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a Condorcet winner whenever one exists

e A candidate is a majority winner Iif he

IS ranked first by a majority of voters Pairwise

. .. : v comparisons:
» arule is majority-consistent if it selects P

a majority winner whenever one exists ©>0
e Condorcet-consistency implies >
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Strategic Voting & Strategic Candidacy

e Standard assumption in voting theory: set of candidates is fixed

This ignores candidates’ incentives to enter/leave an election

» 2000 US presidential election: Bush vs. Gore vs. Nader

4 ;
~48% ~48% ~4%

Dutta, Jackson, & Le Breton [Econometrica 2001]: strategic candidacy

Most papers on strategic candidacy assume truthful voting

Question: What it both voters and candidates act strategically?

» will this lead to “better” voting outcomes?
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The Candidacy Game

Finite set of candidates C = {,&. @ @& .}
Finite set of voters V = {{= (=) 2}
» we assume that |V| is odd

Both voters and candidates have preferences over candidates
2 9000 @: 0-0-9-08

Two-stage game
» stage 1: candidates decide to run or not
» stage 2: voters submit ranking of running candidates

What are the equilibrium outcomes of this game?

» setting 1: single-peaked preferences and majority-consistent voting rules
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e Relationships
» (C-eq. A V-eq.) & subgame-perfect equilibrium

» (strong C-eq. A strong V-eq.) < subgame-perfect strong equilibrium
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Strong V-equilibria

e Consider a single-peaked preference profile with Condorcet
winner & and a majority-consistent voting rule.

e Theorem: (i) There exists a subgame-perfect strong equilibrium.
(i) In every strong V-equilibrium in which &€ runs, € wins.

e Corollary: In every strong V-equilibrium that is also a C-equilibrium
(strong or not), @ wins.
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1sistent voting rule
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» (strong C-eq. A strong V-eq.), but not subgame-pertect strong equilibrium

Example 1. Consider a preference profile with candidates a,b,c and a single voter with
preferences a > b > ¢. The preferences of candidate b are given by b >y ¢ >, a. The voting
rule f selects the candidate ranked first by the voter whenever all three candidates run; if,
however, at most two candidates run, the lexicographically last one is chosen, ignoring the
voter’s vote. Let s be the strateqy profile in which a and ¢ run and the voter votes truthfully.
The outcome of s under f is os(s) = c. We claim that s is (1) a strong C-equilibrium and
(2) a strong V -equilibrium, but (3) not a subgame-perfect strong equilibrium (in fact not
even a strong equilibrium).

For (1), observe that ¢ has no incentive to participate in any deviation. The same holds
for a, because the outcome will still be ¢ if a deviates (whether b runs or not). And when
all three candidates run, the outcome is a, making candidate b—the only deviator—worse
off. For (2), s is a strong V -equilibrium because the voter makes his favorite candidate win
in the only case where his vote has any influence. For (3), consider the following deviation.
Candidate b deviates to running and the voter deviates to ranking b first whenever b runs.
The outcome will change to b, and both deviators (candidate b and the voter) prefer b to c.

R o Duke
Markus Brill: Strategic Voting and Strategic Candidacy 18
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strong V-equilibria (1)

Example 4. Let R be a single-peaked preference profile with candidates a < b < ¢ and
peak distribution (5,0,4). If f is Borda’s rule, there does not exist a strong V -equilibrium
(and hence no subgame-perfect strong equilibrium). To see this, consider the case where all
candidates run. Observe that in any strong V-equilibrium, the outcome would have to be a.
(Suppose the outcome is not a. Then, the five voters in Vr(a) can jointly deviate and change
the outcome to a. They can do this by having one voler voting a > b > ¢, and the remaining
four voters voting exactly the opposite rankings of the voters in Vi(c).) However, there is
no strong V -equilibrium that yields outcome a. This is because the voters in Vi(c) prefer

both other alternatives to a, and—no matter how the voters in Vi(a) vote—the voters in
Vr(c) can jointly deviate and achieve an outcome other than a. (One of b and c will obtain

a score of at least 3 from the voters in Vi(a). Without loss of generality, suppose it is b.
Then the voters in Vi(c) can all vote b > ¢ > a, making b the winner.)

Markus Brill: Strategic Voting and Strategic Candidacy 9 YN ivErsity



strong V-equilibria (2)

Example 5. Let R be a single-peaked preference profile with candidates a < b < ¢ and five
voters: three voters have preferences a > b > ¢ and two voters have preferences b > ¢ > a.
The Condorcet winner is a. Let f be the voting rule veto® and let s be the strategy profile
where all candidates run and all voters vote truthfully. Then, of(s) = b. Moreover, s is a
strong C-equilibrium and a strong V -equilibrium. The former holds because any deviation
involving a does not change the outcome (provided b still runs), and ¢ can only change the
outcome to the less preferred alternative a. For the latter, the only interesting case is when
all three candidates run. In this case, the two voters in Vi(b) have no incentive to deviate
from truthful voting (their favorite candidate is winning) and there is no way for the three
voters in Vi(a) to jointly deviate and achieve outcome a. (They can change the outcome
to ¢ by voting a > c > b, but they prefer b to c.) It can furthermore be shown that, when all
candidates run, every strong V -equilibrium yields outcome b.

R o Duke
Markus Brill: Strategic Voting and Strategic Candidacy 20
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strong C-eq., truthful voting (1)

Example 6. Consider a single-peaked preference profile with candidates a < b < ¢ and five
voters: three volers have preferences a > b > ¢ and two voters have preferences b > ¢ > a.
The Condorcet winner is a. Let s be the strategy profile where s, = s, = s. = 1 and s,
18 “truthful voting” for all voters v. It is easily verified that s is a strong C-equilibrium
and 0porda(8) = b. In fact, it can be checked that the Condorcet winner is not chosen in
any strong C-equilibrium with truthful voting. (The only other strong C-equilibrium under
truthful voting has candidates b and ¢ running and also yields outcome b.)

R o Duke
Markus Brill: Strategic Voting and Strategic Candidacy 21
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strong C-eq., truthful voting (2)

Example 7. Consider the following preference profile with candidates a, b,c and 14 voters.

4 4 6
a b c
b a b
cC ¢ a

The preferences of the candidates are such that a prefers ¢ over b and b prefers ¢ over a.
Whereas the preferences of the voters are single-peaked with respect to the ordering a 4 b < c,
this is not true for the preferences of the candidates. (Therefore, this profile is not single-
peaked according to the definition in Section 3.1.) The Condorcet winner is b and the
Condorcet loser is c. Let s be the strategy profile where all candidates run and all voters
vote truthfully. It is easily verified that s is a strong C-equilibrium and opyraiity(8) = c. In
fact, “everybody running” is the only strong C-equilibrium under truthful voting.

Markus Brill: Strategic Voting and Strategic Candidacy 22 yNivERsiTy





