In fact, it can
be checked that the Condorcet winner is not chosen in any
strong C-equilibrium with truthful voting. (The only other
strong C-equilibrium under truthful voting has candidates b
and c running and also yields outcome b.)

Example 8. Consider the following preference profile with
candidates a, b, c and 14 voters: four voters have prefer-
ences a � b � c, four voters have preferences b � a � c,
and six voters have preferences c � b � a. The prefer-
ences of the candidates are such that a prefers c over b and
b prefers c over a. Whereas the preferences of the voters are
single-peaked with respect to the ordering a / b / c, this
is not true for the preferences of the candidates. (Therefore,
this profile is not single-peaked according to the definition in
Section 2.1.) The Condorcet winner is b and the Condorcet
loser is c. Let s be the strategy profile where all candidates
run and all voters vote truthfully. It is easily verified that s
is a strong C-equilibrium and oplurality(s) = c. In fact, “ev-
erybody running” is the only strong C-equilibrium under
truthful voting.

Since Theorem 1 already covers the case where both vot-
ers and candidates play a strong (subgame-perfect) equi-
librium, only one case is left to consider: candidates play-
ing a strong C-equilibrium, and voters merely playing a
V -equilibrium. The following example shows that these re-
quirements are not sufficient for the Condorcet winner to be
chosen.

Example 9. Consider a single-peaked preference profile
with candidates a / b / c and peak distribution (1, 1, 1).
The Condorcet winner is b. Let s be a strategy profile with

strong
V -eq. V -eq. truthful

voting

strong
C-equilibrium

yes no yes

(Cor. 1) (Ex. 9) (Thm. 2)

C-equilibrium
yes no no

(Cor. 1) (Ex. 2) (Ex. 2)

naive candidacy
(sc = 1 ∀c)

yes no no

(Thm. 1) (Ex. 2) (Ex. 1 & 2)

Table 1: Overview of results. A table entry is “yes” if ev-
ery strategy profile that satisfies the corresponding row and
column conditions yields the Condorcet winner under every
majority-consistent voting rule. Moreover, for every “yes”
entry, a strategy profile satisfying the conditions is guaran-
teed to exist.

sc = 1 and voter strategies sv that satisfy

top(sv(B)) =

{
c if c ∈ B
top(Rv|B) otherwise

for each B ⊆ C. That is, all three voters rank c first
whenever c runs, and vote truthfully otherwise.11 Obviously,
oplurality(s) = c. We claim that s is both a V -equilibrium
and a strong C-equilibrium. For the former, we distinguish
two cases: If c runs, then all voters rank c first and no voter
can change the outcome by unilaterally deviating. If c does
not run, then at most two candidates run and no voter can
benefit by voting for their less preferred candidate. For the
latter, no coalition of candidates can change the outcome
in such a way that all members of the coalition prefer the
new outcome to c. (Such a coalition would need to include
candidate c, who has no incentive to deviate.)

The phenomenon illustrated in this example is perhaps
somewhat surprising: Assuming that candidates play a
strong C-equilibrium, both truthful voting and strong V -
equilibrium voting yields the desirable outcome; however,
V -equilibrium voting—a notion of sophistication that might
appear to be “in between” the other two notions—does not.
Table 1 summarizes the results of this section.

4 Computing the Candidate Stable Set
In this section, we study a voting rule known as voting by
successive elimination (VSE). In particular, we will be in-
terested in the computational complexity of computing out-
comes under VSE if both candidates and voters act strate-
gically. We do not require single-peaked preferences, but in
order to avoid majority ties, we still assume that the number

11Note that the voter v with top(Rv) = a plays a weakly domi-
nated strategy, because c is her least preferred alternative. This can
be avoided by introducing a fourth candidate d with c / d and
VR(d) = ∅.



of voters is odd. VSE takes as input an ordering σ ∈ L(C)
of the candidates. The rule proceeds by holding successive
pairwise elections. In a pairwise election, there are two can-
didates a and b and every voter v ∈ V votes for exactly one
of the two candidates. The winner of a pairwise election is
the candidate that gets the majority of votes.

For a given subset B ⊆ C of candidates with |B| ≥ 2,
VSE works as follows. Label the candidates such that σ|B =
(c1, c2, . . . , c|B|). In the first round, there is a pairwise elec-
tion between c1 and c2. The winner of this election proceeds
to the second round, where he faces c3. The winner of this
election then faces c4, and so on. VSE selects the winner of
round |B| − 1.

Truthful voting for a voter v with preferences Rv cor-
responds to the strategy that, in every pairwise election
between two candidates a and b, the voter votes for
top(Rv|{a,b}). It is well known that, under VSE, voters can
benefit from voting strategically. Moreover, there is a partic-
ularly natural notion of strategic voting called sophisticated
voting (Farquharson 1969; Moulin 1983; Miller 1995). So-
phisticated voting assumes that voters’ preferences are com-
mon knowledge and applies a backward induction argument:
In the last round of VSE, there is no incentive to vote strate-
gically and thus the majority winner of the remaining two
candidates will be chosen. Anticipating that, in the second-
to-last round, voters are able to compare which outcome
would eventually result from either one of the current can-
didates winning this round, and vote accordingly; etc. In the
absence of majority ties, sophisticated voting yields a unique
winning candidate, the sophisticated outcome. The sophisti-
cated outcome corresponds to the outcome that results when
voters iteratively eliminate weakly dominated strategies.

In order to determine both the truthful outcome and the
sophisticated outcome, it is sufficient to know the truth-
ful outcome of pairwise elections between all pairs of the
candidates. This information is captured by the majority
relation. For a preference profile R, the majority relation
RM ⊂ C × C is defined by

a RM b if and only if VR(a, b) >
|V |
2

.

Shepsle and Weingast (1984) defined an algorithm that,
given a majority relation RM , an ordering σ, and a sub-
set B ⊆ C of the candidates, computes the sophisticated
outcome when the set of running candidates is given by B.
Moreover, Banks (1985) characterized the set of candidates
that, for given RM and B ⊆ C, are the sophisticated out-
come for some ordering σ. This set is known as the Banks
set BA(B,RM ). In the notation12 developed in this paper,
BA(B,RM ) corresponds to

⋃
σ oVSE(σ)(s), where sc = 1

if c ∈ B and sv is “sophisticated voting” for all voters.
Dutta, Jackson, and Le Breton (2002) analyzed how the

set of sophisticated outcomes changes when strategic can-
didacy is accounted for. Consider a strategy profile s =

12Strategies, outcomes, and equilibrium notions for VSE can be
defined similarly to the definitions in Section 2. We omit the details
since they are not important for our result. For formal definitions of
the concepts considered in this section, we refer to (Dutta, Jackson,
and Le Breton 2002).

(sC , sV ), where sC = (sc)c∈C and sV = (sv)v∈V and say
that s is an entry equilibrium if it is a C-equilibrium and sv
is “sophisticated voting” for all voters v ∈ V . The candi-
date stable set CS (R) of a preference profileR is defined as
the set of all candidates that are the sophisticated outcome
for some collection of candidate preferences and for some
ordering σ, when the set of running candidates is given by
C(s) for some entry equilibrium s. Thus, the candidate sta-
ble set is the analog of the Banks set when strategic candi-
dacy is taken into account. Since CS (R) only depends on
the majority relation RM of R, we usually write CS (RM ).

Dutta, Jackson, and Le Breton (2002) have provided an
elegant characterization of CS (RM ). We use this character-
ization to show that computing the candidate stable set is
intractable. More precisely, we show that the following de-
cision problem is NP-complete: Given a preference profile
R and a candidate c ∈ C, is it the case that c ∈ CS (RM )?

Theorem 3. Computing the candidate stable set is NP-
complete.

The proof adapts a construction that was used by Brandt et
al. (2010) to show that computing the Banks set is NP-hard.

5 Conclusion
We have analyzed the combination of strategic candidacy
and strategic voting in two settings that allow meaningful
voting equilibria. In both settings, the set of equilibrium out-
comes under strategic candidacy (given that voters are suf-
ficiently sophisticated) has an elegant characterization: the
Condorcet winner (in the single-peaked, majority-consistent
rule setting with strong V -equilibria or with truthful voting
and strong C-equilibria) and the candidate stable set (in the
VSE setting with sophisticated voting). Whereas Condorcet
winners are easy to compute, we have shown that the candi-
date stable set is computationally intractable.

It seems likely that the positive results in Section 3 ex-
tend to settings where preferences are single-peaked on a
tree. It would also be interesting to check whether similar
results can be obtained for related domain restrictions such
as single-crossing or value-restricted preferences.

The positive results in Section 3 rely on finding the right
level of equilibrium refinement (strong V -equilibrium, or
strongC-equilibrium with truthful voting). If we move away
from restricted domains, is there another type of equilibrium
refinement (Dutta and Laslier 2010; Thomson et al. 2013;
Obraztsova, Markakis, and Thomson 2014) that allows us
to arrive at meaningful equilibria by ruling out “unnatural”
ones?

Equilibrium dynamics (Meir et al. 2010) is another topic
for future research. For example, in the setting with single-
peaked preferences and a majority-consistent rule, are there
natural dynamics that are guaranteed to lead us to an equi-
librium choosing the Condorcet winner?

On a higher level, one might wonder to what extent the
phenomena exhibited in candidacy games can be related to
other problems that involve altering the set of candidates,
such as control problems (see (Lang, Maudet, and Polukarov
2013), Section 5) cloning (Tideman 1987), and nomination
of alternatives (Dutta and Pattanaik 1978; Dutta 1981).
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