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Abstract

When donating money to a (say, charitable) cause, it is possible to use the
contemplated donation as a bargaining chip to induce other parties interestedin
the charity to donate more. Such negotiation is usually done in terms ofmatching
offers, where one party promises to pay a certain amount if others pay a certain
amount. However, in their current form, matching offers allow for onlylimited
negotiation. For one, it is not immediately clear how multiple parties can make
matching offers at the same time without creating circular dependencies.Also, it
is not immediately clear how to make a donation conditional on other donations
to multiple charities when the donor has different levels of appreciation forthe
different charities. In both these cases, the limited expressiveness ofmatching
offers causes economic loss: it may happen that an arrangement that all parties
(donors as well as charities) would have preferred cannot be expressed in terms of
matching offers and will therefore not occur.

In this paper, we introduce a bidding language for expressing very general
types of matching offers over multiple charities. We formulate the correspond-
ing clearing problem (deciding how much each bidder pays, and how much each
charity receives), and show that it cannot be approximated to any ratioin polyno-
mial time unless P=NP, even in very restricted settings. We give a mixed integer
program formulation of the clearing problem, and show that for concave bids, the
program reduces to a linear program. We then show that the clearing problem for
a subclass of concave bids is at least as hard as the decision variant oflinear pro-
gramming. We also consider the case where each charity has a target amount, and
bidders’ willingness-to-pay functions are concave. Here, we show that the optimal
surplus can be approximated to a ratiom, the number of charities, in polynomial
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time (and no significantly better approximation is possible in polynomial time un-
less P=NP); no polynomial-time approximation ratio is possible for maximizing
the total donated, unless P=NP. Subsequently, we show that the clearing problem
is much easier when bids are quasilinear—for maximizing surplus, the problem
decomposes across charities, and for maximizing the total donated, a greedy ap-
proach is optimal if the bids are concave (although this latter problem is weakly
NP-hard when the bids are not concave). For the quasilinear setting, westudy the
mechanism design question. We show that an ex-post efficient mechanism is im-
possible even with only one charity and a very restricted class of bids. We also
show that there can be benefits to linking the charities from a mechanism design
standpoint. Finally, we discuss an experiment in which we used this methodology
to collect money for victims of the 2004 Indian Ocean Tsunami.

1 Introduction

When money is donated to a charitable (or other) cause (hereafter referred to as a
charity), often the donating party givesunconditionally: a fixed amount is transferred
from the donor to the charity, and none of this transfer is contingent on other events—
in particular, it is not contingent on the amount given by other parties. Indeed, this is
currently often the only way to make a donation, especially for small donating parties
such as private individuals. However, when multiple parties support the same charity,
each of them would prefer to see the others give more rather than less to this charity. In
such scenarios, it is sensible for a party to use its contemplated donation as a bargaining
chip to induce the others to give more. This is done by making the donation conditional
on the others’ donations. The following example will illustrate this, and show that the
donating parties as well as the charitable cause may simultaneously benefit from the
potential for such negotiation.

Suppose we have two parties,1 and2, who are both supporters of charityA. To
either of them, it would be worth $0.75 ifA received $1. It follows that neither of
them will be willing to give unconditionally, because $0.75< $1. However, if the
two parties draw up a contract that says that they will each give $0.5, both the parties
have an incentive to accept this contract (rather than have no contract at all): with the
contract, the charity will receive $1 (rather than $0 without a contract), which is worth
$0.75 to each party, which is greater than the $0.5 that that party will have to give.
Effectively, each party has made its donation conditional on the other party’s donation,
leading to larger donations and greater happiness to all parties involved.

One method that is often used to bring this about is to make amatching offer.
Examples of matching offers are: “I will givex dollars for every dollar donated,”
or “I will give x dollars if the total collected from other parties exceedsy.” In our
example above, one of the parties can make the offer “I will donate $0.5 if the other
party also donates at least that much,” and then the other party will have an incentive
to indeed donate $0.5, so that the total amount given to the charity increases by $1.
Thus this matching offer implements the contract suggestedabove. As a real-world
example, the United States government has authorized a donation of up to $1 billion to
the Global Fund to fight AIDS, TB and Malaria, under the condition that the American
contribution does not exceed one third of the total—to encourage other countries to
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give more [35].
However, there are several limitations to the simple approach of matching offers as

just described.

1. It is not clear how two parties can make matching offers where each party’s
offer is stated in terms of the amount that the other pays. (For example, it is not
clear what the outcome should be when both parties offer to match the other’s
donation.) Thus, matching offers can only be based on payments made by parties
that are giving unconditionally (not in terms of a matching offer)—or at least
there can be no circular dependencies.1

2. Given the current infrastructure for making matching offers, it is impractical to
make a matching offer depend on the amounts given tomultiple charities. For
instance, a party may wish to specify that it will pay $100 given that charityA
receives a total of $1000, but that it will also count donations made to charity
B, at half the rate. (Thus, a total payment of $500 to charityA combined with
a total payment of $1000 to charityB would be just enough for the party’s offer
to take effect.)

In contrast, in this paper we propose a new approach where each party can express
its relative preferences for different charities, and makeits offer conditional on its own
appreciation for the vector of donations made to the variouscharities. Moreover, the
amount the party offers to donate at different levels of appreciation is allowed to vary
arbitrarily. Finally, there is a clear interpretation of what it means when multiple parties
are making conditional offers that are stated in terms of each other. Given each com-
bination of (conditional) offers, there is a (usually) unique solution which determines
how much each party pays, and how much each charity is paid. This can be useful in
the context of multiple individuals who wish to make matching offers, but the parties
do not need to be individuals; for example, one can imagine applying this approach at
an international aid conference (for instance, for rebuilding Haiti after its devastating
2010 earthquake) where the parties are donor nations deciding how much each of them
will contribute.

However, as we will show, with multiple charities, finding this solution (theclear-
ing problem) requires solving an optimization problem that, in general, is hard. A
large part of this paper is devoted to studying how hard this problem is under different
assumptions on the structure of the offers (orbids), and providing algorithms for solv-
ing it. Towards the end of the paper, we also study themechanism designproblem of
motivating the bidders to bid truthfully. We also discuss a small experiment.

In short, expressive markets for making charitable donations have the potential
to increase welfare by facilitating the voluntary reallocation of wealth. To reach this
potential, we discuss primarily computational aspects, and secondarily mechanism-
design aspects of this problem. In Appendix A, we discuss therelationship between
expressive charity donation and combinatorial auctions and exchanges. It can safely
be skipped, but may be of interest to the reader with a background in combinatorial
auctions and exchanges.

1Typically, larger organizations match offers of private individuals. For example, the American Red
Cross Liberty Disaster Fund maintains a list of businesses that match their customers’ donations [17].
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2 Definitions

Throughout this paper, we will refer to the offers that the donating parties make as
bids, and to the donating parties asbidders. In our bidding framework, a bid will
specify, for each vector of total payments made to the charities, how much that bidder
is willing2 to contribute. (The bidder’s own contribution is also counted in the vector of
total payments—so, the vector of total payments to the charities represents the amount
given byall donating parties, not just the ones other than this bidder.)We note that
each bidder specifies onlyonetotal amount that she is willing to give (for each vector
of total payments made to the charities), that is, she does not explicitly specify the
charities to which her donation will go.3 The bidding language is expressive enough
that no bidder should have to make more than one bid. The following definition makes
the general form of a bid in our framework precise.

Definition 1 In a setting withm charitiesc1, c2, . . . , cm, a bid by bidderbj is a func-
tion wj : R

m → R. The interpretation is that if charityci receives a total amount of
πci

, then bidderj is willing to donate (up to)wj(πc1
, πc2

, . . . , πcm
).

We note thatwj doesnot necessarily decompose across charities, that is, we do

not necessarily have thatwj(πc1
, πc2

, . . . , πcm
) =

m∑

i=1

wi
j(πci

) (for some component

functionswi
j). There are several reasons why such a decomposability assumption may

be too restrictive. One is that the charities may be related:for example, two charities
may pursue the same goal or related goals. Another reason is that a bidder may only
have a limited amount of money to give—or, more generally, a bidder who has already
given a large amount may become more reluctant to give another dollar. Later in this
paper, we will effectively mostly assume away the former reason; we will discuss the
latter reason in more detail shortly.

We now define possible outcomes in our model, and which outcomes are valid
given the bids that were made.

Definition 2 Anoutcomeis a vector of payments made by the bidders(πb1 , πb2 , . . . , πbn
),

and a vector of payments received by the charities(πc1
, πc2

, . . . , πcm
).

Definition 3 A valid outcome is an outcome where

1.
n∑

j=1

πbj
≥

m∑

i=1

πci
(at least as much money is collected as is given away);

2. For all 1 ≤ j ≤ n, πbj
≤ wj(πc1

, πc2
, . . . , πcm

) (no bidder gives more than she
is willing to).

Of course, in the end, only one of the valid outcomes can be chosen. We choose
the valid outcome that maximizes theobjectivethat we have for the donation process.

2The word “willing” here should not be interpreted as being necessarily directly related to the bidder’s
true preferences. Rather, the bidder just indicates how muchsheagreesto contribute in each case, and at this
point we are not yet concerned with the bidder’s intentions behind entering into this agreement.

3In Appendix B, we discuss a variant where bidders make paymentsto charities directly and can express
that they are not willing to give to certain charities.
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Definition 4 Anobjectiveis a function from the set of all outcomes toR.4 After all the
bids have been collected, a valid outcome will be chosen thatmaximizes this objective.

One example of an objective issurplus, given by
n∑

j=1

πbj
−

m∑

i=1

πci
. One easy way

of thinking about the surplus is as the profit of a company managing the expressive
donation marketplace. However, it should be emphasized most strongly that the surplus
does notneedto go the entity organizing the donation market. The surpluscan also be
returned to the bidders, or to the charities. Indeed, the idea of a company profiting
from charitable donations may be unpalatable, and the organization would presumably
be run more naturally as a nonprofit.

To illustrate this point more precisely, we can consider thefollowing objective,

which we will callsurplus′:
n∑

j=1

[wj(πc1
, πc2

, . . . , πcm
)−πbj

]. That is, for each bidder

there is slack between how much she is willing to pay, and how much she actually pays.
A large slack indicates a happy bidder: she would have been willing to pay even more
to achieve these donations to the charities. (We will give a more precise utility-theoretic
interpretation of this shortly.) So, we try to maximize the sum of these slacks; this is
the surplus′ objective. (We note that this objective depends on the bids.) The next
proposition shows that surplus and surplus′ are effectively equivalent. As a result, in
most of the paper we will simply consider maximizing surplus, with the understanding
that such techniques apply just as well to maximizing surplus′.

Proposition 1 A vectorπc1
, . . . , πcm

is part of a valid outcome maximizing surplus if
and only if it is part of a valid outcome maximizing surplus′.

Proof: Suppose the outcomeπb1 , . . . , πbn
, πc1

, . . . , πcm
maximizes surplus among

valid outcomes; lets =
n∑

j=1

πbj
−

m∑

i=1

πci
be the surplus. Then, the outcome where we

give the entire surplus to bidder 1,π′
b1

= πb1−s, π′
b2

= πb2 , . . . , π
′
bn

= πbn
, πc1

, . . . , πcm
,

is still valid, and its surplus′ is at leasts. Thus, the optimal surplus′ is always at least
the optimal surplus.5

Conversely, suppose the outcomeπ′
b1

, . . . , π′
bn

, πc1
, . . . , πcm

maximizes surplus′

among valid outcomes; lets′ =
n∑

j=1

[wj(πc1
, πc2

, . . . , πcm
)−π′

bj
] be the surplus′. Then,

the outcome where we reduce each bidder’s slack to zero,πb1 = w1(πc1
, πc2

, . . . , πcm
), . . . , πbn

=
wn(πc1

, πc2
, . . . , πcm

), πc1
, . . . , πcm

, is still valid, and its surplus is at leasts′. Thus,
the optimal surplus is always at least the optimal surplus′. It follows that the optimal
surplus and the optimal surplus′ are always equal. Moreover, they are obtained at the

4In general, the objective function may also depend on the bids, but the main objective functions under
consideration in this paper—surplus or the total amount donated—do not depend on the bids. The techniques
presented in this paper will typically generalize to objectives that take the bids into account directly.

5It is good to emphasize that at this point we are not considering fairness (though of course we could
spread the surplus more equally) or strategic issues. In fact, in mechanism design, there is a growing literature
on the highly nontrivial problem of redistributing surpluspayments to the bidders without creating perverse
incentives (e.g., [4, 27, 5, 19, 23, 1, 6, 20]).
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same vectorsπc1
, . . . , πcm

, as shown above. �

While the surplus objective has appealing properties, we mayconsider others. For

example, another objective istotal amount donated, given by
m∑

i=1

πci
. This objective

has the advantage that more money is donated to the charitiesoverall; it also has the
downside that more may be given to a charity than it really needs. This distinction be-
tween maximizing surplus and maximizing the total amount donated has an analogue
in the combinatorial exchanges literature, where two common objectives are to maxi-
mize surplus, and to maximize total trading volume (aka. liquidity)—though at least in
that context there are good arguments for preferring the surplus objective [34, 16].

Finding a valid outcome that maximizes the objective is a nontrivial computational
problem. We will refer to it as theclearingproblem. The formal definition follows.

Definition 5 (DONATION-CLEARING) We are given a set ofn bids over charities
c1, c2, . . . , cm. Additionally, we are given an objective function. We are asked to find
an objective-maximizing valid outcome.

How hard the DONATION-CLEARING problem is depends on the types of bids
used and the language in which they are expressed.

2.1 The special case of a single charity

To build intuition, it is helpful to consider an important special case that is interesting in
its own right: the case in which there is only one charity,c. In this context, each bidder
bj specifies a functionwj : R → R, indicating how much the bidder is willing to
give as a function of the total received by the charity. In this special case, the clearing
problem is particularly easy. We consider the functionwtotal : R → R, defined by

wtotal(πc) =
n∑

j=1

wj(πc). This function returns, as a function of the amount receivedby

the charity, the total that the bidders are willing to give. Given this function, it is easy
to see which amounts the charity can receive in valid outcomes: any amountπc such
thatwtotal(πc) ≥ πc is part of a valid outcome, because if we collect the full amount
that each bidder is willing to pay, we will collect at least asmuch money as is given
away. (Of course, we can also collect less, as long as the total collected is at leastπc.)
Thus, if we graph thewtotal function with the total received,πc, on the x-axis, and the
total willingness to pay,wtotal(πc), on the y-axis, then we find valid outcomes wherever
the functionwtotal is at or above the 45-degree line (the identity function); the outcome
that maximizes the total amount donated is the furthest-to-the-right such point, and the
outcome that maximizes surplus is the point that is furthestabove the 45-degree line.
This is illustrated in more detail in the Indian Ocean Tsunami experiment in Section 10.

When there are multiple charities, the clearing problem becomes more complicated.
In fact, for multiple charities, it becomes less reasonableto ask bidders to specify
arbitrary functionswj : R

m → R, and so we need to think about designing a bidding
language for the bidders. Before we do so, it is helpful to discuss whether it makes
sense to interpret the bids as statements about the bidders’utilities, and how to do so.
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2.2 Discussion of the merits of utility-theoretic interpretations

So far, we have not said anything about how we assume bids relate to the bidders’
utilities. At some level, it is not strictly necessary to do so: the semantics of a bid in our
framework are perfectly well defined even without any utility-theoretic interpretation.
Namely, the payment willingness function simply specifies the maximum amount that a
bidder can be asked to pay, given a vector of donations. The bid represents a conditional
commitment to donate money. Indeed, in order to apply a system like the one described
in this paper in practice, it is highly desirable to have sucha simple description of the
semantics of bids—one that does not depend on abstract concepts such as utility, which
are presumably foreign to many of the people who might use thesystem.

Moreover, as we will see, even if we do interpret the bids in a utility-theoretic
way, the basic design that we propose (when interpreted straightforwardly, that is, as a
first-price mechanism) is in any case not incentive compatible. (In mechanism design,
a mechanism isincentive compatibleif each bidder is always best off declaring her
preferences truthfully.) To make a comparison to auctions,our proposed design is more
similar to a first-price auction, in which the winning biddersimply pays her bid, than
to a Vickrey auction [36], in which the winner pays the bid of the next-highest bidder
(or to the Vickrey auction’s generalization to VCG mechanisms [36, 7, 18]). VCG
mechanisms are in fact incentive compatible, and because ofthis, the bids can arguably
truly be interpreted as reflecting the bidders’ utilities. In contrast, in first-price auctions
(or many other mechanisms), bidders are incentivized to bidstrategically. Hence, while
their bids may be given in the same form as under a VCG mechanism, it is, to say the
least, a stretch to interpret these bids as truly representing the bidders’ utilities. Because
of this, it is perhaps best to consider a first-price auction as just a particular game—one
in which we do not attach too much direct meaning to the bids, other than the guarantee
to each bidder that she will not be made to pay more than she bid. It is the same for our
charity market.

In spite of the theoretical advantages of incentive compatibility, it is extremely rare
to see an incentive compatible mechanism such as VCG actually deployed in practice.
This is in contrast to first-price mechanisms, which are quite common. Presumably, one
important reason for this is that it is much easier to explaina first-price mechanism to a
novice. Other practical drawbacks of incentive compatiblemechanisms such as VCG
have received much discussion [29, 30, 11, 3]. Moreover, as we will see in Section 9, in
the specific context of charitable donations, there are fundamental limitations on what
can be achieved by incentive compatible mechanisms.

One may argue that, with a mechanism that is not incentive compatible, we need to
be concerned about strategic behavior by the bidders. In fact, by therevelation prin-
ciple from the theory of mechanism design, focusing on incentive compatible mech-
anisms is without loss of optimality in the context of strategic bidders that behave
according to the laws of game theory. This is absolutely a valid point, and indeed we
do consider such strategic behavior in Section 9. Nevertheless,in the specific context of
donations to charities, it seems perhaps unlikely that a game-theoretic solution based
on a simple model of utilities will give us an accurate prediction of actual behavior
in practice. This is first because it appears that people’s reasons for giving to charity
are complex and varied. Second, the image of a hard-nosed agent strategically pur-
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suing maximum advantage for herself seems somewhat out of place in the context of
charitable donations. This is not a normative statement—in principle, an agent’s util-
ity function can model all sorts of preferences, including altruistic ones, and there is
no reason that she should not act in accordance with her preferences—but these types
of considerations are nevertheless likely to affect people’s behavior in practice. To il-
lustrate these points, it is helpful to point at the real-world bids in the experiment in
Section 10. It seems difficult to explain such a diversity of bids with a simple strategic
model.

In spite of all these arguments, wedo believe that it is important to think about
how bids may reflect the bidders’ underlying utility functions. Besides considerations
of strategic bidding, one important reason for this is that we need a bidding language
in which the bidders can express their bids. A good bidding language makes it easy
to express “natural” bids, and in order to understand what natural bids are, it helps to
think about how they may relate to the bidder’s utility.

2.3 A utility-theoretic interpretation

We now give a utility-theoretic interpretation of bids in our framework. We assume
that bidderbj ’s utility uj depends only on how much she gives (πbj

) and how much
the charities receive (πc1

, . . . , πcm
). We additionally assume that the utility is non-

increasing inπbj
(when holding theπci

fixed), and moreover that for any values
of πc1

, . . . , πcm
, there exists a value ofπbj

such thatuj(πbj
, πc1

, . . . , πcm
) = 0.

Given this, we can choose to interpret the bidder’s willingness to pay as the largest
amount that the bidder could pay and still end up with nonnegative utility, that is,
wj(πc1

, . . . , πcm
) = max{πbj

|uj(πbj
, πc1

, . . . , πcm
) ≥ 0}.

Given this, the condition that a bidder should not pay more thanwj(πc1
, . . . , πcm

)
is equivalent to saying that she should receive utility at least0. This can be interpreted
as anindividual rationality (aka.voluntary participation) constraint: participating in
the market should not make a bidder worse off than she would have been if the whole
event had not happened and no bidder had given anything.6

An interesting special case is that ofquasilinear utility, where we can writeuj(πbj
, πc1

, . . . , πcm
) =

wj(πc1
, . . . , πcm

) − πbj
. In this case, utility can be expressed in monetary terms. This

also gives us another justification for maximizing surplus (more precisely, surplus′):

Proposition 2 If utilities are quasilinear, then an outcome maximizes surplus′ if and
only if it maximizes the sum of the bidders’ utilities.

6One might argue that a more appropriate definition of individual rationality would be that a bidder
should not be better off acting separately in the world, while the other bidders continue to participate in the
mechanism. However, such a more stringent definition immediatelyresults in impossibilities. For example,
consider a charity that requires a donation of1 for a project (but has no use for additional money). If there
is only a single bidder, who is willing to pay2 to see the charity get1, then presumably this bidder should
indeed give1—in fact, the more stringent definition of individual rationality would require this, because
otherwise the bidder could just give the money to the charity directly, outside of the mechanism. But then,
consider the situation where there are two such bidders. If one of them does not participate, then the other
bidder will end up giving the full amount, so that the former bidder free-rides. But we cannot makeboth
bidders at least as happy as they would be as free-riders—someone has to put up the money. Thus, there
is no individually rational outcome at all under this more stringent definition. Section 9 considers strategic
phenomena in more detail.
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Proof: A bidder’s utility for an outcome iswj(πc1
, . . . , πcm

) − πbj
, which is equal to

that bidder’s slack—and the surplus′ objective is the sum of these slacks. �

While we will devote a reasonably large part of this paper to the case of quasi-
linear utilities, in our opinion, this restriction is oftennot reasonable in the context
of donations to charities. Intuitively, the argument is as follows. If utility were truly
quasilinear, then the reason that a donor gives only a bounded amount to a charity must
be that the donor feels that, eventually, the marginal benefit of more money going to the
charity starts to significantly decrease. While this may be reasonable for small char-
ities with a limited mission (e.g., the local animal shelter only needs so much money
to do the most important things that it can), for large charities with a broader mission
(e.g., fighting world hunger), it seems that the marginal benefit ofmore money going
to the charity stays very nearly constant over a very large range of amounts of money
donated. In our opinion, in this context it is more reasonable to argue that the marginal
utility that the donor has for keeping money to herself changes: she can easily spare
a small amount of money, but to give a medium-sized amount of money, she has to
give up some luxury goods that she likes, and to give a large amount, she has to give
up more essential goods. This is the reason that she stops giving after some point.
That is, her utility for money is strictly concave, not linear.7 (It should be emphasized
that we only really wish to argue that this isonepossible reason for donors giving a
bounded amount, and therefore that our model should be able to accommodate it. In
fact, our model also accommodates other reasons for giving abounded amount, such
as the charity only needing a certain amount to do the most important things.)

3 A simplified bidding language

Specifying a general bid in our framework (as defined above) requires being able to
specify an arbitrary real-valued function overR

m. Even if we restricted the possible
total payment made to each charity to the set{0, 1, 2, . . . , s}, this would still require
a bidder to specify(s + 1)m values, which is exponential in the number of charities.
Thus, in the context of multiple charities, we need a biddinglanguage that will allow
the bidders to at least specifysomebids more concisely. We will introduce a bidding
language that only represents a subset of all possible bids,which can be described
concisely.8 On the one hand, we believe that this language allows biddersto represent
bids that are natural and useful. On the other hand, we do not intend for this to be
the final word on bidding languages in this domain: certainly, other languages can be
created that allow the bidders to express different bids that may still be natural and
useful. Nevertheless, we consider it likely that the results obtained for our language
will either generalize directly to such languages, or at least provide a useful starting
point.

7This argument does presuppose that the donor has very pure motivations, that is, the donor’s reason for
giving is purely that she wants to see the charity receive money. This is in contrast to, for example, a donor
who feels that there is a social expectation from her friends, or an ethical obligation on her own part, to give
a particular amount.

8Of course, our bidding language can be trivially extended toallow for fully expressive bids, by also
allowing bids from a fully expressive bidding language, in addition to the bids in our bidding language.
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To introduce our bidding language, we will first describe thebidding function as a
composition of two functions; then we will outline our assumptions on each of these
functions. First, there is avaluation functionvj : R

m → R, specifying how much
bidderj “appreciates” a given vector of total donations to the charities. Then, there is a
donation willingnessor willingness-to-payfunctionwj : R → R, which specifies how
much bidderj is willing to pay given her valuationvj(πc1

, πc2
, . . . , πcm

) for the vector
of donations to the charities. Note that we are overloading notation here: before, the
domain ofwj functions consisted of vectors of total amounts donated to the charities,
but here, the domain is that of nonnegative real numbers, representing the bidder’s
total valuation (which is itself a function of the total amounts donated to the charities).
We overload notation because the range of the function is thesame in both cases:
nonnegative real numbers, representing how much the bidderis willing to pay. The
primary use ofwj in the rest of this paper is as a mapping from valuations to willingness
to pay. We emphasize that this function doesnot need to be linear, so that valuations
should not be thought of as necessarily expressible in dollar amounts. (Indeed, we
argued above that when an individual is donating to a large charity, the reason that the
individual donates only a bounded amount is typically not decreasing marginal value of
the money given to the charity, but rather that the marginal value of a dollar to the bidder
herself becomes larger as her budget becomes smaller.) So, relating the two different
uses ofwj , we havewj(vj(πc1

, πc2
, . . . , πcm

)) = wj(πc1
, πc2

, . . . , πcm
), and we let

the bidder describe her functionsvj andwj separately; she will submit these functions
as her bid.

Our first restriction is that the valuation that a bidder derives from money do-
nated to one charity isindependentof the amount donated to another charity. Thus,

vj(πc1
, πc2

, . . . , πcm
) =

m∑

i=1

vi
j(πci

). (We observe that this doesnot imply that the

entire bid decomposes similarly, because of the possible nonlinearity of wj .) This
restriction seems reasonable in many cases, though it may becalled into question in
cases where multiple charities are working on similar or related projects (for example,
disaster relief). If multiple charities are working on thesameproject, then we can sim-
ply consider them a single charity (in fact, this is what we did in the tsunami event
described in Section 10).

Furthermore, for concreteness, we require that eachvi
j be piecewise linear. An

interesting special case that we will study is when eachvi
j is a line: vi

j(πci
) = ai

jπci
.

This special case is justified in settings where the scale of the donations by the bidders
is small relative to the amounts the charities receive from other sources, so that the
marginal value of a dollar to the charity is not (significantly) affected by the amount
given by the bidders.

The only restriction that we place on the bidders’ payment willingness functionswj

is that they be piecewise linear. One interesting special case is athreshold bid, where
wj is a step function: the bidder is willing to givet dollars if her valuation exceeds
s, and otherwise0. Another interesting special case is when such a bid ispartially
acceptable: the bidder is willing to givet dollars if her valuation exceedss; but if her
valuation isv < s, she is still willing to givevt

s
dollars. We are interested in such sim-

ple bids on the one hand for technical reasons, for example, showing hardness results
even for step functions; on the other hand, they do appear to come up in practice—for
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example, five of the eighteen bids in the experiment in Section 10 were threshold bids.
One might wonder why, if we are given the bidders’ valuation functions, we do not

simply maximize the sum of the valuations, rather than surplus or total donated. There
are several reasons. First, it would be possible for a bidderto inflate her valuation by
changing its units (and correspondingly changing her willingness to pay to adjust for
the change in units), thereby making her bid more important for valuation maximiza-
tion purposes even though the bid has effectively remained the same. Second, a bidder
could simply give a payment willingness function that is0 everywhere, and have her
valuation be taken into account in deciding on the outcome, in spite of her not con-
tributing anything. We also recall that Proposition 2 states that maximizing surplus′

maximizes the sum of the bidders’ utilities if utilities arequasilinear.
We now give an example that illustrates what bids may look like in this framework,

as well as what outcomes may result under the different objectives.

Example 1 Let us consider an example with two bidders and two charities. The first
bidder bids:

• v1
1(πc1

) = (3/4)πc1
for πc1

< 1, v1
1(πc1

) = 3/4 for πc1
≥ 1 (valuation function

for the first charity);

• v2
1(πc2

) = (1/2)πc2
for πc2

< 1, v2
1(πc2

) = 1/2 for πc2
≥ 1 (valuation function

for the second charity);

• w1(v1) = v1 (payment willingness function).

The second bidder bids:

• v1
2(πc1

) = 0 for πc1
< 1, v1

2(πc1
) = 1/2 for πc1

≥ 1 (valuation function for the
first charity);

• v2
2(πc2

) = (1/4)πc2
for πc2

< 1, v2
2(πc2

) = 1/4 + (1/8)(πc2
− 1) for πc2

≥ 1
(valuation function for the second charity);

• w2(v2) = v2 for v2 < 1/2, w2(v2) = 1/2 + (1/2)(v2 − 1/2) for v2 ≥ 1/2
(payment willingness function).

The valid outcome that maximizes surplus isπb1 = 3/4, πb2 = 1/2, πc1
= 1, πc2

=
0, for a surplus of1/4. The valid outcome that maximizes the total donated isπb1 =
13/12, πb2 = 7/12, πc1

= 1, πc2
= 2/3. We note that, intuitively, under the sur-

plus objective, we carefully evaluate whether additional donations to the charities are
worthwhile,9 whereas under the objective of maximizing the total donated, we continue
to give to the charities in a way that maximizes the additional willingness to donate,
until the bidders’ willingness to pay is entirely exhausted.

9For clarity, we emphasize that this evaluation is done takingthe bids at face value, that is, we do not
consider here whether the bidders have perhaps misreported their preferences and try to assess whether
additional donations are worthwhile with respect to thetruepreferences.
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4 Hardness of clearing the market

In this section, we will show that the clearing problem is completely inapproximable,
even when every bidder’s valuation function is linear (withslope0 or1 in each charity’s
payments), each bidder cares either about at most two charities or about all charities
equally, and each bidder’s payment willingness function isa step function. We will
reduce from MAX2SAT (given a formula in conjunctive normal form (where each
clause has two literals) and a target number of satisfied clausesT , does there exist an
assignment of truth values to the variables that makes at least T clauses true?), which
is NP-complete [14].

Theorem 1 There exists a reduction from MAX2SAT instances to DONATION-CLEARING
instances such that

1. If the MAX2SAT instance has no solution, then the only valid outcome is the zero
outcome (no bidder pays anything and no charity receives anything).

2. Otherwise, there exists a solution with positive surplus.

Additionally, the DONATION-CLEARING instances that we reduce to have the follow-
ing properties:

1. Everyvi
j is a line; that is, the valuation that any bidder derives fromany charity

is linear.

2. All thevi
j have slope either0 or 1.

3. Every bidder either has at most 2 charities that affect hervaluation (with slope
1), or all charities affect her valuation (with slope1).

4. Every bid is a threshold bid; that is, every bidder’s payment willingness function
wj is a step function.

Proof: In this proof, we will represent bids as follows:({(c1, a1), (c2, a2), . . .}, s, t)
indicates thatvk

j (πck
) = akπck

(this function is0 for charitiesck not mentioned in the
bid), andwj(vj) = t for vj ≥ s, wj(vj) = 0 otherwise. We say a bidb is acceptedif
its thresholdsb is reached, in which case we will haveπb = tb.

We reduce an arbitrary MAX2SAT instance, given by a set of clausesK = {k1, k2, . . .} =
{{l1k1

, l2k1
}, {l1k2

, l2k2
}, . . .} (wherel1k, l2k are the literals in clausek) over a set of vari-

ablesV together with a target number of satisfied clausesT , to the following DONATION-
CLEARING instance. Let the set of charities be as follows. For every literal l ∈
L, there is a charitycl. Then, let the set of bids be as follows. For every vari-
ablev, there is a bidbv = ({(c+v, 1), (c−v, 1)}, 2, 1 − 1

4|V | ). (+v and−v are the
positive and negative literals corresponding tov.) For every literall, there is a bid
bl = ({(cl, 1)}, 2, 1). For every clausek = {l1k, l2k} ∈ K, there is a bidbk =
({(cl1

k
, 1), (cl2

k
, 1)}, 2, 1

8|V ||K| ). Finally, there is a single bid that values all charities

equally:b0 = ({(c1, 1), (c2, 1), . . . , (cm, 1)}, 2|V | + T
8|V ||K| ,

1
4 + 1

16|V ||K| ). We now
show that the two instances are equivalent.
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First, suppose there exists a solution to the MAX2SAT instance. If in this solution,
l is true, then letπcl

= 2 + T
8|V |2|K| ; otherwiseπcl

= 0. Also, the only bids that
arenot accepted (meaning the threshold is not met) are thebl wherel is false, and
the bk such that both ofl1k, l2k are false. First we show that no bidder whose bid is
accepted pays more than she is willing to. For eachbv, eitherc+v or c−v receives
at least2, so this bidder’s threshold has been met. For eachbl, either l is falseand
the bid is not accepted, orl is true, cl receives at least2, and the threshold has been
met. For eachbk, either both ofl1k, l2k arefalseand the bid is not accepted, or at least
one of them (saylik) is true (that is,k is satisfied) andcli

k
receives at least2, and the

threshold has been met. Finally, because the total amount received by the charities is
2|V |+ T

8|V ||K| , b0’s threshold has also been met. The total amount that can be collected

from the accepted bids is at least|V |(1 − 1
4|V | ) + |V | + T 1

8|V ||K| + 1
4 + 1

16|V ||K| ) =

2|V |+ T
8|V ||K| +

1
16|V ||K| > 2|V |+ T

8|V ||K| , so there is positive surplus. So there exists
a solution with positive surplus to the DONATION-CLEARING instance.

Now suppose there exists a valid nonzero outcome in the DONATION-CLEARING
instance. First we show that it is not possible (for anyv ∈ V ) that bothb+v andb−v are
accepted. For, this would require thatπc+v

+ πc−v
≥ 4. The bidsbv, b+v, b−v cannot

contribute more than3, so we need at least another1 from other bids. It is easily seen
that for any otherv′, accepting any subset of{bv′ , b+v′ , b−v′} would require that at
least as much is given toc+v′ andc−v′ as can be collected from these bids, so these
bids cannot help close the gap. Finally, all the other bids combined can contribute at
most|K| 1

8|V ||K| +
1
4 + 1

16|V ||K| < 1. Hence, at most one ofb+v andb−v is accepted. It
follows that we can interpret a valid outcome in the DONATION-CLEARING instance
as a partial assignment of truth values to variables:v is set totrue if b+v is accepted,
and tofalse if b−v is accepted. All that is left to show is that this partial assignment
must satisfy at leastT clauses.

First we show that if a clause bidbk is accepted, then eitherbl1
k

or bl2
k

is accepted
(and thus eitherl1k or l2k is set totrue, hencek is satisfied). Ifbk is accepted, at least
one ofcl1

k
andcl2

k
must be receiving at least1; without loss of generality, say it iscl1

k
,

and sayl1k corresponds to variablev1
k (that is, it is+v1

k or−v1
k). If cl1

k
does not receive

at least2, it follows that bl1
k

is not accepted, and as a result the bidsbv1
k
, b+v1

k
, b−v1

k

contribute (at least)1 less than is paid toc+v1
k

andc−v1
k
. (This follows from the fol-

lowing reasoning. Ifc−l1
k
, where−l1k is the negation ofl1k, receives at least2, then the

total paid to these charities is at least3 but these bids contribute at most2; otherwise,
if c+v1

k
andc−v1

k
together receive at least2, then at most1 can be collected from these

bids; otherwise, nothing can be collected from these bids atall.) But this is the same
situation that we analyzed before, and we know it is impossible because the other bids
cannot close a gap of1. All that remains to show is that at leastT clause bids are
accepted, because if so then it follows that our partial assignment satisfies at leastT
clauses.

We first show thatb0 is accepted. Suppose it is not; then one of thebv must be
accepted. (The solution is nonzero by assumption; if only some of thebk are accepted,
the total payment from these bids is at most|K| 1

8|V ||K| < 1, which is not enough
for any bid to be accepted; and if one of thebl is accepted, then the threshold for the
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correspondingbv is also reached.) For thisv, bv1
k
, b+v1

k
, b−v1

k
contribute (at least) 1

4|V |

less than the total payments toc+v andc−v (because these total payments must be at
least2, and at most one ofb+v1

k
andb−v1

k
can be accepted, so the total collected from

these three bids is at most2− 1
4|V | ). Again, the otherbv andbl cannot (by themselves)

help to close this gap; and thebk can contribute at most|K| 1
8|V ||K| < 1

4|V | . It follows
thatb0 must be accepted.

Now, in order forb0 to be accepted, a total of2|V | + T
8|V ||K| must be donated.

Because it is not possible (for anyv ∈ V ) that bothb+v and b−v are accepted, it
follows that the total payment by thebv and thebl can be at most2|V | − 1

4 . Adding

b0’s payment of14 + 1
16|V ||K| to this, we still need T− 1

2

8|V ||K| from thebk. But each one

of them contributes at most 1
8|V ||K| , so at leastT of them must be accepted. �

Corollary 1 Unless P=NP, there is no polynomial-time algorithm for approximating
DONATION-CLEARING (with either the surplus or the total amount donated as the
objective) within any positive ratio. This holds even if theDONATION-CLEARING
problem instances satisfy all the properties given in Theorem 1.

Proof: Suppose we had such a polynomial-time algorithm, and applied it to the DONATION-
CLEARING instances that were reduced from MAX2SAT instances in Theorem 1. It
would return a nonzero solution when the MAX2SAT instance has a solution (that
achieves the target number of satisfied clauses), and a zero solution otherwise. So we
could decide whether arbitrary MAX2SAT instances have solutions this way, and it
would follow that P=NP. �

This should not be interpreted to mean that our approach to the problem of donat-
ing to charities is infeasible. First, as we will show, thereare very expressive fam-
ilies of bids for which the problem is solvable in polynomialtime. (We have also
already discussed the case where there is only one charity.)Second, NP-hardness is
often overcome in practice (especially when the stakes are high). For instance, even
though the problem of clearing combinatorial auctions is NP-hard [28] (even to ap-
proximate [31, 37]), it is typically solved to optimality inpractice [32].

5 Mixed integer programming formulation

In this section, we give a mixed integer programming (MIP) formulation for the general
problem. We also discuss a special case in which this formulation reduces to a linear
programming (LP) formulation. In this case, the problem is solvable in polynomial
time, because linear programs can be solved in polynomial time [21].

The variables of the MIP that determine the final outcome are the payments made
to the charities, denoted byπci

, and the payments collected from the bidders,πbj
. The

objectives we discussed earlier are both linear: surplus isgiven by
n∑

j=1

πbj
−

m∑

i=1

πci
,

and total amount donated is given by
m∑

i=1

πci
.
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The constraint that the outcome should not result in a deficitis given simply by:
n∑

j=1

πbj
≥

m∑

i=1

πci
.

For every bidder, for every charity, we define an additional valuation variablevi
j

indicating the valuation that this bidder derives from the payment to this charity. The
bidder’s total valuation is given by another variablevj , with the constraint thatvj =
m∑

i=1

vi
j .

Eachvi
j is given as a function ofπci

by the (piecewise linear) function provided by
the bidder. In order to represent this function in the MIP formulation, we will merely
place upper bounding constraints onvi

j , so that it cannot exceed the given function.
The MIP solver can then push thevi

j variable all the way up to the constraint, in order
to collect as much payment from this bidder as possible. In the case where thevi

j are

concave, this is easy: if(si,j
l , ti,jl ) and(si,j

l+1, t
i,j
l+1) are the endpoints of a finite linear

segment in the function, we add the constraint thatvi
j ≤ ti,jl +

πci
−s

i,j

l

s
i,j

l+1
−s

i,j

l

(ti,jl+1 − ti,jl ).

If the final (infinite) segment starts at(si,j
k , ti,jk ) and has sloped, we add the constraint

that vi
j ≤ ti,jk + d(πci

− si,j
k ). Using the fact that the function is concave, for each

value ofπci
, the tightest upper bound onvi

j is the one corresponding to the segment
corresponding to that value ofπci

, and therefore these constraints are sufficient to get
the correct value ofvi

j .
When the function is not concave, we require (for the first time) some binary vari-

ables. First, we define another point on the function:(si,j
k+1, t

i,j
k+1) = (si,j

k + M, ti,jk +
dM), whered is the slope of the infinite segment andM is any upper bound on the
πcj

. This has the effect that we will never be on the infinite segment again. Now, let
xi,j

l ∈ {0, 1} be an indicator variable that should be1 if πci
corresponds to thelth seg-

ment of the function, and0 otherwise. To ensure this, first add a constraint
k∑

l=0

xi,j
l = 1.

Now, we aim to representπci
as a weighted average of its two neighboringsi,j

l . For

0 ≤ l ≤ k + 1, let λi,j
l be the weight onsi,j

l . We add the constraint
k+1∑

l=0

λi,j
l = 1. Also,

for 0 ≤ l ≤ k + 1, we add the constraintλi,j
l ≤ xl−1 + xl (wherex−1 andxk+1 are

defined to be zero), so that indeed only the two neighboringsi,j
l have nonzero weight.

Now we add the constraintπci
=

k+1∑

l=0

si,j
l λi,j

l , so that theλi,j
l must be set correctly.

Then, we can setvi
j =

k+1∑

l=0

ti,jl λi,j
l . (This is a standard MIP technique [25].)

Finally, eachπbj
is bounded by a function ofvj : the (piecewise linear) function

wj provided by the bidder. Representing this function is entirely analogous to how we
representedvi

j as a function ofπci
. (Again, we will need binary variables only if the

function is not concave.)
Because we only use binary variables when either a valuationfunctionvi

j or a pay-
ment willingness functionwj is not concave, it follows that if all of these are concave,
our MIP formulation is simply a linear program—which can be solved in polynomial
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time. Thus:

Theorem 2 If all functionsvi
j andwj are concave (and piecewise linear), the DONATION-

CLEARING problem can be solved in polynomial time using linear programming.

6 Why one cannot do much better than linear program-
ming

One may wonder whether, for the special case of the DONATION-CLEARING prob-
lem presented in Theorem 2 that can be solved in polynomial time with linear program-
ming, there exist special-purpose algorithms that are muchfaster than linear program-
ming algorithms. In this section, we show that this is not thecase. We give a reduction
from (the decision variant of) the general linear programming problem to (the deci-
sion variant of) a special case of the DONATION-CLEARING problem (which can be
solved in polynomial time using linear programming by Theorem 2). (The decision
variant of a maximization problem asks the binary question:“Can the objective value
exceedo?”) Thus, any special-purpose algorithm for solving the decision variant of
this special case of the DONATION-CLEARING problem could beused to solve a
decision question about an arbitrary linear program about as fast. (And thus, we could
solve the optimization version of the linear program with binary search.)

We first observe that for linear programming, a decision question about the ob-
jective can simply be phrased as another constraint in the LP(requiring the objective
to exceed the given value); then, the original decision question coincides with ask-
ing whether the resulting linear program (system of linear inequalities) has a feasible
solution.

Theorem 3 The question of whether an LP (given by a set of linear constraints10) has
a feasible solution can be modeled as a DONATION-CLEARING instance with maxi-
mizing the total donated as the objective, with2v charities andv + c bids (wherev is
the number of variables in the LP, andc is the number of constraints). In this instance,
each bidbj has only linearvi

j functions, and is a partially acceptable threshold bid

(wj(vj) = tj for vj ≥ sj , otherwisewj(vj) =
vjtj

sj
). Thev bids corresponding to the

variables mention only two charities each; thec bids corresponding to the constraints
mention only two times the number of variables in the corresponding constraint.

Proof: For every variablexi in the LP, let there be two charities,c+xi
andc−xi

. LetH
be some number such that if there is a feasible solution to theLP, there is one in which
every variable has absolute value at mostH.

In this proof, we will represent bids as follows:({(c1, a1), (c2, a2), . . .}, s, t) in-
dicates thatvk

j (πck
) = akπck

(this function is0 for ck not mentioned in the bid), and

wj(vj) = t for vj ≥ s, wj(vj) =
vjt

s
otherwise.

For every variablexi in the LP, let there be a bidbxi
= ({(c+xi

, 1), (c−xi
, 1)}, 2H, 2H−

c
v
). For every constraint

∑

i

rj
i xi ≤ sj in the linear program, let there be a bid

10These constraints must include bounds on the variables (including nonnegativity bounds), if any.
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bj = ({(c−xi
, rj

i )}i:rj

i
>0 ∪ {(c+xi

,−rj
i )}i:rj

i
<0, (

∑

i

|rj
i |)H − sj , 1). Let the target

total amount donated be2vH.
Suppose there is a feasible solution(x∗

1, x
∗
2, . . . , x

∗
v) to the LP. Without loss of gen-

erality, we can suppose that|x∗
i | ≤ H for all i. Then, in the DONATION-CLEARING

instance, for everyi, let πc+xi
= H + x∗

i , and letπc−xi
= H −x∗

i (for a total payment
of 2H to these two charities). This allows us to collect the maximum payment from the
bidsbxi

—a total payment of2vH − c. Additionally, the valuation of bidderbj is now
∑

i:rj

i
>0

rj
i (H − x∗

i ) +
∑

i:rj

i
<0

−rj
i (H + x∗

i ) = (
∑

i

|rj
i |)H −

∑

i

rj
i x

∗
i ≥ (

∑

i

|rj
i |)H − sj

(where the last inequality stems from the fact that constraint j must be satisfied in the
LP solution), so it follows that we can collect the maximum payment from all the bids
bj , for a total payment ofc. It follows that we can collect the required2vH payment
from the bidders, and there exists a solution to the DONATION-CLEARING instance
with a total amount donated of at least2vH.

Now suppose there is a solution to the DONATION-CLEARING instance with
a total amount donated of at least2vH. Then the maximum payment must be col-
lected from each bidder. From the fact that the maximum payment must be collected
from each bidderbxi

, it follows that for eachi, πc+xi
+ πc−xi

≥ 2H. Because
the maximum total payment that can be collected is2vH, it follows that for eachi,
πc+xi

+ πc−xi
= 2H exactly. Letx∗

i = πc+xi
− H = H − πc−xi

. Then, from
the fact that the maximum payment must be collected from eachbid bj , it follows
that (

∑

i

|rj
i |)H − sj ≤

∑

i:rj

i
>0

rj
i πc−xi

+
∑

i:rj

i
<0

−rj
i πc+xi

=
∑

i:rj

i
>0

rj
i (H − x∗

i ) +

∑

i:rj

i
<0

−rj
i (H + x∗

i ) = (
∑

i

|rj
i |)H −

∑

i

rj
i x

∗
i . Equivalently,

∑

i

rj
i x

∗
i ≤ sj . It follows

that thex∗
i constitute a feasible solution to the LP. �

7 Target amounts and concave payment willingness func-
tions

In this section, we study a special case of the DONATION-CLEARING problem where
the following two conditions hold. First, every charityci has a target amountτci

that
it is seeking to collect. If less money than this is collected, it is useless to the charity;
if any additional money beyond the target amount is collected, then this additional
money is also useless. (For example, the charity may be completely devoted to the
project of drilling a water well for a particular community,which will cost a fixed
amount.) The target amounts are common knowledge, and as a result, bidderbj derives
a fixed amount of valuationυbj ,ci

from charityci if and only if the charity has achieved
its target amount. That is,vi

j(πci
) = υbj ,ci

if πci
≥ τci

, andvi
j(πci

) = 0 otherwise.
Additionally, we assume that the payment willingness functionswj are concave. Under
these conditions, we will show that, when the objective is tomaximize surplus, the
DONATION-CLEARING problem can be approximated in polynomial time to a ratio
of m, the number of charities—still not a very positive result. However, we will also
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show that no significantly better result is possible unless P=NP. For maximizing the
total amount donated, we will show that no positive approximation at all is possible
unless P=NP.

Consider the followingGreedy algorithm for DONATION-CLEARING in this
context. We start with the outcome where no charity receivesany money; we will
iteratively decide to give some charities their target amount. At any point, if we take
a charity that currently receives nothing, giving that charity its target amount will in-
crease some donors’ willingness to pay, resulting in a net effect on surplus. We repeat-
edly find the charity that results in the greatest increase insurplus, and give it its target
amount—until every remaining charity results in a net decrease in surplus, at which
point we stop.

Theorem 4 In the context where every charityci has a target amountτci
, and bidders’

payment willingness functions are concave, theGreedy algorithm for DONATION-
CLEARING results in anm-approximation to the maximum possible surplus. On the
other hand, there are instances whereGreedy obtains a surplus that is arbitrarily
close to1/(m − 1) of the maximum possible surplus.

Proof: We will show that the approximation ratiom is already obtained after the
Greedy algorithm has selected its first charity to donate money to; because the sur-
plus obtained by this algorithm never decreases as more charities are selected, this
proves the result. Consider a surplus-maximizing solution, with surplus OPT. In such
an optimal solution, there is some subsetC ′ of the charities that each receive their
target amount (and the others receive nothing). Arbitrarily order the subsetC ′. If we
imagine giving these charities their target amount in sequence, then each charity has a
marginal effect on surplus (which depends on the order). Thelargest of these marginal
effects on surplus is at least OPT/m; say that the corresponding charity isci∗ . Then,
at the beginning of theGreedy algorithm, choosingci∗ must also result in a marginal
effect on surplus of at least OPT/m. This is because the marginal effect on surplus can
only get smaller as more charities have already received their target amounts, because
bidders’ payment willingness functions are concave. It follows that the first charity
chosen by theGreedy algorithm has a marginal effect on surplus of at least OPT/m.

To show that the ratio can be as bad asm − 1, consider the following situation.
Each of the charitiesc1, . . . , cm−1 has a target amount of1− ǫ. Charitycm has a target
amount ofm − 1 − ǫ′ whereǫ′ is slightly larger thanǫ. There aren = m − 1 bidders.
Bidderbj obtains a valuation of1 if cj receives its target amount, and also a valuation
of 1 if cm receives its target amount. Bidderbj ’s payment willingness function is as
follows: wj(vj) = vj for vj ≤ 1, andwj(vj) = 1 for vj ≥ 1. TheGreedy algorithm
will choose to givecm its target amount first, as this results in a surplus ofǫ′. After
this, the algorithm ends because no bidder is willing to pay any more. However, a
better solution is to givec1, . . . , cm−1 their target amounts, which results in a surplus
of (m − 1)ǫ. As ǫ′ converges downward toǫ, we get the desired result. �

Of course, the above approximation ratio is a worst-case result, and it seems that
this greedy algorithm is likely to fare much better in practice. Nevertheless, in the worst
case, we cannot hope for a significantly better result unlessP=NP, as the following
result makes clear.
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Theorem 5 In the context where every charityci has a target amountτci
, and bidders’

payment willingness functions are concave, it is not possible to approximate the opti-
mal surplus to a ratiom1−ǫ in polynomial time, unless P=NP. This is true even if each
bidder’s willingness-to pay function is linear up to a pointand flat after that (when the
bidder’s budget has been exhausted)—that is, the bid is a partially acceptable threshold
bid.

Proof: We will prove this by reduction from INDEPENDENT-SET, in which we are
given a graph and are asked to find a maximum-size set of vertices with no edge be-
tween any pair of them. It is known that INDEPENDENT-SET cannot be approximated
to a ratio|V |1−ǫ in polynomial time, unless P=NP [37].

For every vertexv in the graph of the independent set instance, construct a charity
cv. Let νv be the number of edges that havev as one of their endpoints. Then, let
τcv

= νv − δ (for some smallδ) be the target amount for the charitycv. For every edge
e, construct a bidderbe. If e = (v, w), thenbe receives a valuation of1 if one ofcv and
cw receives its target amount (and2 if they both do). For each bidderbj , the payment
willingness function is as follows:wj(vj) = vj for vj ≤ 1, andwj(vj) = 1 for vj ≥ 1.
Hence, a bidder is willing to give1 if at least one of its two charities receives its target
amount, and0 otherwise.

We first claim that ifδ is sufficiently small, then in any feasible solution, the chari-
ties that receive their target amount must correspond to an independent set in the graph.
This is because ifV ′ is the set of verticesv so thatcv receives its target amount, and
there is an edge between two of the vertices inV ′, then the number of bidders that
are willing to pay an amount of1 is at most(

∑
v∈V ′ νv) − 1. However, the amount

that these charities require is(
∑

v∈V ′ νv)−|V ′|δ, which is larger for sufficiently small
δ—contradicting the supposed feasibility of the solution.

On the other hand, ifV ′ is an independent set, then the number of bidders that are
willing to pay an amount of1 is

∑
v∈V ′ νv; the amount that these charities require is

(
∑

v∈V ′ νv) − |V ′|δ, resulting in a surplus of|V ′|δ.
Thus, independent sets correspond exactly to feasible solutions, and the surplus

obtained in such a solution is proportional to the size of theindependent set, proving
the result. �

So far in this section, we have not yet discussed the objective of maximizing the
total amount donated. For this, we cannot even obtain anm-approximation in the worst
case, as the following result shows.

Theorem 6 In the context where every charityci has a target amountτci
, and bidders’

payment willingness functions are concave, it is not possible to approximate the maxi-
mum amount that can be donated to any ratiof(m,n) > 0 in polynomial time, unless
P=NP. This is true even if each bidder’s willingness-to pay function is linear up to a
point and flat after that (when the bidder’s budget has been exhausted)—that is, the bid
is a partially acceptable threshold bid.

Proof: From the proof of Theorem 5, we know that in the same context,it is NP-hard
to decide whether a surplus of at leastK can be achieved. We now show how to reduce
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an arbitrary instance of this decision variant of the surplus maximization problem to
an instance of the problem of maximizing the total donated. To do so, we take any
such instance, and leave the existing bidders and charitiesuntouched; we add a single
charityc′ whose target amount isτc′ = H for someH > K. We also add a single new
bidderb′, who only cares about charityc′; this bidder receives a valuation ofH − K
if charity c′ achieves its target amount, and is willing to give his valuation, that is, his
payment willingness function is the identity function (which can be capped atH − K
if desired). None of the other (original) bidders care aboutcharityc′.

Now, if the original instance has a solution with surplus at leastK, then in the
modified instance, we can let the original bidders pay the same amounts, and let the
original charities receive the same amounts. Then, we can give the surplus of at least
K to charityc′, and let the new bidderb′ donate the remainingH − K, so that the
charity achieves its target amount. This leads to a total donated of at leastH.

Conversely, if there is a solution for the modified instance in whichc′ achieves its
target amount ofH, then, becauseb′ can pay onlyH−K, the remainingK must come
from the original bidders. However, the original bidders obtain all their valuation from
the original charities, so it must be the case that thisK was simply left over. Hence,
if we look at the restriction of the solution to the original bidders and the original
charities, this corresponds to a solution with a surplus of at leastK.

It follows thatc′ can receive its target amountH if and only if the original instance
has a solution with a surplus ofK. By makingH sufficiently large, we can make
the ratio (in terms of total donated) between any solution inwhich c′ does not receive
its target amount and any solution where it does arbitrarilysmall. Hence, an algorithm
that gives any positive approximation ratio based only onn andm can be used to detect
whether a surplus of at leastK is possible in the original instance—but this is NP-hard.
�

8 Quasilinear bids

Another class of bids of interest is the class ofquasilinear bids. In a quasilinear bid,
the bidder’s payment willingness function is linear in valuation: that is,wj = vj .11 In
many cases, quasilinearity is an unreasonable assumption:for example, usually bidders
have a limited budget for donations, so that the payment willingness will stop increas-
ing in valuation after some point (or at least increase slower in the case of a “softer”
budget constraint). Nevertheless, quasilinearity may be areasonable assumption in the
case where the bidders are large organizations with large budgets, and the charities are
a few small projects requiring relatively little money. In this setting, once a certain
small amount has been donated to a charity, a bidder will derive no more valuation
from more money being donated to that charity. Thus, the bidders will never reach
a high enough valuation for their budget constraint (hard orsoft) to kick in, and thus
a linear approximation of their payment willingness function is reasonable. Another
reason for studying the quasilinear setting is that it is theeasiest setting for mechanism

11Because the units of valuation are arbitrary, we may as well let them correspond exactly to units of
money—so we do not need a constant multiplier.
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design, which we will discuss in Section 9. In this section, we will see that the clearing
problem is much easier in the case of quasilinear bids.

First, we address the case where we try to maximize surplus. The key observation
here is that when bids are quasilinear and the objective is surplus, the clearing prob-
lem decomposesacross charities. That is, we can simply optimize for every charity
separately; to optimize for one of the charities we only needto know each bidder’s val-
uation function corresponding to that charity. The intuition is as follows: without the
quasilinearity assumption, a donation to one charity impacts the other charities via the
payment willingness function, but this effect disappears when the payment willingness
function is linear—at least for the case of surplus maximization. (We will see shortly
that this does not hold for the objective of maximizing the total donated, because, intu-
itively, for that objective we may wish to transfer surplus generated by one charity to
another charity to increase total payments.)

Lemma 1 Suppose all the bids are quasilinear, and surplus is the objective. Then we
can clear the market optimally by clearing the market for each charity individually.
That is, for each bidderbj , let πbj

=
∑

ci

πbi
j
. Then, for each charityci, maximize

(
∑

bj

πbi
j
) − πci

, under the constraint that for every bidderbj , πbi
j
≤ vi

j(πci
).

Proof: The resulting solution is certainly valid: first of all, at least as much money is
collected as is given away, because

∑

bj

πbj
−

∑

ci

πci
=

∑

bj

∑

ci

πbi
j
−

∑

ci

πci
=

∑

ci

((
∑

bj

πbi
j
)−

πci
), and the terms of this outer summation are the objectives of the problem instances

for the individual charities, each of which can be set at least to 0 (by setting all the
variables to0), so it follows that the expression is nonnegative. Second,no bidder
bj pays more than she is willing to, becausevj − πbj

=
∑

ci

vi
j(πci

) −
∑

ci

πbi
j

=
∑

ci

(vi
j(πci

)− πbi
j
), and the terms of this summation are nonnegative by the constraints

we imposed on the individual optimization instances.
All that remains to show is that the solution is optimal. Because in an optimal

solution, we will collect as much payment from the bidders aspossible given theπci
,

all that we need to show is that theπci
are set optimally by this approach. Letπ∗

ci

be the amount paid to charityπci
in some optimal solution. If we change this amount

to π′
ci

and leave everything else unchanged, this will only affect the payment that we
can collect from the bidders because of this particular charity, and the difference in
surplus will be

∑

bj

vi
j(π

′
ci

) − vi
j(π

∗
ci

) − π′
ci

+ π∗
ci

. This expression is, of course,0 if

π′
ci

= π∗
ci

. But now notice that this expression is maximized as a function of π′
ci

by
the decomposed solution for this charity (the terms withoutπ′

ci
in them do not matter,

and of course in the decomposed solution we always setπbi
j

= vi
j(πci

)). It follows that
if we changeπci

to the decomposed solution, the change in surplus will be at least0
(and the solution will still be valid). Thus, we can change the πci

one by one to the
decomposed solution without ever losing any surplus. �
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Theorem 7 When all the bids are quasilinear and surplus is the objective, DONATION-
CLEARING can be solved in polynomial time.

Proof: By Lemma 1, we can solve the problem separately for each charity. For charity
ci, this amounts to maximizing(

∑

bj

vi
j(πci

)) − πci
as a function ofπci

. Because all its

terms are piecewise linear functions, this whole function is piecewise linear, and must
be maximized at one of the points where it is nondifferentiable. It follows that we need
only check all the points at which one of the terms is nondifferentiable. �

As we have discussed earlier in the paper, the computationally trivial special case
of a single charity is interesting not only as a subroutine for the case of quasilinear
bids when surplus is the objective, but also in and of itself—some of the most practical
applications of all of this may involve just a single charity. For example, we note that
the tsunami event that we describe in Section 10 was a single-charity event.

Unfortunately, the decomposition lemma does not hold for the objective of maxi-
mizing the total donated.

Proposition 3 When the objective is maximizing the total donated, even when bids are
quasilinear, the solution obtained by decomposing the problem across charities is in
general not optimal (even with concave bids).

Proof: Consider a single bidderb1 placing the following quasilinear bid over two char-
ities c1 andc2: v1

1(πc1
) = 2πc1

for 0 ≤ πc1
≤ 1, v1

1(πc1
) = 2 +

πc1
−1

4 otherwise;
v2
1(πc2

) =
πc2

2 . The decomposed solution isπc1
= 7

3 , πc2
= 0, for a total donated of

7
3 . But the solutionπc1

= 1, πc2
= 2 is also valid, for a total donation of3 > 7

3 . �

As an aside, the proof of Proposition 3 illustrates that the objective of maximizing
the total donated can result in unexpected outcomes: there is only a single bidder in
the proof of Proposition 3, and presumably if this bidder hadbeen able to donate to the
charities outside of our system, she would have chosen to give1 to the first charity and
0 to the second. (This is exactly what would have happened under the surplus′ objec-
tive.) This type of situation may in principle be prevented by changing the individual
rationality criterion, saying that instead of guaranteeing that the bidder would not have
been better off if nobody had donated at all, we guarantee that the bidder would not
have been better off acting separately in the world. (However, such a more stringent in-
dividual rationality criterion leads to difficulties, as wediscussed when first mentioning
individual rationality.)

In fact, when the objective is to maximize the total donated,DONATION-CLEARING
remains (weakly) NP-hard in general (when we do not assume bids are concave).

Theorem 8 DONATION-CLEARING is (weakly) NP-hard when the objective is to
maximize the total donated, even when every bid concerns only one charity (and has a
step-function valuation function for this charity), and isquasilinear.

Proof: We reduce an arbitrary KNAPSACK instance (given bym pairs of integers
(ki, vi)1≤i≤m, a cost limitK, and a target valueV ), to the following DONATION-
CLEARING instance. Let there bem + 1 charities,c0, c1, . . . , cm. Let there be one
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quasilinear bidderb0 bidding v0
0(πc0

) = 0 for 0 ≤ πc0
< 1, v0

0(πc0
) = K + 1

otherwise. Additionally, for eachj with 1 ≤ j ≤ m, let there be a quasilinear bidderbj

biddingvj
j (πcj

) = 0 for 0 ≤ πcj
< ki, vj

j (πcj
) = ǫvj otherwise (whereǫ

∑

1≤j≤m

vj <

1). Let the target total amount donated beK +1+ ǫV . We now show the two instances
are equivalent.

First, suppose there exists a solution to the KNAPSACK instance, that is, a function

f : {1, . . . ,m} → {0, 1} so that
m∑

i=1

f(i)ki ≤ K and
m∑

i=1

f(i)vi ≥ V . Then, let

πc0
= 1 + ǫV + K −

m∑

i=1

f(i)ki, and fori > 0, πci
= f(i)ki, for a total donated of

K + 1 + ǫV . Because1 + ǫV + K −
m∑

i=1

f(i)ki ≥ 1, b0’s valuation isK + 1. For

j > 0, bj ’s valuation isf(j)ǫvj , for a total valuation of
m∑

j=1

f(j)ǫvj ≥ ǫV for these

m bidders. It follows that the total valuation is at least the total amount donated, and
so this corresponds to a valid outcome. So there exists a solution to the DONATION-
CLEARING instance.

Now suppose there exists a solution to the DONATION-CLEARING instance. Let
f : {1, . . . ,m} → {0, 1} be given byf(i) = 0 if πci

< ki, andf(i) = 1 otherwise.
Because the total donated is at leastK + 1 + ǫV , and the amount that can be collected

from the bidders is at mostK + 1 +
m∑

j=1

f(j)ǫvj , it follows that
m∑

j=1

f(j)vj ≥ V .

Also, because the total amount donated to charities1 throughm can be at mostK +

ǫ
∑

1≤j≤m

vj < K + 1, it follows that
m∑

j=1

f(j)kj < K + 1. Because thekj are integers,

this means
m∑

j=1

f(j)kj ≤ K. So there exists a solution to the KNAPSACK instance.

�

However, when the bids are also concave, a simple greedy clearing algorithm is
optimal. This algorithm works as follows:

• Start withπci
= 0 for all charities.

• Let γci
=

d
P

bj

vi
j(πci

)

dπci

(at nondifferentiable points, these derivatives should be
taken from the right).

• Let c∗i ∈ arg maxci
γci

.

• Increaseπc∗
i

until eitherγc∗
i

is no longer the highest (in which case, recomputec∗i
and start increasing the corresponding payment), or

∑

bj

vj =
∑

ci

πci
andγc∗

i
< 1.

• Finally, letπbj
= vj .

Theorem 9 Given a DONATION-CLEARING instance with maximizing the total do-
nated as the objective where all bids are quasilinear and concave, the above greedy
algorithm returns an optimal solution.
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Proof: The outcome is valid because everyone pays exactly what sheis willing to, and
because there is no budget deficit:

∑

bj

πbj
=

∑

bj

vj =
∑

ci

πci
. To show optimality, let

π∗
ci

be the amount paid to charityci in some optimal solution, and letπ′
ci

be the amount
paid to charityci in the solution given by the greedy algorithm. We first observe that it
is not possible that for everyi, π∗

ci
≥ π′

ci
with at least one of these inequalities being

strict. This is because at the solution found by the greedy algorithm,γc∗
i

is less than

1; hence, using concavity, ifπ∗
ci

> π′
ci

, then
π∗

ci∫

π′

ci

γci
dπci

< π∗
ci
− π′

ci
. In other words,

the additional payment that needs to be made to the charity isless than the additional
payment that can be collected from the bidders because of theadditional payment to
this charity. Because the surplus at the greedy algorithm’ssolution is0, it follows that if
for everyi, π∗

ci
≥ π′

ci
with at least one of these inequalities being strict, then the surplus

at the optimal solution would be negative, and hence the solution would not be valid.
Thus, either for alli, π∗

ci
≤ π′

ci
(but in this case the greedy solution has at least as large

a total donated as the optimal solution, and we are done); or there existi, j such that
π∗

ci
> π′

ci
but π∗

cj
< π′

cj
. It cannot be the case thatγci

(π′
ci

) > γcj
(π∗

cj
), for then the

greedy algorithm would have increasedπci
beyondπ′

ci
before increasingπcj

beyond
π∗

cj
. So,γci

(π′
ci

) ≤ γcj
(π∗

cj
). Becauseπ∗

ci
> π′

ci
, and using concavity, if we decrease

π∗
ci

and simultaneously increaseπ∗
cj

by the same amount, we will not decrease the total
payment we can collect from the bidders—while keeping the payment to be made to
the charities the same. It follows this cannot make the solution worse or invalid. We can
keep doing this until there is no longer a pairi, j such thatπ∗

ci
> π′

ci
but π∗

cj
< πcj

,
and by the previous we know that then, for alli, π∗

ci
≤ π′

ci
—and hence the greedy

solution is optimal. �

(A similar greedy algorithm works when the objective is surplus and the bids are
quasilinear and concave; the only difference is that we stopincreasing the payments as
soon asγc∗

i
≤ 1. Of course the result in Theorem 7 is stronger in the sense that it does

not require concavity.)

9 Strategic bidding and incentive compatibility

Up to this point, we have not discussed the bidders’ incentives for bidding any partic-
ular way. Specifically, the bids may not truthfully reflect the bidders’ preferences over
charities, because a bidder may bidstrategically, misrepresenting her preferences in
order to obtain a result that is better for herself. This would mean the market mech-
anism is notstrategy-proof. (We will show some concrete examples of this shortly.)
This is not too surprising, because if we use the methodologydescribed in the paper so
far straightforwardly, the resulting mechanism is, in a sense, afirst-pricemechanism,
where the mechanism will collect as much payment from a bidder as her bid allows.12

Such mechanisms (for example, first-price auctions, where winners pay the value of
their bids) are typically not strategy-proof: if a bidder reports her true valuation for an

12The surplus′ objective is an exception.
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outcome, then if this outcome occurs, the payment the bidderwill have to make will
offset her gains from the outcome completely. Of course, we could try to change the
rules of the game—which outcome (payment vector to charities) do we select for each
bid vector, and how much does each bidder pay—in order to make bidding truthfully
beneficial, and to make the outcome better with regard to the bidders’truepreferences.
This is the subject ofmechanism design. In this section, we will briefly discuss the
options that mechanism design provides for the expressive charity donation problem.

9.1 Strategic bids under the first-price mechanism

We first point out some reasons for bidders to misreport theirpreferences under the
first-price mechanism described in the paper up to this point. First of all, even when
there is only one charity, it can make sense to underbid one’strue valuation for the
charity. For example, suppose a bidder would like a charity to receive a certain amount
x, but does not care if the charity receives more than that. Additionally, suppose that
the other bids guarantee that the charity will receive at least x no matter what bid the
bidder submits (and the bidder knows this). Then the bidder is best off not bidding at all
(or submitting a valuation for the charity of0), to avoid having to make any payment,
while still benefiting from the other bidders’ contributions. (This is known as thefree
rider problem [22].)

With multiple charities, another kind of manipulation can occur, where a bidder
attempts to steer others’ payments towards her preferred charity. For example, suppose
that there are two charities, and three bidders. The first bidder bidsv1

1(πc1
) = 1 if

πc1
≥ 1, v1

1(πc1
) = 0 otherwise;v2

1(πc2
) = 1 if πc2

≥ 1, v2
1(πc2

) = 0 otherwise; and
w1(v1) = v1 if v1 ≤ 1, w1(v1) = 1 + 1

100 (v1 − 1) otherwise. Hence, if there were no
other bidders, the first bidder would be willing to pay1 to charity1, or to charity2, but
not to both. The second bidder bidsv1

2(πc1
) = 1 if πc1

≥ 1, v1
2(πc1

) = 0 otherwise;
v2
2(πc2

) = 0 (always);w2(v2) = 1
4v2 if v2 ≤ 1, w2(v2) = 1

4 + 1
100 (v2 − 1) otherwise.

Hence, if there were no bidders other than bidders 1 and 2, then, regardless of whether
the objective is surplus or total donated, charity1 would receive at least1, and charity
2 would receive less than1. Now, the third bidder’strue preferences are accurately
represented (under the utility-theoretic interpretationgiven earlier in the paper) by the
bid v1

3(πc1
) = 1 if πc1

≥ 1, v1
3(πc1

) = 0 otherwise;v2
3(πc2

) = 3 if πc2
≥ 1,

v2
3(πc2

) = 0 otherwise; andw3(v3) = 1
3v3 if v3 ≤ 1, w3(v3) = 1

3 + 1
100 (v3 − 1)

otherwise. Now, it is straightforward to check that, if the third bidder bids truthfully,
then regardless of whether the objective is surplus or totaldonated, charity1 will still
receive at least1, and charity2 will still receive less than1. The same is true if bidder
3 does not place a bid at all (as in the case of free-rider manipulation); hence bidder
3’s valuation/utility will be 1 in this case. But now, if bidder3 reportsv1

3(πc1
) = 0

everywhere;v2
3(πc2

) = 3 if πc2
≥ 1, v2

3(πc2
) = 0 otherwise (this part of the bid is

truthful); andw3(v3) = 1
3v3 if v3 ≤ 1, w3(v3) = 1

3 otherwise; then charity2 will
receive at least1, and bidder3 will have to pay at most13 . Because up to this amount
of payment, one unit of money corresponds to three units of valuation/utility to bidder
3, it follows that this bidder’s utility is now at least3 − 1 = 2 > 1. We observe that in
this case, the strategic bidder is not only affecting how much the bidders pay, but also
how much the charities receive.
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9.2 Mechanism design in the quasilinear setting

There are at least four (interrelated) reasons why the mechanism design approach is
likely to be most successful in the setting of quasilinear preferences. First, historically,
mechanism design has been most successful when the quasilinear assumption could be
made. Second, because of this success, some very general mechanisms have been dis-
covered for the quasilinear setting (for instance, the VCG mechanisms [36, 7, 18], or
the dAGVA mechanisms [13, 2]). Third, as we saw in Section 8, the clearing problem
is much easier in the quasilinear setting, and thus we are less likely to run into com-
putational trouble for the mechanism design problem. Fourth, as we will show shortly,
the quasilinearity assumption in some cases allows for decomposing the mechanism
design problem over the charities (as it did for the simple clearing problem).

Moreover, in the quasilinear setting, it makes sense to pursue social welfare (the
sum of the bidders’ utilities) as the objective, because here 1) units of valuation cor-
respond directly to units of money, so that we do not have any problem of the bidders
arbitrarily scaling their valuations; and 2) it is no longerpossible to give a payment
willingness function of0 while still affecting the donations through a valuation func-
tion. It is also helpful to recall Proposition 2 here, which states that with quasilinear
utilities, an outcome maximizes surplus′ if and only if it maximizes the sum of the
bidders’ utilities.

Before presenting the decomposition result, we introduce some concepts from game
theory and mechanism design. Atyperepresents particular preferences that a bidder
can have and can report (thus, a type report is a bid).Incentive compatibility (IC)means
that bidders are best off reporting their preferences truthfully; either regardless of the
others’ reported types (in dominant strategies), or in expectation over them assuming
truthful reporting by the other bidders (in Bayes-Nash equilibrium). Individual ratio-
nality (IR) means bidders are at least as well off participating in the mechanism as not
participating; either regardless of the others’ reported types (ex post), or in expectation
over them assuming truthful reporting by the other bidders (ex interim). A mechanism
is budget balancedif there is no flow of money into or out of the system—in general
(ex post), or in expectation (ex ante). A mechanism isefficientif it (always) produces
an efficient allocation—that is, an allocation that maximizes the sum of the bidders’
utilities.

Proposition 4 Suppose all bidders’ preferences are quasilinear. Furthermore, sup-
pose that there exists a single-charity mechanismM that, for a certain subclassP of
(quasilinear) preferences, under a given solution conceptS (implementation in domi-
nant strategies or Bayes-Nash equilibrium) and a given notion of individual rationality
R (ex post, ex interim, or none), satisfies a certain notion of budget balance (ex post,
ex ante, or none), and is ex-post efficient. Then there existssuch a mechanism for any
number of charities.

Proof: The mechanism is simply the following: for each charity, run the single-charity
mechanism on the bidders’ preferences for that charity, andlet the bidders make the
corresponding payments to that charity. (So, each bidder’stotal payment will be the
sum of her payments to the individual charities.) It is straightforward to check that the
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desired properties of this combined mechanism follow from the fact that the single-
charity mechanism satisfies them. �

9.3 Impossibility of efficiency in the mechanism design context

In this subsection, we show that even in a very restricted setting, and with minimal
requirements on IC and IR constraints, it is impossible to create a mechanism that is
efficient.

Theorem 10 There is no mechanism that is ex-post budget balanced, ex-post efficient,
and ex-interim individually rational with Bayes-Nash equilibrium as the solution con-
cept (even with only one charity, only two quasilinear bidders with identical type distri-
butions (uniform over two types, with either both valuationfunctions being step func-
tions or both valuation functions being concave piecewise linear functions)).

Proof: Suppose the two bidders both have the following distribution over types. With
probability 1

2 , the bidder does not care for the charity at all (v is zero everywhere); oth-
erwise, the bidder derives valuation54 from the charity getting at least1, and valuation
0 otherwise. (Alternatively, for the second type, the biddercan getmin{ 5

4 , 5πc

4 }—a
concave piecewise linear function.) Call the first type the low type (L), the second one
the high type (H).

Suppose, for the sake of contradiction, that a mechanism with the desired proper-
ties does exist. By the revelation principle, we can assume that revealing preferences
truthfully is a Bayes-Nash equilibrium in this mechanism. Because the mechanism is
ex-post efficient, the charity should receive exactly1 when either bidder has the high
type, and0 otherwise. Letπ1(θ1, θ2) be bidder1’s (expected) payment when she re-
portsθ1 and the other bidder reportsθ2. By ex-interim IR,π1(L,H) + π1(L,L) ≤ 0.
Because bidder1 cannot have an incentive to report falsely when her true typeis high,
we have5

4 − π1(L,H) − π1(L,L) ≤ 5
4 − π1(H,H) + 5

4 − π1(H,L), or equivalently
π1(H,H) + π1(H,L) ≤ 5

4 + π1(L,L) + π1(L,H) ≤ 5
4 . Because the example is

completely symmetric between bidders, we can similarly conclude for bidder 2’s pay-
ments thatπ2(H,H) + π2(L,H) ≤ 5

4 . Of course, in order to pay the charity the
necessary amount of1 whenever one of the bidders has her high type, we need to have
π1(H,H) + π1(H,L) + π2(H,H) + π2(L,H) + π1(L,H) + π2(H,L) = 3, and thus
we can conclude thatπ1(L,H) + π2(H,L) ≥ 3 − 10

4 = 1
2 . Because the charity re-

ceives0 when both report low,π1(L,L)+π2(L,L) = 0 and thus we can conclude that
π1(L,H) + π1(L,L) + π2(H,L) + π2(L,L) ≥ 1

2 . But by the individual rationality
constraints,π1(L,H) + π1(L,L) ≤ 0 andπ2(H,L) + π2(L,L) ≤ 0. So we have
reached the desired contradiction.13

�

13As an alternative proof technique (a proof by computer), we let our automated mechanism design soft-
ware [8, 9] create an optimal mechanism for the (step-function) instance described in the proof, under the
required constraints on the mechanism and with social welfare (counting the payments made) as the objec-
tive. The resulting mechanism did not burn any money (did not pay unnecessarily much to the charity),
but did not always give money to the charity when it was beneficial to do so. (It randomized uniformly
between giving1 and giving0 when player 1’s type was low, and player 2’s high.) Since an ex-post budget
balanced, ex-post efficient mechanism would have had a higherexpected objective value, and the automated
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The case of step functions in this theorem corresponds exactly to the case of a
single, fixed-size, nonrival, nonexcludable public good (the “public good” being that
the charity receives the required amount)—for which such an impossibility result is
already known [22].14 Many similar results are known, probably the most famous of
which is the Myerson-Satterthwaite impossibility result,which proves the impossibility
of efficient bilateral trade under the same requirements [24].

Proposition 4 indicates that there is no reason to decide on donations to multiple
charities under a single mechanism (rather than a separate one for each charity), when
an efficient mechanism with the desired properties exists for the single-charity case.
However, because under the requirements of Theorem 10, no such mechanism exists,
there may in fact be a benefit to bringing the charities under the same umbrella. The
next proposition shows that this can indeed be the case.

Proposition 5 There exist settings with two charities where there exists no ex-post bud-
get balanced, ex-post efficient, and ex-interim individually rational mechanism with
Bayes-Nash equilibrium as the solution concept for either charity alone; but there
exists an ex-post budget balanced, ex-post efficient, and ex-post individually rational
mechanism with dominant strategies as the solution conceptfor both charities together.
(This holds even when the conditions are the same as in Theorem 10, apart from the
fact that there are now two charities.)

Proof: Suppose that each bidder has two types, with probability1
2 each: for the first

type, her preferences for the first charity correspond to thehigh type in the proof of
Theorem 10, and her preferences for the second charity correspond to the low type
in the proof of Theorem 10. For the second type, her preferences for the first charity
correspond to the low type, and her preferences for the second charity correspond to
the high type. Now, if we wish to create a mechanism for eithercharity individually,
we are in exactly the same setting as in the proof of Theorem 10, where we know
that it is impossible to get all of ex-post budget balance, ex-post efficiency, and ex-
interim individual rationality in Bayes-Nash equilibrium. On the other hand, consider
the following mechanism for the joint problem. If both bidders report preferring the
same charity, each bidder pays1

2 , and the preferred charity receives1 (the other0).
Otherwise, each bidder pays1, and each charity receives1. It is straightforward to
check that the mechanism is ex-post budget balanced, ex-post efficient, and ex-post
individually rational. To see that truthtelling is a dominant strategy, we need to check
two cases. First, if one bidder reports a high valuation for the charity that the other
bidder does not prefer, this latter bidder is better off reporting truthfully: reporting
falsely will give her utility− 1

2 (nothing will be donated to her preferred charity), which
is less than reporting truthfully because ex-post IR holds.Second, if one bidder reports

mechanism design software always finds a mechanism that maximizes the expected objective value under
the constraints it is given, we can conclude that no ex-post budget balanced, ex-post efficient mechanism
exists under the given constraints.

14Indeed, the framework in this paper can be used for nonrival, nonexcludable public goods more gen-
erally: any cause that benefits from money, and from which all agents derive utility, can be thought of as
a charity. For example, the project of buying a coffee machine for the department can be thought of as a
charity. The example of drilling a water well mentioned earlier perhaps serves to illustrate that there is no
sharp distinction between these interpretations of the framework.
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a high valuation for the charity that the other bidder prefers, this latter bidder is better
off reporting truthfully as well: her preferred charity will receive the same amount
regardless of her report, but her required payment is only1

2 if she reports truthfully, as
opposed to1 if she reports falsely. �

Of course, Proposition 5 merely gives a very particular example where having a
single mechanism for multiple charities can help. This still leaves us far from having
a general theory of how to design mechanisms for multiple charities, but it does show
that we cannot simply decompose the problem across charities (at least not without
some further assumptions).

10 An experiment with real bidders and money

We decided to test the basic framework of this paper at the Dagstuhl Workshop on Com-
puting and Markets (2005). During the presentation of this work at that workshop, we
announced that we would conduct a charity drive using the bidding language described
in this paper. For simplicity, the event was restricted to a single charity, namely the
victims of the December 2004 tsunami that devastated coastal areas in Indonesia, Sri
Lanka, India, and Thailand. The objective to be maximized inthe event was the total
amount donated. Participants were given until 6pm on the dayafter the presentation
to submit their bids. Of the workshop’s≥ 46 participants,15 18 submitted valid bids
before the deadline (including the two authors of this paper). The bids are shown in
Figure 1.

The bids were collected in sequence, and every bidder was able to see all the pre-
vious bids. Very quickly, a “target” total amount of US $500 emerged as a focal point,
so that many bidders made their donations conditional on at least $500 being collected.
(In fact, one bidder strategically made his donation conditional onexactly$500 being
collected: he did not want the effort to reach $500 to fail on his account, but was not
interested in donating if the target amount would also be reached without him.) Once
this target amount was in fact reached, the remaining bidders set their sights higher,
resulting in a final amount of $700.

Four of the bids were unconditional donations (the same amount given at every
total amount collected). Five of the bids were simple threshold bids (0 given below
a certain amount collected, some constant amountc at or above it). One bid was the
sum of an unconditional donation and a simple threshold bid.The remaining eight bids
(including the authors’ own bids and one bid that was a copy ofone of the authors’
bids) were more complex.

Sixteen bids were submitted in US dollars, one in Euros, and one in Canadian
dollars. (All bids were converted to US dollars.) Figure 2 shows the total amount
bidders were willing to give conditional on each total amount donated (this function is
the sum of their individual bid functions); the event cleared at the largest feasible point,
that is, the largest point at which the curve intersects the identity function (45 degree
line), $700.

15The number 46 was obtained by counting the number of faces in thegroup picture.
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Figure 1: The bids submitted in the tsunami charity event. Each function represents a
bidder’s willingness to give as a function of the total donated.

From this small experiment, it is clear that at least some bidders prefer to place
complex, expressive, conditional bids. Presumably, usingthis methodology benefited
even the bidders who did not make their donation conditional, because their uncondi-
tional bids still induced the bidders who did make their bidsconditional to give more.

Later, we tried to run a similar event to collect donations for victims of Hurricane
Katrina. Unlike the tsunami event, this event was open to everyone and potential par-
ticipants were approached unsystematically; it was not associated with a workshop or
anything of the sort. Unfortunately, the response to this event was rather minimal.
While it is not immediately clear which of the various differences between the tsunami
and hurricane events were responsible for the difference insuccess, this perhaps lends
some support to the idea that it helps when there are social connections among the bid-
ders in the event. In the next section, we discuss some subsequent research by others
that extends our framework with a social-networking component.

11 Subsequent research

Since the conference version of this paper, there have been several highly related works.
Most closely related is recent work by Ghosh and Mahdian [15]. In their paper, they
take the original version of this paper as a starting point, but then argue that the as-
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Figure 2: The total willingness to give as a function of the total amount donated (this
function is equal to the sum of the bids), and the identity function (the 45 degree line).
Since the objective was to maximize the total donated, the event cleared at the largest
point at which the curve intersects the identity function, $700. There is a small spike
at $500 due to the bidder who strategically made his donationconditional onexactly
$500 being reached.

sumption that each bidder cares only about the total amount donated to each charity is
not realistic. They extend the model so that a bidder can alsocondition her donation
on who is making donations. For example, in a social network setting, it may make
sense for a bidder to condition her own donation on the donations of her friends only.
On the other hand, Ghosh and Mahdian restrict themselves to asingle-charity setting,
in part because of the hardness results for multiple charities given in our paper. They
show that a unique maximal payment vector exists, and give both a linear program and
an iterative procedure for finding it. They then proceed withan equilibrium analysis
and show the existence of acomplete-informationNash equilibrium that results in the
maximum total payment (this does not imply that the mechanism is incentive compat-
ible). A Web-based system based on their model has been implemented at Yahoo! (but
it currently requires an internal login).

The Ghosh and Mahdian paper, in turn, is closely related to another paper by us on
markets for general settings with externalities [10]. Thispaper preceded the Ghosh and
Mahdian paper, though they were not aware of it when they wrote their paper. In it, we
consider general settings where each agent controls a number of variables, and these
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variables affect the agent’s own utility as well as the utilities of others. For example, the
variables can represent how much each bidder donates to eachcharity. Alternatively,
they can represent, for example, levels of pollutants emitted by the agents. The goal
is to agree on an outcome that is good for all. We study how computationally hard it
is to find optimal solutions in this framework, for various definitions of optimality and
various restrictions of the setting. The Ghosh and Mahdian setting corresponds to one
of the studied versions, where each agent controls one variable (how much the agent
donates), externalities are negative (setting the variable selfishly corresponds to a low
donation, which negatively affects the other agents), and the objective is to maximize
concessions (equivalently, to maximize donations). In this context, we prove the same
result about the existence of a unique maximal solution, andgive the same iterative
algorithm that converges to this solution. We do not study any equilibrium aspects in
that paper, though.

12 Conclusion

We introduced a bidding language for expressing very general types of matching offers
over multiple charities. We formulated the corresponding clearing problem (deciding
how much each bidder pays, and how much each charity receives), and showed that it is
NP-hard to approximate to any ratio even in very restricted settings. We gave a mixed
integer program formulation of the clearing problem, and showed that for concave bids
(where valuation functions and payment willingness functions are concave), the pro-
gram reduces to a linear program and can hence be solved in polynomial time. We then
showed that the clearing problem for a subclass of concave bids is at least as hard as
the decision variant of linear programming, suggesting that we cannot do much better
than a linear programming implementation for such bids. We also considered the case
where each charity has a target amount, and bidders’ willingness-to-pay functions are
concave. Here, we showed that the optimal surplus can be approximated to a ratiom,
the number of charities, in polynomial time (and no significantly better approximation
is possible in polynomial time unless P=NP); no polynomial-time approximation ratio
is possible for maximizing the total donated, unless P=NP. Subsequently, we showed
that the clearing problem is much easier when bids are quasilinear (where payment
willingness functions are linear)—for maximizing surplus,the problem decomposes
across charities, and for maximizing the total donated, a greedy approach is optimal if
the bids are concave (although this latter problem is weaklyNP-hard when the bids are
not concave). For the quasilinear setting, we studied the mechanism design question of
incentivizing the bidders to report their preferences truthfully. We showed that an ex-
post efficient mechanism is impossible even with only one charity and a very restricted
class of bids. We also showed that even though the clearing problem decomposes over
charities in the quasilinear setting, there can be benefits to linking the charities from a
mechanism design standpoint. Finally, we discussed an experiment in which we used
this methodology to collect money for victims of the 2004 Indian Ocean Tsunami.

There are many directions for future research. One direction is to create a frame-
work that simultaneously generalizes both our framework and the Ghosh and Mahdian
framework, so that donations can be conditional on who donates how much to which
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charities. Another direction is to build a publicly available Web-based implementation
of one of these markets. One can also study the scalability ofour MIP/LP approach.
It may be helpful to identify other classes of bids for which the clearing problem is
tractable. Much work remains to be done on the mechanism design problem. Finally,
are there good iterative markets for charitable donations?16
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A Comparison to combinatorial auctions and exchanges

In a combinatorial auction, there arem items for sale, and bidders can place bids on
bundlesof one or more items. The auctioneer subsequently labels each bid as winning
or losing, under the constraint that no item can be in more than one winning bid, to
maximize the sum of the values of the winning bids. (This is known as theclearing

35



problemor thewinner determination problem.) Variants include combinatorialreverse
auctions, where the auctioneer is seeking to procure a set ofitems; and combinatorial
exchanges, where bidders can both buy and sell items (even within the same bid).
Other extensions include allowing forside constraints, as well as the specification of
attributesof the items in bids. Combinatorial auctions and exchanges are a popular
research topic; for an overview, see a recent book summarizing the state of the art [12].

The problems of clearing expressive charity donation markets and clearing combi-
natorial auctions or exchanges are very different in formulation. Nevertheless, there are
interesting parallels. One of the main reasons for the interest in combinatorial auctions
and exchanges is that they allow forexpressive bidding. A bidder can express exactly
how much each possibleallocation is worth to her, and thus the globally optimal allo-
cation can be chosen by the auctioneer. Compare this to a bidder having to bid on two
different items in two different (single-item) auctions, without any way of expressing
that (for instance) one item is worthless if the other item isnot won. In this scenario,
the bidder may win the first item but not the second (because there was another high
bid on the second item that she did not anticipate), leading to economic inefficiency.

Expressive bidding is also one of the main benefits of an expressive charity donation
market. Here, bidders can express exactly how much they are willing to donate for
every vector of amounts donated to charities. This may allowbidders to negotiate a
complex arrangement of who gives how much to which charity, which is beneficial
to all parties involved; no such arrangement may have been possible if the bidders
had been restricted to using simple matching offers on individual charities. Again,
expressive bidding is necessary to achieve economic efficiency.17

Another parallel is the computational complexity of the clearing problem. In or-
der to achieve the full economic efficiency allowed by the market’s expressiveness (or
even come close to it), hard computational problems must be solved in combinato-
rial auctions and exchanges, as well as in an expressive charity donation market (as is
demonstrated in the main body of the paper).

B Avoiding indirect payments

In an initial implementation, the approach of having donations made out to a central
entity (thecenter), and having the center forward these payments to the charities, may
not be desirable. Rather, it may be preferable to have apartially decentralizedsolution,
where the bidders write out checks to the charities directlyaccording to a solution
based on the bids that is computed by the center. In this scenario, the center merely has
to verify that bidders are giving the prescribed amounts. Advantages of this include
that the center can keep its legal status minimal, as well as that we do not require
the bidders to trust the center to transfer their donations to the charities (or require
some complicated verification protocol). It is also a step towards a fully decentralized
solution, if this is desirable.

17This does not mean that expressive bidding is alwayssufficientfor economic efficiency: for example,
even when expressive bidding is possible, bidders may strategically misreport their preferences, resulting in
economic inefficiency with respect to their true preferences.
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To bring this about, we can still use the approach described in the main body of the
paper. After we clear the market in the manner described there, we know the amount
that each bidder is supposed to give, and the amount that eachcharity is supposed to
receive. Then, it is straightforward to give some specification of who should give how
much to which charity, that is consistent with that solution. Any greedy algorithm that
increases the cash flow from any bidder who has not yet paid enough, to any charity
that has not yet received enough, until either the bidder haspaid enough or the charity
has received enough, will provide such a specification. (Allof this is assuming that∑

bj

πbj
=

∑

ci

πci
. In the case where there is nonzero surplus, that is,

∑

bj

πbj
>

∑

ci

πci
,

we can distribute this surplus across the bidders by not requiring them to pay the full
amount, or across the charities by giving them more than the solution specifies.)

Nevertheless, with this approach, a bidder may have to writeout a check to a charity
that she does not care for at all. This is likely to lead to complaints and noncompliance
with the solution. We can address this issue by letting each bidder specify explicitly
(before the clearing of the market) which charities she would be willing to make a
check out to. These additional constraints, of course, may change the optimal solution.
In general, checking whether a given centralized solution (with zero surplus) can be
accomplished through decentralized payments when there are such constraints can be
modeled as a MAX-FLOW problem. In the MAX-FLOW instance, there is an edge
from the source nodes to each bidderbj , with a capacity ofπbj

(as specified in the
centralized solution); an edge from each bidderbj to each charityci that the bidder is
willing to donate money to, with a capacity of∞; and an edge from each charityci to
the target nodet with capacityπci

(as specified in the centralized solution).
We can also integrate the direct-payment model into the MIP introduced earlier. To

do so, we add variablesπci,bj
indicating how muchbj pays toci, with the constraints

that for eachci, πci
=

∑

bj

πci,bj
; and for eachbj , πbj

=
∑

ci

πci,bj
. Additionally, there

is a constraintπci,bj
= 0 whenever bidderbj is unwilling to pay charityci. The rest of

the MIP can be formulated in terms of theπci
andπbj

, as before.
We note that the main part of this paper corresponds to the special case where there

are no constraints on which bidders can donate to which charities, so all of the hardness
results from the main part of the paper still apply to the direct-payment model.
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