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Abstract

When donating money to a (say, charitable) cause, it is possible to use the
contemplated donation as a bargaining chip to induce other parties inteiested
the charity to donate more. Such negotiation is usually done in termmsitwhing
offers where one party promises to pay a certain amount if others pay a certain
amount. However, in their current form, matching offers allow for diryited
negotiation. For one, it is not immediately clear how multiple parties can make
matching offers at the same time without creating circular dependenitiigs, it
is not immediately clear how to make a donation conditional on other donations
to multiple charities when the donor has different levels of appreciatiothfor
different charities. In both these cases, the limited expressivenassitching
offers causes economic loss: it may happen that an arrangemeéntitparties
(donors as well as charities) would have preferred cannot be &sgatén terms of
matching offers and will therefore not occur.

In this paper, we introduce a bidding language for expressing vergrgen
types of matching offers over multiple charities. We formulate the cooredp
ing clearing problem (deciding how much each bidder pays, and hovh each
charity receives), and show that it cannot be approximated to anyimgtimlyno-
mial time unless P=NP, even in very restricted settings. We give a mixeceinteg
program formulation of the clearing problem, and show that for combéds, the
program reduces to a linear program. We then show that the clearibtgprdor
a subclass of concave bids is at least as hard as the decision vatiaegofpro-
gramming. We also consider the case where each charity has a tameitaand
bidders’ willingness-to-pay functions are concave. Here, we shawttteaptimal
surplus can be approximated to a ratiq the number of charities, in polynomial
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time (and no significantly better approximation is possible in polynomial time un-
less P=NP); no polynomial-time approximation ratio is possible for maximizing
the total donated, unless P=NP. Subsequently, we show that the clesyiyigm

is much easier when bids are quasilinear—for maximizing surplus, theegmno
decomposes across charities, and for maximizing the total donatededygap-
proach is optimal if the bids are concave (although this latter problem islyeak
NP-hard when the bids are not concave). For the quasilinear settirgudsethe
mechanism design question. We show that an ex-post efficient msghanim-
possible even with only one charity and a very restricted class of bids. |3e a
show that there can be benefits to linking the charities from a mechanisgndes
standpoint. Finally, we discuss an experiment in which we used this medtiyydo

to collect money for victims of the 2004 Indian Ocean Tsunami.

1 Introduction

When money is donated to a charitable (or other) cause (heraaferred to as a

charity), often the donating party givasiconditionally a fixed amount is transferred
from the donor to the charity, and none of this transfer igiogient on other events—

in particular, it is not contingent on the amount given byeotparties. Indeed, this is
currently often the only way to make a donation, especiatysiall donating parties

such as private individuals. However, when multiple pariapport the same charity,
each of them would prefer to see the others give more ratharéss to this charity. In

such scenarios, it is sensible for a party to use its cont@ieghdonation as a bargaining
chip to induce the others to give more. This is done by makiegionation conditional

on the others’ donations. The following example will illcege this, and show that the
donating parties as well as the charitable cause may sinadtsly benefit from the

potential for such negotiation.

Suppose we have two partiesand2, who are both supporters of charig, To
either of them, it would be worth $0.75 i received $1. It follows that neither of
them will be willing to give unconditionally, because $0.#5$1. However, if the
two parties draw up a contract that says that they will each §0.5, both the parties
have an incentive to accept this contract (rather than haw@ntract at all): with the
contract, the charity will receive $1 (rather than $0 withawontract), which is worth
$0.75 to each party, which is greater than the $0.5 that thdy pvill have to give.
Effectively, each party has made its donation conditiomathe other party’s donation,
leading to larger donations and greater happiness to alepanvolved.

One method that is often used to bring this about is to makeatching offer
Examples of matching offers are: “I will give dollars for every dollar donated,”
or “I will give z dollars if the total collected from other parties excegds In our
example above, one of the parties can make the offer “I wiflade $0.5 if the other
party also donates at least that much,” and then the othér wdl have an incentive
to indeed donate $0.5, so that the total amount given to thetghincreases by $1.
Thus this matching offer implements the contract suggeastexye. As a real-world
example, the United States government has authorized didiewdup to $1 billion to
the Global Fund to fight AIDS, TB and Malaria, under the coodithat the American
contribution does not exceed one third of the total—to ermgeirother countries to



give more [35].
However, there are several limitations to the simple apgrad matching offers as
just described.

1. It is not clear how two parties can make matching offersr@heach party’s
offer is stated in terms of the amount that the other pays. ékample, it is not
clear what the outcome should be when both parties offer tohnthe other’s
donation.) Thus, matching offers can only be based on patgnesde by parties
that are giving unconditionally (not in terms of a matchirff(ed—or at least
there can be no circular dependendies.

2. Given the current infrastructure for making matchingedsf it is impractical to
make a matching offer depend on the amounts givemutiiple charities. For
instance, a party may wish to specify that it will pay $100egixthat charityA
receives a total of $1000, but that it will also count donasionade to charity
B, at half the rate. (Thus, a total payment of $500 to chafityombined with
a total payment of $1000 to charify would be just enough for the party’s offer
to take effect.)

In contrast, in this paper we propose a new approach wherepeaity can express
its relative preferences for different charities, and migkeffer conditional on its own
appreciation for the vector of donations made to the varahssities. Moreover, the
amount the party offers to donate at different levels of apiation is allowed to vary
arbitrarily. Finally, there is a clear interpretation of atlit means when multiple parties
are making conditional offers that are stated in terms ohedher. Given each com-
bination of (conditional) offers, there is a (usually) umgsolution which determines
how much each party pays, and how much each charity is paiid.céin be useful in
the context of multiple individuals who wish to make matghiffers, but the parties
do not need to be individuals; for example, one can imagimpdyap this approach at
an international aid conference (for instance, for relgdHaiti after its devastating
2010 earthquake) where the parties are donor nations dgdidiv much each of them
will contribute.

However, as we will show, with multiple charities, findindglsolution (theclear-
ing problem requires solving an optimization problem that, in geneiglhard. A
large part of this paper is devoted to studying how hard ttoslem is under different
assumptions on the structure of the offersk{imls), and providing algorithms for solv-
ing it. Towards the end of the paper, we also studyrtteehanism desigproblem of
motivating the bidders to bid truthfully. We also discussrea#l experiment.

In short, expressive markets for making charitable donatibave the potential
to increase welfare by facilitating the voluntary reallibca of wealth. To reach this
potential, we discuss primarily computational aspectsl secondarily mechanism-
design aspects of this problem. In Appendix A, we discusgetaionship between
expressive charity donation and combinatorial auctiortsethanges. It can safely
be skipped, but may be of interest to the reader with a backgtin combinatorial
auctions and exchanges.

ITypically, larger organizations match offers of privateiiduals. For example, the American Red
Cross Liberty Disaster Fund maintains a list of businessststiatch their customers’ donations [17].



2 Definitions

Throughout this paper, we will refer to the offers that thenaking parties make as
bids and to the donating parties &fders In our bidding framework, a bid will
specify, for each vector of total payments made to the dearihow much that bidder
is willing? to contribute. (The bidder’s own contribution is also cahin the vector of
total payments—so, the vector of total payments to the éharniepresents the amount
given byall donating parties, not just the ones other than this bidd&k)note that
each bidder specifies onbnetotal amount that she is willing to give (for each vector
of total payments made to the charities), that is, she doegxpicitly specify the
charities to which her donation will gb.The bidding language is expressive enough
that no bidder should have to make more than one bid. TheAfmitpdefinition makes
the general form of a bid in our framework precise.

Definition 1 In a setting withm charitiescy, ca, . . . , ¢, abid by bidderbd; is a func-
tionw; : R™ — R. The interpretation is that if charity; receives a total amount of
¢, then bidder;j is willing to donate (up to)u; (me, , Tey, - - - s ey, )-

We note thatw; doesnot necessarily decompose across charities, that is, we do

m
not necessarily have that; (r, , 7c,,...,m.,) = > w'(n.,) (for some component
=1
functionSw;i). There are several reasons why such a decomposabilitgnptiem may
be too restrictive. One is that the charities may be relat@dexample, two charities
may pursue the same goal or related goals. Another reasbatia bidder may only
have a limited amount of money to give—or, more generallyda®i who has already
given a large amount may become more reluctant to give anddiar. Later in this
paper, we will effectively mostly assume away the formesogg we will discuss the
latter reason in more detail shortly.
We now define possible outcomes in our model, and which outsoane valid

given the bids that were made.

Definition 2 Anoutcomss a vector of payments made by the biddets, 7, ..., T, ),
and a vector of payments received by the charities, r.,, ..., 7, ).

Definition 3 A valid outcome is an outcome where

n m
1 > m, > m, (atleast as much money is collected as is given away);
j=1 i=1
2. Foralll <j <n,m,;, <wj(re,,ne,,...,me,) (N0 bidder gives more than she
is willing to).

Of course, in the end, only one of the valid outcomes can bearhoWe choose
the valid outcome that maximizes thbjectivethat we have for the donation process.

2The word “willing” here should not be interpreted as beingeassarily directly related to the bidder’s
true preferences. Rather, the bidder just indicates how rsluehgreeso contribute in each case, and at this
point we are not yet concerned with the bidder’s intentiogisiibd entering into this agreement.

3In Appendix B, we discuss a variant where bidders make paymewtsarities directly and can express
that they are not willing to give to certain charities.



Definition 4 Anobjectiveis a function from the set of all outcomesRd After all the
bids have been collected, a valid outcome will be chosermtiaaimizes this objective.

One example of an objective ssirplus given byZ T, — Z 7., One easy way

i=

of thinking about the surplus is as the profit of a company rgmgathe expressive
donation marketplace. However, it should be emphasized stramgly that the surplus
does nonheedto go the entity organizing the donation market. The surparsalso be
returned to the bidders, or to the charities. Indeed, tha @fea company profiting
from charitable donations may be unpalatable, and the ag@on would presumably
be run more naturally as a nonprofit.

To illustrate this point more precisely, we can consider fillowing objective,

which we will call surplus: Z[’wj(’ﬂ'cl,’f('cz,.. , Te,,) — Ty,;]. Thatis, for each bidder

there is slack between how much she is willing to pay, and hawinshe actually pays.
A large slack indicates a happy bidder: she would have belingvio pay even more
to achieve these donations to the charities. (We will giveoeerprecise utility-theoretic
interpretation of this shortly.) So, we try to maximize thersof these slacks; this is
the surplus objective. (We note that this objective depends on the pidhie next
proposition shows that surplus and surplae effectively equivalent. As a result, in
most of the paper we will simply consider maximizing surplugh the understanding
that such techniques apply just as well to maximizing s plu

Proposition 1 A vectorr,,, ..., 7., is part of a valid outcome maximizing surplus if
and only if it is part of a valid outcome maximizing surglus

Proof: Suppose the outcom;ebl,.. T, , Teys - - - s e, Maximizes surplus among
m
valid outcomes; let = Z m,, — »_ T, be the surplus. Then, the outcome where we
Jj=1 =1
give the entire surplus to bidderd;, = m, —s, T = Ty, .-+, T = T, Teys -+ Teps

is still valid, and its surplusis at Ieasts Thus, the optimal surplms always at Ieast
the optimal surplus.
Conversely, suppose the outcomg, ..., m, e, .., e

n
among valid outcomes; let = _ [w; (7, , mc,., - - -, e, ) =, ] be the surplus Then,
j=1
the outcome where we reduce each bidder’s slack to zgros w1 (me, s Tegs - -+ s ey, )y - -« 5 b
Wi (Teys Tegy v ooy Tey )y Tegs - - - 5 Te,, » 1S Still Valid, and its surplus is at least Thus,
the optimal surplus is always at least the optimal sufpllifollows that the optimal
surplus and the optimal surplusre always equal. Moreover, they are obtained at the

maximizes surplus

m

n

4In general, the objective function may also depend on the, bigisthe main objective functions under
consideration in this paper—surplus or the total amount ahado not depend on the bids. The techniques
presented in this paper will typically generalize to ohjexg that take the bids into account directly.

51t is good to emphasize that at this point we are not consigdditness (though of course we could
spread the surplus more equally) or strategic issues. Infaciechanism design, there is a growing literature
on the highly nontrivial problem of redistributing surplpayments to the bidders without creating perverse
incentives €.g, [4, 27, 5, 19, 23, 1, 6, 20]).



same vectors.,, ..., ., , as shown above. O

While the surplus objective has appealing properties, we enagider others. For
example, another objective istal amount donatedgiven by > =.,. This objective

has the advantage that more money is donated to the chz'm\;ﬁaeall; it also has the
downside that more may be given to a charity than it reallydee@his distinction be-
tween maximizing surplus and maximizing the total amoumtaded has an analogue
in the combinatorial exchanges literature, where two comuotgectives are to maxi-
mize surplus, and to maximize total trading volume (akauititly)—though at least in
that context there are good arguments for preferring thglssiobjective [34, 16].
Finding a valid outcome that maximizes the objective is amdal computational
problem. We will refer to it as thelearing problem. The formal definition follows.

Definition 5 (DONATION-CLEARING) We are given a set of bids over charities
c1,co,. .., Cm. Additionally, we are given an objective function. We arkeaisto find
an objective-maximizing valid outcome.

How hard the DONATION-CLEARING problem is depends on theaypf bids
used and the language in which they are expressed.

2.1 The special case of a single charity

To build intuition, it is helpful to consider an importantesyal case that is interesting in
its own right: the case in which there is only one charityin this context, each bidder
b; specifies a functionv; : R — R, indicating how much the bidder is willing to
give as a function of the total received by the charity. I1s $pecial case, the clearing
problem is particularly easy. We consider the functiog, : R — R, defined by
wiotal(me) = Y, w;(m.). This function returns, as a function of the amount recebyed
=1
the charity, %he total that the bidders are willing to givéven this function, it is easy
to see which amounts the charity can receive in valid outsoragy amountr, such
that wiora(7.) > 7. is part of a valid outcome, because if we collect the full amou
that each bidder is willing to pay, we will collect at leastraach money as is given
away. (Of course, we can also collect less, as long as thlectuitacted is at least..)
Thus, if we graph theuy function with the total receiveds,, on the x-axis, and the
total willingness to paywiotal(7c ), On the y-axis, then we find valid outcomes wherever
the functionwyyg is at or above the 45-degree line (the identity functiong;dlaitcome
that maximizes the total amount donated is the furthesii¢eright such point, and the
outcome that maximizes surplus is the point that is furthbstve the 45-degree line.
This is illustrated in more detail in the Indian Ocean Tsunexperiment in Section 10.
When there are multiple charities, the clearing problem trexomore complicated.
In fact, for multiple charities, it becomes less reasondblask bidders to specify
arbitrary functionsw; : R™ — R, and so we need to think about designing a bidding
language for the bidders. Before we do so, it is helpful taus whether it makes
sense to interpret the bids as statements about the bidd#git&s, and how to do so.



2.2 Discussion of the merits of utility-theoretic interpretations

So far, we have not said anything about how we assume bid® relahe bidders’
utilities. At some level, it is not strictly necessary to do the semantics of a bid in our
framework are perfectly well defined even without any wtitiheoretic interpretation.
Namely, the payment willingness function simply speciffesmaximum amount that a
bidder can be asked to pay, given a vector of donations. Tthepresents a conditional
commitment to donate money. Indeed, in order to apply a sykke the one described
in this paper in practice, it is highly desirable to have sadimple description of the
semantics of bids—one that does not depend on abstract dersce as utility, which
are presumably foreign to many of the people who might useyktem.

Moreover, as we will see, even if we do interpret the bids intibtystheoretic
way, the basic design that we propose (when interpreteigjstfarwardly, that is, as a
first-price mechanism) is in any case not incentive comfmatittn mechanism design,
a mechanism isncentive compatibléf each bidder is always best off declaring her
preferences truthfully.) To make a comparison to auctionsproposed design is more
similar to a first-price auction, in which the winning bidde@mply pays her bid, than
to a Vickrey auction [36], in which the winner pays the bid lo¢ thext-highest bidder
(or to the Vickrey auction’s generalization to VCG mecharss[36, 7, 18]). VCG
mechanisms are in fact incentive compatible, and becaubéspthe bids can arguably
truly be interpreted as reflecting the bidders’ utilities cbntrast, in first-price auctions
(or many other mechanisms), bidders are incentivized tgtoidegically. Hence, while
their bids may be given in the same form as under a VCG meadhaitiss, to say the
least, a stretch to interpret these bids as truly reprasgtite bidders’ utilities. Because
of this, itis perhaps best to consider a first-price auctmjust a particular game—one
in which we do not attach too much direct meaning to the bitteerdhan the guarantee
to each bidder that she will not be made to pay more than shétlisdthe same for our
charity market.

In spite of the theoretical advantages of incentive corbgyi, it is extremely rare
to see an incentive compatible mechanism such as VCG actiegglloyed in practice.
This is in contrast to first-price mechanisms, which areggetmmon. Presumably, one
important reason for this is that it is much easier to expédiiinst-price mechanism to a
novice. Other practical drawbacks of incentive compatiberhanisms such as VCG
have received much discussion [29, 30, 11, 3]. Moreovergwillsee in Section 9, in
the specific context of charitable donations, there aredorhtal limitations on what
can be achieved by incentive compatible mechanisms.

One may argue that, with a mechanism that is not incentivepetiivie, we need to
be concerned about strategic behavior by the bidders. tnlfgaherevelation prin-
ciple from the theory of mechanism design, focusing on incenta@matible mech-
anisms is without loss of optimality in the context of statebidders that behave
according to the laws of game theory. This is absolutely aly@int, and indeed we
do consider such strategic behavior in Section 9. Nevezsiséh the specific context of
donations to charitiesit seems perhaps unlikely that a game-theoretic solutasedt
on a simple model of utilities will give us an accurate prédit of actual behavior
in practice. This is first because it appears that peoplesams for giving to charity
are complex and varied. Second, the image of a hard-nosed sigategically pur-



suing maximum advantage for herself seems somewhat outioé [ih the context of
charitable donations. This is not a normative statement—+irciple, an agent's util-
ity function can model all sorts of preferences, includiftgusstic ones, and there is
no reason that she should not act in accordance with herrprefes—but these types
of considerations are nevertheless likely to affect pegplehavior in practice. To il-
lustrate these points, it is helpful to point at the realddidrids in the experiment in
Section 10. It seems difficult to explain such a diversity iotwith a simple strategic
model.

In spite of all these arguments, vd® believe that it is important to think about
how bids may reflect the bidders’ underlying utility funct® Besides considerations
of strategic bidding, one important reason for this is thatneed a bidding language
in which the bidders can express their bids. A good biddimglage makes it easy
to express “natural” bids, and in order to understand whatrahbids are, it helps to
think about how they may relate to the bidder’s utility.

2.3 A utility-theoretic interpretation

We now give a utility-theoretic interpretation of bids inrdsamework. We assume
that bidderb;’s utility «; depends only on how much she gives | and how much
the charities receivent,, ..., n., ). We additionally assume that the utility is non-
increasing inm,; (when holding ther., fixed), and moreover that for any values
of m¢,,..., 7, there exists a value af,, such thatu;(m,,7c,,...,mc,) = 0.
Given this, we can choose to interpret the bidder’'s willieggmto pay as the largest
amount that the bidder could pay and still end up with nontregauitility, that is,
W (Tey sy e, ) = max{my, [u;(my,, ey, ..., e, ) > 0},

Given this, the condition that a bidder should not pay moaath; (7, ,. .., 7., )
is equivalent to saying that she should receive utility asté. This can be interpreted
as anindividual rationality (aka.voluntary participation constraint: participating in
the market should not make a bidder worse off than she wowld been if the whole
event had not happened and no bidder had given anything.

An interesting special case is thatpfasilinear utility, where we can write;; (7, 7c, , . . .

wj (e, .-, e, ) — ;. INthis case, utility can be expressed in monetary termi& Th
also gives us another justification for maximizing surplume(e precisely, surplis

Proposition 2 If utilities are quasilinear, then an outcome maximizesptug if and
only if it maximizes the sum of the bidders’ utilities.

60ne might argue that a more appropriate definition of individationality would be that a bidder
should not be better off acting separately in the world, @ttile other bidders continue to participate in the
mechanism. However, such a more stringent definition immediatslylts in impossibilities. For example,
consider a charity that requires a donatiori dér a project (but has no use for additional money). If there
is only a single bidder, who is willing to pad/to see the charity get, then presumably this bidder should
indeed givel—in fact, the more stringent definition of individual ratiditya would require this, because
otherwise the bidder could just give the money to the chaiigctly, outside of the mechanism. But then,
consider the situation where there are two such biddersdfad them does not participate, then the other
bidder will end up giving the full amount, so that the formerd®d free-rides. But we cannot maketh
bidders at least as happy as they would be as free-riders—esmnf®as to put up the money. Thus, there
is no individually rational outcome at all under this morergjent definition. Section 9 considers strategic
phenomena in more detail.

» Tem ) =



Proof: A bidder’s utility for an outcome isv; (e, , ..., 7, ) — m,, Which is equal to
that bidder’s slack—and the surplusbjective is the sum of these slacks. O

While we will devote a reasonably large part of this paper ® ¢hse of quasi-
linear utilities, in our opinion, this restriction is oftarot reasonable in the context
of donations to charities. Intuitively, the argument is alfofvs. If utility were truly
quasilinear, then the reason that a donor gives only a balexd@unt to a charity must
be that the donor feels that, eventually, the marginal beoifiore money going to the
charity starts to significantly decrease. While this may laseeable for small char-
ities with a limited mission€.g, the local animal shelter only needs so much money
to do the most important things that it can), for large clesitvith a broader mission
(e.q, fighting world hunger), it seems that the marginal benefinofe money going
to the charity stays very nearly constant over a very larggeaf amounts of money
donated. In our opinion, in this context it is more reasoaablargue that the marginal
utility that the donor has for keeping money to herself clemngshe can easily spare
a small amount of money, but to give a medium-sized amountamfay, she has to
give up some luxury goods that she likes, and to give a largeuain she has to give
up more essential goods. This is the reason that she stopg gifter some point.
That is, her utility for money is strictly concave, not liméa(It should be emphasized
that we only really wish to argue that thisase possible reason for donors giving a
bounded amount, and therefore that our model should be alslecommodate it. In
fact, our model also accommodates other reasons for givimguaded amount, such
as the charity only needing a certain amount to do the mostritapt things.)

3 A simplified bidding language

Specifying a general bid in our framework (as defined abogglires being able to
specify an arbitrary real-valued function ovRf*. Even if we restricted the possible
total payment made to each charity to the f&tl, 2, ..., s}, this would still require
a bidder to specify(s + 1)™ values, which is exponential in the number of charities.
Thus, in the context of multiple charities, we need a biddargguage that will allow
the bidders to at least speciépmebids more concisely. We will introduce a bidding
language that only represents a subset of all possible hidish can be described
concisely® On the one hand, we believe that this language allows biddeaepresent
bids that are natural and useful. On the other hand, we dontend for this to be
the final word on bidding languages in this domain: certaiothier languages can be
created that allow the bidders to express different bids ey still be natural and
useful. Nevertheless, we consider it likely that the resalitained for our language
will either generalize directly to such languages, or astigaovide a useful starting
point.

"This argument does presuppose that the donor has very puneatiwtis, that is, the donor’s reason for
giving is purely that she wants to see the charity receive moFeis is in contrast to, for example, a donor
who feels that there is a social expectation from her friendan ethical obligation on her own part, to give
a particular amount.

80f course, our bidding language can be trivially extendedlkow for fully expressive bids, by also
allowing bids from a fully expressive bidding language, dugion to the bids in our bidding language.



To introduce our bidding language, we will first describe lieding function as a
composition of two functions; then we will outline our asqutions on each of these
functions. First, there is waluation functionv; : R™ — R, specifying how much
bidder; “appreciates” a given vector of total donations to the c¢hesri Then, there is a
donation willingnessr willingness-to-payunctionw; : R — R, which specifies how
much bidderj is willing to pay given her valuation; (r, , 7c,, . . ., 7, ) for the vector
of donations to the charities. Note that we are overloadtgtion here: before, the
domain ofw; functions consisted of vectors of total amounts donatetigaharities,
but here, the domain is that of nonnegative real numbersesepting the bidder’s
total valuation (which is itself a function of the total anmisi donated to the charities).
We overload notation because the range of the function is#éimee in both cases:
nonnegative real numbers, representing how much the biddeilling to pay. The
primary use ofw; in the rest of this paper is as a mapping from valuations tingiess
to pay. We emphasize that this function doe$ need to be linear, so that valuations
should not be thought of as necessarily expressible in dalfounts. (Indeed, we
argued above that when an individual is donating to a largeitghthe reason that the
individual donates only a bounded amount is typically natrdasing marginal value of
the money given to the charity, but rather that the margiakiesof a dollar to the bidder
herself becomes larger as her budget becomes smaller.gl8ting the two different
uses ofw;, we havew; (v;(m¢,, Teyy - -+, Te,)) = Wi (Tey, Teys - -+ Te,, ), @aNd we let
the bidder describe her functiongandw; separately; she will submit these functions
as her bid.

Our first restriction is that the valuation that a bidder desi from money do-
nated to one charity i;ddependendf the amount donated to another charity. Thus,

0 (Teys Teys -3 Te,,) = 2 Uh(me,). (We observe that this doesot imply that the

entire bid decomposes lsilmilarly, because of the possibidimearity of w;.) This
restriction seems reasonable in many cases, though it magllee into question in
cases where multiple charities are working on similar aatesl projects (for example,
disaster relief). If multiple charities are working on tsemeproject, then we can sim-
ply consider them a single charity (in fact, this is what wd i the tsunami event
described in Section 10).

Furthermore, for concreteness, we require that e@‘che piecewise linear. An
interesting special case that we will study is when edcls a line: v} (r.,) = a}z.,.
This special case is justified in settings where the scalbeoflonations by the bidders
is small relative to the amounts the charities receive frahewosources, so that the
marginal value of a dollar to the charity is not (significghthffected by the amount
given by the bidders.

The only restriction that we place on the bidders’ paymetiingness functionsu;
is that they be piecewise linear. One interesting specid taathreshold bigd where
wj is a step function: the bidder is willing to givedollars if her valuation exceeds
s, and otherwisd). Another interesting special case is when such a bighisially
acceptable the bidder is willing to give: dollars if her valuation exceeds but if her
valuation isv < s, she is still willing to give%t dollars. We are interested in such sim-
ple bids on the one hand for technical reasons, for examipteyiag hardness results
even for step functions; on the other hand, they do appeameap in practice—for
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example, five of the eighteen bids in the experiment in Sedibwere threshold bids.

One might wonder why, if we are given the bidders’ valuatiendtions, we do not
simply maximize the sum of the valuations, rather than sisrpl total donated. There
are several reasons. First, it would be possible for a bitarflate her valuation by
changing its units (and correspondingly changing her mgltiess to pay to adjust for
the change in units), thereby making her bid more importantvéluation maximiza-
tion purposes even though the bid has effectively remainedame. Second, a bidder
could simply give a payment willingness function thabisverywhere, and have her
valuation be taken into account in deciding on the outcomespite of her not con-
tributing anything. We also recall that Proposition 2 stdteat maximizing surplds
maximizes the sum of the bidders’ utilities if utilities ageasilinear.

We now give an example that illustrates what bids may loak ilikthis framework,
as well as what outcomes may result under the different tiagesc

Example 1 Let us consider an example with two bidders and two charifid® first
bidder bids:

o vi(m,,) = (3/4)m,, form., < 1,vi(n.,) = 3/4form. > 1 (valuation function
for the first charity);

o vi(m.,) = (1/2)m,, for m., < 1,v¥(m.,) = 1/2for ., > 1 (valuation function
for the second charity);

e wi(v1) = v1 (payment willingness function).
The second bidder bids:

o vi(m., ) =0form., <1,vi(n,)=1/2form. > 1 (valuation function for the
first charity);

o v3(m.,) = (1/4)m., for ., < 1,v3(n.,) = 1/4+ (1/8)(ne, — 1) for ., > 1
(valuation function for the second charity);

o ’U]Q(’Ug) = Vg for Vo < 1/2, ’LUQ(UQ) = 1/2 + (1/2)(’02 — 1/2) for Vg > 1/2
(payment willingness function).

The valid outcome that maximizes surplusjs= 3/4,m, = 1/2, 7, = 1,7, =
0, for a surplus ofl /4. The valid outcome that maximizes the total donated,js=
13/12,my, = 7/12,7,, = 1,7, = 2/3. We note that, intuitively, under the sur-
plus objective, we carefully evaluate whether additiorahations to the charities are
worthwhile? whereas under the objective of maximizing the total donatectontinue
to give to the charities in a way that maximizes the additian#lingness to donate,
until the bidders’ willingness to pay is entirely exhausted

9For clarity, we emphasize that this evaluation is done takiegbids at face value, that is, we do not
consider here whether the bidders have perhaps misrepteadpreferences and try to assess whether
additional donations are worthwhile with respect to titue preferences.
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4 Hardness of clearing the market

In this section, we will show that the clearing problem is gbately inapproximable,
even when every bidder’s valuation function is linear (veithpeO or 1 in each charity’s

payments), each bidder cares either about at most two igsaoit about all charities
equally, and each bidder’'s payment willingness functioa &ep function. We will

reduce from MAX2SAT (given a formula in conjunctive normalrih (where each
clause has two literals) and a target number of satisfiedekt, does there exist an
assignment of truth values to the variables that makes st’léelauses true?), which
is NP-complete [14].

Theorem 1 There exists a reduction from MAX2SAT instances to DONATOTDNARING
instances such that

1. If the MAX2SAT instance has no solution, then the onlgalicome is the zero
outcome (no bidder pays anything and no charity receivethémy).

2. Otherwise, there exists a solution with positive surplus

Additionally, the DONATION-CLEARING instances that wauesto have the follow-
ing properties:

1. Everyv;l is a line; that is, the valuation that any bidder derives frany charity
is linear.

2. All thev? have slope eithed or 1.

3. Every bidder either has at most 2 charities that affectveduation (with slope
1), or all charities affect her valuation (with slopg.

4. Every bid is a threshold bid; that is, every bidder’s papingillingness function
w; is a step function.

Proof: In this proof, we will represent bids as follow§{(c1, a1), (c2,az), ...}, s,t)
indicates tha’o’f(wck) = a7, (this function is0 for charitiesc, not mentioned in the
bid), andw, (v ) = tforv; > s, w;(v;) = 0 otherwise. We say a billis acceptedf
its thresholdsb is reached, in which case we will hawg = ;.

We reduce an arbitrary MAX2SAT instance, given by a set afsdasX = {kq, ko, ...} =
{0, Al 17, ), - -} (wherel), 7 are the literals in clausk) over a set of vari-
ablesl’ together with a target number of satisfied clauBge® the following DONATION-
CLEARING instance. Let the set of charities be as follows.r &egery literall €
L, there is a charity;. Then, let the set of bids be as follows. For every vari-
ablewv, there is a bidh, = ({(c4v,1),(c—v,1)},2 ﬁ). (+v and —v are the
positive and negative literals correspondingutd For every literall, there is a bid
b = ({(a,1)},2,1). For every claus& = {I} I3} € K, there is a bid, =
({(enn, 1), (e2, 1)},2, 8|VHK|) Finally, there is a single bid that values all charities

equally:bo = ({(c1,1), (2 1), - (ems D12V + gfizy § + 1aroysy)- We now
show that the two instances are equivalent.
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First, suppose there exists a solution to the MAX2SAT instarf in this solution,

[ is true, then letr,, = 2 + W; otherwiser., = 0. Also, the only bids that
are not accepted (meaning the threshold is not met) arebthehere! is falsg and
the by, such that both ot} /? arefalse First we show that no bidder whose bid is
accepted pays more than she is willing to. For eégheitherc,, or ¢_, receives
at least2, so this bidder’s threshold has been met. For dackither! is false and
the bid is not accepted, éris true, ¢; receives at least, and the threshold has been
met. For eacly,, either both 011,1, 12 arefalseand the bid is not accepted, or at least
one of them (say:) is true (that is, k is satisfied) andzll receives at least, and the
threshold has been met. Finally, because the total amoceivez by the charities is
2|V]+ S\VIIK\ , bo’s threshold has also been met. The total amount that canlleetenl
from the e;ccepted E)lds is at Ieaikﬂ(lT— ) + |V|,+ TS}‘{IIIKI + 1+ wvE) = .
2|V + SVITR] T IOV R > 2|V]+ STV TR] SO there is positive su.rplus. So there exists
a solution with positive surplus to the DONATION-CLEARINGstance.

Now suppose there exists a valid nonzero outcome in the DODNICLEARING
instance. First we show that it is not possible (for any V') that bothb.,, andb_,, are
accepted. For, this would require that | + 7., > 4. The bidsb,, b, b_, cannot
contribute more thaf, so we need at least anothiefrom other bids. It is easily seen
that for any other’, accepting any subset ¢b,, b1/, b_,} would require that at
least as much is given ta.,, andc_,, as can be collected from these bids, so these
bids cannot help close the gap. Finally, all the other bidalioed can contribute at
most| K| 8|V1HK| +14 16|V1HK\ < 1. Hence, at most one éf_, andb_, is accepted. It
follows that we can interpret a valid outcome in the DONATKONEARING instance
as a partial assignment of truth values to variables set totrue if b, , is accepted,
and tofalseif b_,, is accepted. All that is left to show is that this partial gashent
must satisfy at leadf' clauses.

First we show that if a clause big is accepted, then eithé[}c or by is accepted
(and thus eithet}, or I? is set totrue, hencek is satisfied). If;, is accepted, at least
one OfCll andcl2 must be receiving at leas$t without loss of generality, say it iql
and sa)l,C corresponds to variablg, (thatis, it is+uv}, or —uv}). If o does not receive
at least2, it follows thatbll is not accepted, and as a result the U]gls byt by
contribute (at least) less than is paid to, 1 andc ol . (This follows from the foI-
lowing reasoning. It i where—I} is the negation on‘l, receives at leag, then the
total paid to these charities is at Ieasbut these bids contribute at mastotherwise,
if c,,1 andc_, together receive at leagtthen at most can be collected from these
bids; otherW|se nothing can be collected from these biddl atBut this is the same
situation that we analyzed before, and we know it is impdsdibcause the other bids
cannot close a gap df. All that remains to show is that at ledftclause bids are
accepted, because if so then it follows that our partialgassent satisfies at least
clauses.

We first show thab, is accepted. Suppose it is not; then one of thenust be
accepted. (The solution is nonzero by assumption; if onfyesof theb,, are accepted,
the total payment from these bids is at mp&?\w < 1, which is not enough
for any bid to be accepted; and if one of thds accepted, then the threshold for the
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corresponding, is also reached.) For thig b1, by, by contribute (at Ieastﬁ

less than the total paymentsdq, andc_, (because these total payments must be at
least2, and at most one df, . andb_,; can be accepted, so the total collected from
these three bids is at madst- 4|§/|) Again, the otheb,, andb, cannot (by themselves)
help to close this gap; and thg can contribute at mos$| StVIIKI < It follows
thatb, must be accepted.

Now, in order forb, to be accepted, a total @&fV| + W must be donated.
Because it is not possible (for any € V) that bothb,, andb_, are accepted, it
follows that the total payment by thg and theb; can be at mos2|V| — ;. Adding
bo's payment of + 16\V||K| to this, we still needw from theb,. But each one

of them contributes at mogtm, so at least” of them must be accepted. O

4|V\

Corollary 1 Unless P=NP, there is no polynomial-time algorithm for apgmating
DONATION-CLEARING (with either the surplus or the total ambdonated as the
objective) within any positive ratio. This holds even if D@ONATION-CLEARING
problem instances satisfy all the properties given in Theof.

Proof: Suppose we had such a polynomial-time algorithm, and eghilto the DONATION-
CLEARING instances that were reduced from MAX2SAT instanceTheorem 1. It
would return a nonzero solution when the MAX2SAT instance hasolution (that
achieves the target number of satisfied clauses), and a a@et®ma otherwise. So we
could decide whether arbitrary MAX2SAT instances have tsahs this way, and it
would follow that P=NP. O

This should not be interpreted to mean that our approachetprbblem of donat-
ing to charities is infeasible. First, as we will show, thare very expressive fam-
ilies of bids for which the problem is solvable in polynomtahe. (We have also
already discussed the case where there is only one chasigepnd, NP-hardness is
often overcome in practice (especially when the stakes ighg.hFor instance, even
though the problem of clearing combinatorial auctions ishdird [28] (even to ap-
proximate [31, 37]), it is typically solved to optimality practice [32].

5 Mixed integer programming formulation

In this section, we give a mixed integer programming (MIRpfalation for the general
problem. We also discuss a special case in which this fortionlaeduces to a linear
programming (LP) formulation. In this case, the problemdk/able in polynomial
time, because linear programs can be solved in polynomie [21].

The variables of the MIP that determine the final outcome laegpyments made
to the charities, denoted by.,, and the payments collected from the biddets, The

TYL

objectives we discussed earlier are both linear: surplgs/en by Z T, — D Tep
j= =1

and total amount donated is given @ T, -
i=1
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The constraint that the outcome should not result in a da§igiven simply by:

n m

DM, > D ey
j i=1

For every bidder, for every charity, we define an additiorsluation variableu;i
indicating the valuation that this bidder derives from tlagment to this charity. The
bidder’s total valuation is given by another variablg with the constraint that; =

Eachv;i is given as a function of., by the (piecewise linear) function provided by

the bidder. In order to represent this function in the MiIRatation, we will merely
place upper bounding constraints ojl so that it cannot exceed the given function.

The MIP solver can then push the variable all the way up to the constraint, in order
to collect as much payment from this bidder as possible. ércse where the;ﬁ are
concave, this is easy: {&,”,¢,’) and(s;7,,t,7,) are the endpoints of a finite linear

i
Tr% S, (tl+1 _ tz j)

If the final (infinite) segment starts éﬁk’], t“7) and has slopé, We add the constraint
thatv < ty? + d(m., — s}’). Using the fact that the function is concave, for each
value of,,, the tightest upper bound 01; is the one corresponding to the segment
corresponding to that value af.,, and therefore these constraints are sufficient to get
the correct value of’.

When the function is not concave, we require (for the first )|Bwne binary vari-
ables. First, we define another point on the functic +17t;c+1) (sp7 + Mty +
dM), whered is the slope of the infinite segment and is any upper bound on the
me;. This has the effect that we will never be on the infinite segnagain. Now, let

i;' € {0,1} be an indicator variable that should bé ., corresponds to thigh seg-

segment in the function, we add the constraint ifjat thd 4

ment of the function, and otherwise. To ensure this, first add aconstr@tc” =
=0

Now, we aim to represent., as a weighted average of its two neighborh’l\j For

. .. k+1
0 <1< k+1,let);” be the weight or;”’. We add the constraint_ \;” = 1. Also,
=0
for0 <1 <k + 1, we add the constraint;’ < x;_; + z; (wherez_; andz,, are
defined to be zero), so that indeed only the two neighbotjfdhave nonzero weight.

k41
Now we add the constraint,, Z s\ so that the\l” must be set correctly.

Then, we can sef; = Z t7 17 (This is a standard MIP technique [25].)

Finally, eachr, |s bounded by a function af;: the (piecewise linear) function
w; provided by the bidder. Representing this functlon is ehtianalogous to how we
represented;ﬁ as a function ofr.,. (Again, we will need binary variables only if the
function is not concave.)

Because we only use binary variables when either a valuatiwgtion v;i or a pay-
ment willingness functiom; is not concave, it follows that if all of these are concave,
our MIP formulation is simply a linear program—uwhich can béved in polynomial
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time. Thus:

Theorem 2 If all functionSU;'- andw; are concave (and piecewise linear), the DONATION-

CLEARING problem can be solved in polynomial time usingglirgogramming.

6 Why one cannot do much better than linear program-
ming

One may wonder whether, for the special case of the DONATI@NARING prob-
lem presented in Theorem 2 that can be solved in polynormig tith linear program-
ming, there exist special-purpose algorithms that are nfastier than linear program-
ming algorithms. In this section, we show that this is notdase. We give a reduction
from (the decision variant of) the general linear programmingpfam to (the deci-
sion variant of) a special case of the DONATION-CLEARING lplem (which can be
solved in polynomial time using linear programming by Theeor2). (The decision
variant of a maximization problem asks the binary questi@an the objective value
exceedo?”) Thus, any special-purpose algorithm for solving theislen variant of
this special case of the DONATION-CLEARING problem could Used to solve a
decision question about an arbitrary linear program absfast. (And thus, we could
solve the optimization version of the linear program withdyly search.)

We first observe that for linear programming, a decision tioesabout the ob-
jective can simply be phrased as another constraint in th@ddriiring the objective
to exceed the given value); then, the original decision tjpesoincides with ask-
ing whether the resulting linear program (system of lineaqgualities) has a feasible
solution.

Theorem 3 The question of whether an LP (given by a set of linear comgs’d) has

a feasible solution can be modeled as a DONATION-CLEARINGimte with maxi-
mizing the total donated as the objective, withcharities andv + ¢ bids (wherev is
the number of variables in the LP, ands the number of constraints). In this instance,
each bidb; has only Iinearv;? functions, and is a partially acceptable threshold bid
(w;(vy) = t; forv; > s;, otherwisew;(v;) = "%) Thew bids corresponding to the

variables mention only two charities each; theids corresponding to the constraints
mention only two times the number of variables in the cowesing constraint.

Proof: For every variable:; in the LP, let there be two charities, ,,, andc_,,. Let H
be some number such that if there is a feasible solution taRhthere is one in which
every variable has absolute value at mést

In this proof, we will represent bids as follow${(c1, a1), (c2,az), ...}, s,t) in-
dicates thavf(wck) = a7, (this function is0 for ¢, not mentioned in the bid), and
wj(vj) =t for Vj > s, wj(vj) = %t otherwise.

For every variable; inthe LP, letthere be abig,, = ({(c44,,1), (c—s,,1)},2H,2H—
€). For every constraind_r/z; < s; in the linear program, let there be a bid

10These constraints must include bounds on the variablesi@img nonnegativity bounds), if any.
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bj = ({(C*$i7rg)}i:rj>0 U {(Cﬂcw _sz)}z‘;r?«)v (E |7ng|)H — Sj» 1). Let the target
total amount donated b H. '

Suppose there is a feasible solutiof, =3, . . ., ) to the LP. Without loss of gen-
erality, we can suppose that'| < H for all i. Then, in the DONATION-CLEARING
instance, for every, letm.,, = H +z;,andletr. . = H — ;] (for a total payment

of 2H to these two char|t|es) This allows us to collect the maxmpayment from the
bidsb,,—a total payment ofvH — c. Addmonally, the valuation of blddelr is now

2 Ti(H ;) + Z —r](H + ) = (er NH — Zn i 2 (ZIT )H —s;
i) >0 i) <0
(where the last inequality stems from the fact that constramust be satlsfled in the
LP solution), so it follows that we can collect the maximunyma&nt from all the bids
b;, for a total payment of. It follows that we can collect the requir€aH payment
from the bidders, and there exists a solution to the DONATHODNEARING instance
with a total amount donated of at le&@stH .

Now suppose there is a solution to the DONATION-CLEARINGtamce with

a total amount donated of at leastH. Then the maximum payment must be col-
lected from each bidder. From the fact that the maximum paymmist be collected
from each bidden,,, it follows that for eachi, Tey,, + Mo ,, 2 2H. Because
the maximum total payment that can be collectedudl, it follows that for each,

Teyo, + e ,, = 2H exactly. Letz] = =T, —H=H-m_,. Then, from

the fact that 'the maximum payment must be collected from @ad:lbj, it follows

that(2|r |) —s5; < Z 7“7707 X T‘7‘l‘c+1 = > T?(H—CB/)-"-
ird >0 il <0 il >0

> - NH+a7) = (X [r!)H — - rix}. Equivalently,y iz} < s;. It follows
iird <0 g g g
that thex! constitute a feasible solution to the LP. O

7 Target amounts and concave payment willingness func-
tions

In this section, we study a special case of the DONATION-CHREAG problem where
the following two conditions hold. First, every charity has a target amount, that
it is seeking to collect. If less money than this is collecieds useless to the charity;
if any additional money beyond the target amount is colliicthen this additional
money is also useless. (For example, the charity may be etetpldevoted to the
project of drilling a water well for a particular communityhich will cost a fixed
amount.) The target amounts are common knowledge, and aslg tedder; derives
a fixed amount of valuation,, ., from charityc; if and only if the charity has achieved
its target amount. That ig);(n.,) = vy, ¢, if 7, > 7,, andvi(m.,) = 0 otherwise.
Additionally, we assume that the payment W|II|ngness fmmstwj are concave. Under
these conditions, we will show that, when the objective isnaximize surplus, the
DONATION-CLEARING problem can be approximated in polynaitime to a ratio
of m, the number of charities—still not a very positive result.wéwer, we will also
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show that no significantly better result is possible unlessl® For maximizing the
total amount donated, we will show that no positive appration at all is possible
unless P=NP.

Consider the followingGreedy algorithm for DONATION-CLEARING in this
context. We start with the outcome where no charity recearss money; we will
iteratively decide to give some charities their target antot any point, if we take
a charity that currently receives nothing, giving that dyats target amount will in-
crease some donors’ willingness to pay, resulting in a fietebn surplus. We repeat-
edly find the charity that results in the greatest increaseiiplus, and give it its target
amount—until every remaining charity results in a net deseda surplus, at which
point we stop.

Theorem 4 In the context where every charityhas a target amount.,, and bidders’
payment willingness functions are concave, @reedy algorithm for DONATION-
CLEARING results in amm-approximation to the maximum possible surplus. On the
other hand, there are instances whdegeedy obtains a surplus that is arbitrarily
close tol /(m — 1) of the maximum possible surplus.

Proof: We will show that the approximation ratim is already obtained after the
Greedy algorithm has selected its first charity to donate money ézahse the sur-
plus obtained by this algorithm never decreases as morétieRaare selected, this
proves the result. Consider a surplus-maximizing solytigth surplus OPT. In such
an optimal solution, there is some subggtof the charities that each receive their
target amount (and the others receive nothing). Arbityanter the subsef’. If we
imagine giving these charities their target amount in segeethen each charity has a
marginal effect on surplus (which depends on the order).l@fyest of these marginal
effects on surplus is at least OPT; say that the corresponding charitycis. Then,
at the beginning of th&reedy algorithm, choosing;- must also result in a marginal
effect on surplus of at least OPm. This is because the marginal effect on surplus can
only get smaller as more charities have already receivadttirget amounts, because
bidders’ payment willingness functions are concave. lbofes that the first charity
chosen by th&reedy algorithm has a marginal effect on surplus of at least ORT

To show that the ratio can be as badmas- 1, consider the following situation.
Each of the charitiesy, . . ., ¢,,_1 has a target amount af- ¢. Charityc,, has a target
amount ofm — 1 — ¢ where¢’ is slightly larger thare. There arex = m — 1 bidders.
Bidderb; obtains a valuation of if ¢; receives its target amount, and also a valuation
of 1if ¢, receives its target amount. Biddef's payment willingness function is as
follows: w;(v;) = v, forv; < 1, andw;(v;) = 1 for v; > 1. TheGreedy algorithm
will choose to givec,, its target amount first, as this results in a surplus’ofAfter
this, the algorithm ends because no bidder is willing to pay more. However, a
better solution is to givey, ..., ¢, their target amounts, which results in a surplus
of (m — 1)e. As €’ converges downward tQ we get the desired result. O

Of course, the above approximation ratio is a worst-casdtremnd it seems that
this greedy algorithm is likely to fare much better in praetiNevertheless, in the worst
case, we cannot hope for a significantly better result urfleddP, as the following
result makes clear.

18



Theorem 5 In the context where every charityhas a target amount.,, and bidders’
payment willingness functions are concave, it is not pésditapproximate the opti-
mal surplus to a ration! —¢ in polynomial time, unless P=NP. This is true even if each
bidder’s willingness-to pay function is linear up to a poartd flat after that (when the
bidder’'s budget has been exhausted)—that is, the bid istegigracceptable threshold
bid.

Proof: We will prove this by reduction from INDEPENDENT-SET, in wh we are
given a graph and are asked to find a maximum-size set of gentiith no edge be-
tween any pair of them. Itis known that INDEPENDENT-SET oairive approximated
to a ratio|V|}~€ in polynomial time, unless P=NP [37].

For every vertex in the graph of the independent set instance, constructritycha
¢,. Letv, be the number of edges that haveas one of their endpoints. Then, let
Te, = Vy — 0 (for some smalb) be the target amount for the charity. For every edge
e, construct a bidder,. If e = (v, w), thenb, receives a valuation dfif one of ¢, and
cw receives its target amount (a@df they both do). For each biddér, the payment
willingness function is as followsw; (v;) = v; forv; < 1, andw,(v;) = 1forv; > 1.
Hence, a bidder is willing to give if at least one of its two charities receives its target
amount, and otherwise.

We first claim that ify is sufficiently small, then in any feasible solution, thertha
ties that receive their target amount must correspond todapiendent set in the graph.
This is because i’ is the set of vertices so thatc, receives its target amount, and
there is an edge between two of the verticed/in then the number of bidders that
are willing to pay an amount of is at most(}_ ., v»,) — 1. However, the amount
that these charities require(is_, ., v,) —|V'|d, which is larger for sufficiently smalll
éo—contradicting the supposed feasibility of the solution.

On the other hand, ¥’ is an independent set, then the number of bidders that are
willing to pay an amount ol is ) . v,; the amount that these charities require is
(> vy Vo) — |V']9, resulting in a surplus gf’|4.

Thus, independent sets correspond exactly to feasibldi@ud,) and the surplus
obtained in such a solution is proportional to the size ofitlteependent set, proving
the result. O

So far in this section, we have not yet discussed the obgdfimaximizing the
total amount donated. For this, we cannot even obtainapproximation in the worst
case, as the following result shows.

Theorem 6 In the context where every charityhas a target amount.,, and bidders’
payment willingness functions are concave, it is not pdssdapproximate the maxi-
mum amount that can be donated to any rat{en, n) > 0 in polynomial time, unless
P=NP. This is true even if each bidder’s willingness-to pagdtion is linear up to a
point and flat after that (when the bidder’s budget has bedaested)—that is, the bid
is a partially acceptable threshold bid.

Proof: From the proof of Theorem 5, we know that in the same conteigt NP-hard
to decide whether a surplus of at leaStan be achieved. We now show how to reduce
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an arbitrary instance of this decision variant of the swsphaximization problem to
an instance of the problem of maximizing the total donated.dd so, we take any
such instance, and leave the existing bidders and chauitimsiched; we add a single
charity ¢’ whose target amount is; = H for someH > K. We also add a single new
bidderd’, who only cares about charity; this bidder receives a valuation &f — K

if charity ¢’ achieves its target amount, and is willing to give his vabmtthat is, his
payment willingness function is the identity function (whican be capped & — K

if desired). None of the other (original) bidders care aloharity ¢’.

Now, if the original instance has a solution with surplusesstk, then in the
modified instance, we can let the original bidders pay theesamounts, and let the
original charities receive the same amounts. Then, we cantge surplus of at least
K to charityc’, and let the new bidddy donate the remainingl — K, so that the
charity achieves its target amount. This leads to a totahthwhof at leasH .

Conversely, if there is a solution for the modified instancevhich ¢’ achieves its
target amount off, then, becausi can pay onlyH — K, the remainingk’ must come
from the original bidders. However, the original biddersaat all their valuation from
the original charities, so it must be the case that fiisvas simply left over. Hence,
if we look at the restriction of the solution to the origindtibers and the original
charities, this corresponds to a solution with a surplug tfasti .

It follows thatc’ can receive its target amouft if and only if the original instance
has a solution with a surplus df. By making H sufficiently large, we can make
the ratio (in terms of total donated) between any solutiowliich ¢’ does not receive
its target amount and any solution where it does arbitrarityll. Hence, an algorithm
that gives any positive approximation ratio based only.@mdm can be used to detect
whether a surplus of at leaAt is possible in the original instance—but this is NP-hard.
O

8 Quasilinear bids

Another class of bids of interest is the classqofsilinear bids In a quasilinear bid,
the bidder’s payment willingness function is linear in \&tion: that isw; = v;.11 In
many cases, quasilinearity is an unreasonable assumfiiicexample, usually bidders
have a limited budget for donations, so that the paymeningitiess will stop increas-
ing in valuation after some point (or at least increase stawé¢he case of a “softer”
budget constraint). Nevertheless, quasilinearity may te@asonable assumption in the
case where the bidders are large organizations with lardgdis, and the charities are
a few small projects requiring relatively little money. Inig setting, once a certain
small amount has been donated to a charity, a bidder willvéerd more valuation
from more money being donated to that charity. Thus, thee&avill never reach
a high enough valuation for their budget constraint (hardadt) to kick in, and thus
a linear approximation of their payment willingness fuoatis reasonable. Another
reason for studying the quasilinear setting is that it isghsiest setting for mechanism

11Because the units of valuation are arbitrary, we may as wethiem correspond exactly to units of
money—so we do not need a constant multiplier.
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design, which we will discuss in Section 9. In this sectiop,will see that the clearing
problem is much easier in the case of quasilinear bids.

First, we address the case where we try to maximize surplus k&y observation
here is that when bids are quasilinear and the objectiverjdug) the clearing prob-
lem decomposeacross charities. That is, we can simply optimize for evérgrity
separately; to optimize for one of the charities we only niedchow each bidder’s val-
uation function corresponding to that charity. The intuitis as follows: without the
quasilinearity assumption, a donation to one charity ing#te other charities via the
payment willingness function, but this effect disappeanemthe payment willingness
function is linear—at least for the case of surplus maxinmrat(We will see shortly
that this does not hold for the objective of maximizing theakdonated, because, intu-
itively, for that objective we may wish to transfer surplusngrated by one charity to
another charity to increase total payments.)

Lemma 1 Suppose all the bids are quasilinear, and surplus is theatlyje. Then we
can clear the market optimally by clearing the market forleabarity individually.
That is, for each biddeb;, let m;, Zwbi. Then, for each charity;, maximize

(5" myi) — me,, under the constraint that for every bidde, Ty < H(Tes)-
bj J

Proof: The resulting solution is certainly valid: first of all, &dst as much money is
collected as is given away, becagser,, —> m., = > Z Tyt — Z Te, = Z((Z i )—
bj

c; b c;

7., ), and the terms of this outer summation are the objectlvem);btoblem mstances
for the individual charities, each of which can be set attléa® (by setting all the
variables t00), so it follows that the expression is nonnegative. Secowdbidder
b; pays more than she is willing to, because— m,, = > vi(m,) — Zﬂb;‘. =

(Vi (Te,) — wb;), and the terms of this summation are nonnegative by the reontst
we imposed on the individual optimization instances.

All that remains to show is that the solution is optimal. Be&smin an optimal
solution, we will collect as much payment from the bidderpassible given ther.,,
all that we need to show is that the, are set optimally by this approach. Lef
be the amount paid to charity., in some optimal solution. If we change this amount
to 7. and leave everything else unchanged, this will only affeetgayment that we
can collect from the bidders because of this particularighaand the difference in
surplus will beZv (m},) — vi(my,) — ., + m5,. This expression is, of course,if
T, = T, But now notice that this expression is maximized as a fonatif 7. by
the decomposed solution for this charity (the terms Wlthtiuun them do not matter
and of course in the decomposed solution we aIways@ei: v} (7, )). Itfollows that
if we changer,, to the decomposed solution, the change in surplus will beasttd
(and the solution will still be valid). Thus, we can change 4, one by one to the
decomposed solution without ever losing any surplus. O
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Theorem 7 When all the bids are quasilinear and surplus is the objeciRONATION-
CLEARING can be solved in polynomial time.

Proof: By Lemma 1, we can solve the problem separately for eachtghBor charity
¢i, this amounts to maximizingy_ v} (n.,)) — ., as a function ofr.,. Because all its
b.

J
terms are piecewise linear functions, this whole funct®piecewise linear, and must
be maximized at one of the points where it is nondiffereméiati follows that we need
only check all the points at which one of the terms is nondiiféiable. O

As we have discussed earlier in the paper, the computalyamizial special case
of a single charity is interesting not only as a subroutinetiie@ case of quasilinear
bids when surplus is the objective, but also in and of itselfme of the most practical
applications of all of this may involve just a single charifor example, we note that
the tsunami event that we describe in Section 10 was a saiglgty event.

Unfortunately, the decomposition lemma does not hold ferdhjective of maxi-
mizing the total donated.

Proposition 3 When the objective is maximizing the total donated, evemits are
quasilinear, the solution obtained by decomposing the lprobacross charities is in
general not optimal (even with concave bids).

Proof: Consider a single biddéy; placing the following quasilinear bid over two char-
ities ¢; andes: vi(m,,) = 27, for0 < m., < 1, vi(m,,) = 2+ %_1 otherwise;
v}(m.,) = 52. The decomposed solutionds, = %, 7., = 0, for a total donated of
Z. Butthe solutionr,, = 1, m, = 2 is also valid, for a total donation &> I. O

As an aside, the proof of Proposition 3 illustrates that thiective of maximizing
the total donated can result in unexpected outcomes: teerly a single bidder in
the proof of Proposition 3, and presumably if this bidder hadn able to donate to the
charities outside of our system, she would have chosen &lgiv the first charity and
0 to the second. (This is exactly what would have happenedrihdesurplusobjec-
tive.) This type of situation may in principle be preventeddhanging the individual
rationality criterion, saying that instead of guarantgdimat the bidder would not have
been better off if nobody had donated at all, we guaranteethieabidder would not
have been better off acting separately in the world. (Howesteeh a more stringent in-
dividual rationality criterion leads to difficulties, as wiescussed when first mentioning
individual rationality.)

In fact, when the objective is to maximize the total donaBBGNATION-CLEARING
remains (weakly) NP-hard in general (when we do not assudwedre concave).

Theorem 8 DONATION-CLEARING is (weakly) NP-hard when the objectiéoi
maximize the total donated, even when every bid concergoel charity (and has a
step-function valuation function for this charity), andjisasilinear.

Proof: We reduce an arbitrary KNAPSACK instance (given faypairs of integers

(ki,vi)1<i<m, @ cost limit K, and a target valu&), to the following DONATION-
CLEARING instance. Let there be + 1 charities,cg, c1, ..., cn. Let there be one
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quasilinear biddeb, bidding v§(r.,) = 0 for 0 < m,, < 1, v)(me,) = K + 1
otherwise. Additionally, for eacjiwith 1 < j < m, let there be a quasilinear biddgr
biddingug (me;) =0for0 < 7., <k, vj (me,;) = ev; otherwise (where <§; vj <
1<;<m
1). Let the target total amount donated Ket 1 + ¢V. We now show the two instances
are equivalent.
First, suppose there exists a solution to the KNAPSACK mstathat is, a function

f:{1...,m} — {0,1} so thatin: f@k < K andif(z‘)vi > V. Then, let
i=1 i=1

Teg =1+ €V + K — ;f(i)ki, and fori > 0, m., = f(i)k;, for a total donated of

K +1+¢€V. Becausd + eV + K — > f(i)k; > 1, by’s valuation isK + 1. For
i=1
m

J > 0, b;’s valuation isf(j)ev;, for a total valuation of)  f(j)ev; > €V for these
=1

m bidders. It follows that the total valuation is at least tb&at amount donated, and
so this corresponds to a valid outcome. So there exists &isobo the DONATION-
CLEARING instance.
Now suppose there exists a solution to the DONATION-CLEARIMstance. Let
f:{L,...,m} — {0,1} be given byf(i) = 0if 7., < k;, andf(i) = 1 otherwise.
Because the total donated is at leAst- 1 + ¢V, and the amount that can be collected
m m

from the bidders is at mosk’ + 1 + > f(j)ev,, it follows that >~ f(j)v; > V.
j=1 j=1

Also, because the total amount donated to charitifgoughm can be at mosik +

m
e ». v;<K+1,itfollowsthat) f(j)k; < K + 1. Because th&; are integers,
1<j<m j=1

this means) f(j)k; < K. So there exists a solution to the KNAPSACK instance.
O

j=1

However, when the bids are also concave, a simple greedyirdealgorithm is
optimal. This algorithm works as follows:

e Start withm., = 0 for all charities.

dEv;’- (me;)
o Lety, = derc.
taken from the riéht).

(at nondifferentiable points, these derivatives should be

e Letc] € argmax,, v,.

e Increaser,: until eithery.: is no longer the highest (in which case, recompfite
and start increasing the corresponding payment), e, = 3 7., andy.: < 1.

b; Ci
e Finally, letr,, = v;.

Theorem 9 Given a DONATION-CLEARING instance with maximizing thaltdo-
nated as the objective where all bids are quasilinear andceor, the above greedy
algorithm returns an optimal solution.
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Proof: The outcome is valid because everyone pays exactly whas stiting to, and
because there is no budget defiéLt‘ Ty, = Zvj = Eﬂci- To show optimality, let

]

7% be the amount paid to charity in some optlmal solut|on and lef, be the amount
pald to charitye; in the solution given by the greedy algorithm. We first obeehat it
is not possible that for every 7 > 7. with at least one of these inequalities being
strict. This is because at the solution found by the greedgrihm, .- is less than
1; hence, using concavity, if;, > =, then [ ~ dn., < m; — = . In other words,
the additional payment that needs to be made to the challisgssthan the additional
payment that can be collected from the bidders because @fdiidional payment to
this charity. Because the surplus at the greedy algoritBoiigtion is0, it follows that if
for everyi, 7* > m. with at least one of these inequalities being strict, therstirplus
at the optlmal solutlon would be negative, and hence thdisalwould not be valid.
Thus, either for alf, 7}, <« (butin this case the greedy solution has at least as large
a total donated as the optimal solution, and we are done)]auetexis'ri j such that
me, > m, butmy < m . It cannot be the case that, (r;, ) > v, (¢, ), for then the
greedy algorlthm would have increased beyondw before mcrea:smg;C beyond

o S0,7¢,(me,) < 7., (77). Becauser;, > m; L and using concavity, if we decrease
7. and simultaneously mcreaeg by the same amount, we will not decrease the total
payment we can collect from the bidders—while keeping theygayt to be made to
the charities the same. It follows this cannot make the smlwtorse or invalid. We can
keep doing this until there is no longer a paiyj such thatr} > 7 butw} < 7.,
and by the previous we know that then, for glir}, < —and hence the greedy
solution is optimal. O

(A similar greedy algorithm works when the objective is duspand the bids are
quasilinear and concave; the only difference is that we istoq@asing the payments as
soon asy.: < 1. Of course the resultin Theorem 7 is stronger in the sensé thaes
not require concavity.)

9 Strategic bidding and incentive compatibility

Up to this point, we have not discussed the bidders’ incestfer bidding any partic-
ular way. Specifically, the bids may not truthfully reflecétbidders’ preferences over
charities, because a bidder may Isigategically misrepresenting her preferences in
order to obtain a result that is better for herself. This wlomean the market mech-
anism is notstrategy-proaf (We will show some concrete examples of this shortly.)
This is not too surprising, because if we use the methodalieggribed in the paper so
far straightforwardly, the resulting mechanism is, in asserafirst-price mechanism,
where the mechanism will collect as much payment from a biddder bid allowd?
Such mechanisms (for example, first-price auctions, whénaevs pay the value of
their bids) are typically not strategy-proof: if a biddepoets her true valuation for an

12The surplusobijective is an exception.
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outcome, then if this outcome occurs, the payment the biddlehave to make will
offset her gains from the outcome completely. Of course, addctry to change the
rules of the game—which outcome (payment vector to chayitiesve select for each
bid vector, and how much does each bidder pay—in order to miakinig truthfully
beneficial, and to make the outcome better with regard toittaebs’true preferences.
This is the subject omechanism designin this section, we will briefly discuss the
options that mechanism design provides for the expresbizetg donation problem.

9.1 Strategic bids under the first-price mechanism

We first point out some reasons for bidders to misreport thesferences under the
first-price mechanism described in the paper up to this pdiirst of all, even when
there is only one charity, it can make sense to underbid dngsvaluation for the
charity. For example, suppose a bidder would like a chasitgteive a certain amount
x, but does not care if the charity receives more than that.itheahélly, suppose that
the other bids guarantee that the charity will receive atleano matter what bid the
bidder submits (and the bidder knows this). Then the bidtleest off not bidding at all
(or submitting a valuation for the charity 6j, to avoid having to make any payment,
while still benefiting from the other bidders’ contributen(This is known as thiree
rider problem [22].)

With multiple charities, another kind of manipulation caccor, where a bidder
attempts to steer others’ payments towards her preferityhFor example, suppose
that there are two charities, and three bidders. The firstdsithidsv] (r.,) = 1 if
7o, > 1,01 (m.,) = 0 otherwisew?(r.,) = 1if 7., > 1, v}(m.,) = 0 otherwise; and
wi(vy) = vy if 1 <1, wi(v1) =14 145(v1 — 1) otherwise. Hence, if there were no
other bidders, the first bidder would be willing to pajo charity1, or to charity2, but
not to both. The second bidder bid¥(r.,) = 1if 7., > 1, vi(n.,) = 0 otherwise;
v3(me,) = 0 (always);ws (ve) = Jvg if v2 <1, wa(va) = § + 155 (v2 — 1) otherwise.
Hence, if there were no bidders other than bidders 1 and &, thgardless of whether
the objective is surplus or total donated, chatitywould receive at least, and charity
2 would receive less thah. Now, the third bidder'drue preferences are accurately
represented (under the utility-theoretic interpretatioren earlier in the paper) by the
bid vi(m.,) = 1if 7., > 1, vi(m.,) = 0 otherwise;v3(n.,) = 3if m., > 1,
'Ug(’lTCQ) = 0 otherwise; a.nd_Ug(’Ug) = %’Ug if vg <1, 11)3(’1)3) = % + T%O(’Ug — 1)
otherwise. Now, it is straightforward to check that, if tihérd bidder bids truthfully,
then regardless of whether the objective is surplus or tabted, charity will still
receive at least, and charity2 will still receive less tharl. The same is true if bidder
3 does not place a bid at all (as in the case of free-rider méatipn); hence bidder
3's valuation/utility will be 1 in this case. But now, if biddes reportsvi(r.,) = 0
everywherep3(r.,) = 3 if 7., > 1, v3(m.,) = 0 otherwise (this part of the bid is
truthful); andws(vs) = 1vs if v3 < 1, ws(vs) = 3 otherwise; then charitg will
receive at least, and bidde will have to pay at mosg—. Because up to this amount
of payment, one unit of money corresponds to three units logti@n/utility to bidder
3, it follows that this bidder’s utility is now at lea8t— 1 = 2 > 1. We observe that in
this case, the strategic bidder is not only affecting how Imthhe bidders pay, but also
how much the charities receive.
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9.2 Mechanism design in the quasilinear setting

There are at least four (interrelated) reasons why the nmésadesign approach is
likely to be most successful in the setting of quasilineafgnences. First, historically,
mechanism design has been most successful when the geasdissumption could be
made. Second, because of this success, some very genehalniseas have been dis-
covered for the quasilinear setting (for instance, the VCé&manisms [36, 7, 18], or
the dAGVA mechanisms [13, 2]). Third, as we saw in Sectiorh8,dlearing problem
is much easier in the quasilinear setting, and thus we asdiledy to run into com-
putational trouble for the mechanism design problem. Fpad we will show shortly,
the quasilinearity assumption in some cases allows formdposing the mechanism
design problem over the charities (as it did for the simpdaghg problem).

Moreover, in the quasilinear setting, it makes sense toyausecial welfare (the
sum of the bidders’ utilities) as the objective, because Hgrunits of valuation cor-
respond directly to units of money, so that we do not have aallem of the bidders
arbitrarily scaling their valuations; and 2) it is no longerssible to give a payment
willingness function o0 while still affecting the donations through a valuation ¢un
tion. It is also helpful to recall Proposition 2 here, whidhtes that with quasilinear
utilities, an outcome maximizes surpligand only if it maximizes the sum of the
bidders’ utilities.

Before presenting the decomposition result, we introdoogesconcepts from game
theory and mechanism design. t¥perepresents particular preferences that a bidder
can have and can report (thus, a type report is a lidentive compatibility (ICineans
that bidders are best off reporting their preferences fullth either regardless of the
others’ reported typesn dominant strategigs or in expectation over them assuming
truthful reporting by the other bidders(Bayes-Nash equilibriujn Individual ratio-
nality (IR) means bidders are at least as well off participating in thehamism as not
participating; either regardless of the others’ reporjge$ €x pos}, or in expectation
over them assuming truthful reporting by the other biddexsiriterin). A mechanism
is budget balancedf there is no flow of money into or out of the system—in general
(ex pos}, or in expectationdx antg. A mechanism i®fficientif it (always) produces
an efficient allocation—that is, an allocation that maxirsitke sum of the bidders’
utilities.

Proposition 4 Suppose all bidders’ preferences are quasilinear. Fumhere, sup-
pose that there exists a single-charity mechanignthat, for a certain subclas$ of
(quasilinear) preferences, under a given solution concgfitmplementation in domi-
nant strategies or Bayes-Nash equilibrium) and a givenamodif individual rationality
R (ex post, ex interim, or none), satisfies a certain notionuafget balance (ex post,
ex ante, or none), and is ex-post efficient. Then there estists a mechanism for any
number of charities.

Proof: The mechanism is simply the following: for each charity) the single-charity
mechanism on the bidders’ preferences for that charity,leinthe bidders make the
corresponding payments to that charity. (So, each biddeted payment will be the
sum of her payments to the individual charities.) It is gfindfiorward to check that the
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desired properties of this combined mechanism follow frtwm fact that the single-
charity mechanism satisfies them. O

9.3 Impossibility of efficiency in the mechanism design comixt

In this subsection, we show that even in a very restrictetingetand with minimal
requirements on IC and IR constraints, it is impossible &at# a mechanism that is
efficient.

Theorem 10 There is no mechanism that is ex-post budget balanced, sbeffcient,
and ex-interim individually rational with Bayes-Nash dduium as the solution con-
cept (even with only one charity, only two quasilinear biddeith identical type distri-
butions (uniform over two types, with either both valuationctions being step func-
tions or both valuation functions being concave piecewrsegglr functions)).

Proof: Suppose the two bidders both have the following distrdyutiver types. With
probability 1, the bidder does not care for the charity at alig zero everywhere); oth-
erwise, the bidder derives valuati(in‘rom the charity getting at least and valuation
0 otherwise. (Alternatively, for the second type, the biddan getmin{5, 520 }—a
concave piecewise linear function.) Call the first type the type (), the second one
the high type ).

Suppose, for the sake of contradiction, that a mechanisimtiv desired proper-
ties does exist. By the revelation principle, we can assuraerevealing preferences
truthfully is a Bayes-Nash equilibrium in this mechanismecBuse the mechanism is
ex-post efficient, the charity should receive exadthwhen either bidder has the high
type, and0 otherwise. Letr;(6;,62) be bidderl’s (expected) payment when she re-
ports#; and the other bidder repords. By ex-interim IR,my (L, H) + m (L, L) < 0.
Because bidder cannot have an incentive to report falsely when her true iypégh,
we have — 7y (L,H) — m(L,L) < 2 —m(H,H) + 2 — m(H, L), or equivalently
m(H,H) + m(H,L) < 2+ m(L,L) +m(L,H) < 2. Because the example is
completely symmetric between bidders, we can similarlyctaote for bidder 2’s pay-
ments thatr,(H, H) + m2(L,H) < 2. Of course, in order to pay the charity the
necessary amount afwhenever one of the bidders has her high type, we need to have
m(H,H)+m(H,L)+7mo(H,H)+mo(L,H) +m (L, H) + w3 (H, L) = 3, and thus
we can conclude that, (L, H) + m2(H, L) > 3 — 12 = J. Because the charity re-
ceivesd when both report lowy, (L, L) +m2(L, L) = 0 and thus we can conclude that
m(L,H) + m(L, L) + ma(H, L) + (L, L) > %. But by the individual rationality
constraints,;my (L, H) + w1 (L, L) < 0 andmwy(H, L) + m2(L,L) < 0. So we have
reached the desired contradictith. O

13As an alternative proof technique (a proof by computer), wele automated mechanism design soft-
ware [8, 9] create an optimal mechanism for the (step-fungiimstance described in the proof, under the
required constraints on the mechanism and with social we(faunting the payments made) as the objec-
tive. The resulting mechanism did not burn any money (did ngtyanecessarily much to the charity),
but did not always give money to the charity when it was beradftci do so. (It randomized uniformly
between givingl and giving0 when player 1's type was low, and player 2's high.) Since ap@st budget
balanced, ex-post efficient mechanism would have had a hggpercted objective value, and the automated
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The case of step functions in this theorem corresponds lgxacthe case of a
single, fixed-size, nonrival, nonexcludable public gode (tpublic good” being that
the charity receives the required amount)—for which suchngpossibility result is
already known [22}* Many similar results are known, probably the most famous of
which is the Myerson-Satterthwaite impossibility reswihich proves the impossibility
of efficient bilateral trade under the same requirementy [24

Proposition 4 indicates that there is no reason to decideooatibns to multiple
charities under a single mechanism (rather than a separat®oeach charity), when
an efficient mechanism with the desired properties exist$hfe single-charity case.
However, because under the requirements of Theorem 10,amonsechanism exists,
there may in fact be a benefit to bringing the charities undersame umbrella. The
next proposition shows that this can indeed be the case.

Proposition 5 There exist settings with two charities where there exis&xapost bud-
get balanced, ex-post efficient, and ex-interim indiviuedtional mechanism with
Bayes-Nash equilibrium as the solution concept for eith@arity alone; but there
exists an ex-post budget balanced, ex-post efficient, apdsxindividually rational
mechanism with dominant strategies as the solution corfoepbth charities together.
(This holds even when the conditions are the same as in Tinebde apart from the
fact that there are now two charities.)

Proof: Suppose that each bidder has two types, with probabﬁlieﬁch: for the first
type, her preferences for the first charity correspond tahibh type in the proof of
Theorem 10, and her preferences for the second charityspmnel to the low type
in the proof of Theorem 10. For the second type, her prefeefar the first charity
correspond to the low type, and her preferences for the secloarity correspond to
the high type. Now, if we wish to create a mechanism for eittherity individually,
we are in exactly the same setting as in the proof of Theorepwh@re we know
that it is impossible to get all of ex-post budget balancepest efficiency, and ex-
interim individual rationality in Bayes-Nash equilibriur®n the other hand, consider
the following mechanism for the joint problem. If both bidgdeeport preferring the
same charity, each bidder pa%s and the preferred charity receiveégthe other0).
Otherwise, each bidder pays and each charity receives It is straightforward to
check that the mechanism is ex-post budget balanced, éxeffcsent, and ex-post
individually rational. To see that truthtelling is a dommatrategy, we need to check
two cases. First, if one bidder reports a high valuation lier ¢harity that the other
bidder does not prefer, this latter bidder is better off répg truthfully: reporting
falsely will give her utility—% (nothing will be donated to her preferred charity), which
is less than reporting truthfully because ex-post IR hoRiscond, if one bidder reports

mechanism design software always finds a mechanism that masithieeexpected objective value under
the constraints it is given, we can conclude that no ex-podgét balanced, ex-post efficient mechanism
exists under the given constraints.

14Indeed, the framework in this paper can be used for nonriwaigrcludable public goods more gen-
erally: any cause that benefits from money, and from whichgghés derive utility, can be thought of as
a charity. For example, the project of buying a coffee machimete department can be thought of as a
charity. The example of drilling a water well mentioned earfierhaps serves to illustrate that there is no
sharp distinction between these interpretations of thedxaork.
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a high valuation for the charity that the other bidder prefénis latter bidder is better
off reporting truthfully as well: her preferred charity Wikeceive the same amount
regardless of her report, but her required payment is érifyshe reports truthfully, as

opposed td if she reports falsely. O

Of course, Proposition 5 merely gives a very particular gdemvhere having a
single mechanism for multiple charities can help. Thid Kdves us far from having
a general theory of how to design mechanisms for multipleittes, but it does show
that we cannot simply decompose the problem across clsafdatdeast not without
some further assumptions).

10 An experiment with real bidders and money

We decided to test the basic framework of this paper at thefabWorkshop on Com-
puting and Markets (2005). During the presentation of thiskwat that workshop, we
announced that we would conduct a charity drive using thdibgllanguage described
in this paper. For simplicity, the event was restricted tonale charity, namely the
victims of the December 2004 tsunami that devastated deastas in Indonesia, Sri
Lanka, India, and Thailand. The objective to be maximizethanevent was the total
amount donated. Participants were given until 6pm on theadft&y the presentation
to submit their bids. Of the workshop’s 46 participants'® 18 submitted valid bids
before the deadline (including the two authors of this pap&he bids are shown in
Figure 1.

The bids were collected in sequence, and every bidder wasalskee all the pre-
vious bids. Very quickly, a “target” total amount of US $500erged as a focal point,
so that many bidders made their donations conditional ogeat 5500 being collected.
(In fact, one bidder strategically made his donation cdouitl onexactly$500 being
collected: he did not want the effort to reach $500 to fail @dtcount, but was not
interested in donating if the target amount would also betred without him.) Once
this target amount was in fact reached, the remaining b&dder their sights higher,
resulting in a final amount of $700.

Four of the bids were unconditional donations (the same amgiven at every
total amount collected). Five of the bids were simple thoddHids ( given below
a certain amount collected, some constant amouwttor above it). One bid was the
sum of an unconditional donation and a simple threshold . remaining eight bids
(including the authors’ own bids and one bid that was a copgnaf of the authors’
bids) were more complex.

Sixteen bids were submitted in US dollars, one in Euros, amlio Canadian
dollars. (All bids were converted to US dollars.) Figure 2wh the total amount
bidders were willing to give conditional on each total amiodonated (this function is
the sum of their individual bid functions); the event clahat the largest feasible point,
that is, the largest point at which the curve intersects dieatity function (45 degree
line), $700.

15The number 46 was obtained by counting the number of faces igrthep picture.
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Figure 1: The bids submitted in the tsunami charity eventhHanction represents a
bidder’s willingness to give as a function of the total dathat

From this small experiment, it is clear that at least someldyisl prefer to place
complex, expressive, conditional bids. Presumably, ugirgmethodology benefited
even the bidders who did not make their donation conditidmatause their uncondi-
tional bids still induced the bidders who did make their kidaditional to give more.

Later, we tried to run a similar event to collect donationsviatims of Hurricane
Katrina. Unlike the tsunami event, this event was open toyere and potential par-
ticipants were approached unsystematically; it was naiaated with a workshop or
anything of the sort. Unfortunately, the response to thisnéwas rather minimal.
While it is not immediately clear which of the various diffaces between the tsunami
and hurricane events were responsible for the differensedoess, this perhaps lends
some support to the idea that it helps when there are sociakotions among the bid-
ders in the event. In the next section, we discuss some sudsergsearch by others
that extends our framework with a social-networking congsun

11 Subsequentresearch
Since the conference version of this paper, there have lesered highly related works.

Most closely related is recent work by Ghosh and Mahdian.[15kheir paper, they
take the original version of this paper as a starting poiat,then argue that the as-
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Figure 2: The total willingness to give as a function of theask@amount donated (this
function is equal to the sum of the bids), and the identitycfion (the 45 degree line).
Since the objective was to maximize the total donated, tkatesleared at the largest
point at which the curve intersects the identity function0®. There is a small spike
at $500 due to the bidder who strategically made his donatmalitional onexactly
$500 being reached.

sumption that each bidder cares only about the total amaurdtdd to each charity is
not realistic. They extend the model so that a bidder can@sdition her donation
on whois making donations. For example, in a social network sgtiinmay make
sense for a bidder to condition her own donation on the donstbf her friends only.
On the other hand, Ghosh and Mahdian restrict themselvesitayke-charity setting,
in part because of the hardness results for multiple ckargiven in our paper. They
show that a unique maximal payment vector exists, and gittedbtnear program and
an iterative procedure for finding it. They then proceed withequilibrium analysis
and show the existence oftamplete-informatioMNash equilibrium that results in the
maximum total payment (this does not imply that the mecharésincentive compat-
ible). A Web-based system based on their model has beenrimpked at Yahoo! (but
it currently requires an internal login).

The Ghosh and Mahdian paper, in turn, is closely related athen paper by us on
markets for general settings with externalities [10]. Tdaper preceded the Ghosh and
Mahdian paper, though they were not aware of it when theyenttatir paper. In it, we
consider general settings where each agent controls a mwhberiables, and these

31



variables affect the agent’s own utility as well as the tidit of others. For example, the
variables can represent how much each bidder donates tcchadly. Alternatively,
they can represent, for example, levels of pollutants ewhilty the agents. The goal
is to agree on an outcome that is good for all. We study how coatipnally hard it
is to find optimal solutions in this framework, for varioudidéions of optimality and
various restrictions of the setting. The Ghosh and Mahdédting corresponds to one
of the studied versions, where each agent controls oneblarfaow much the agent
donates), externalities are negative (setting the variaélfishly corresponds to a low
donation, which negatively affects the other agents), dadbjective is to maximize
concessions (equivalently, to maximize donations). Ia tlointext, we prove the same
result about the existence of a unique maximal solution, ginel the same iterative
algorithm that converges to this solution. We do not study exqquilibrium aspects in
that paper, though.

12 Conclusion

We introduced a bidding language for expressing very géhgras of matching offers
over multiple charities. We formulated the correspondileging problem (deciding
how much each bidder pays, and how much each charity regearesshowed that it is
NP-hard to approximate to any ratio even in very restrictttirgs. We gave a mixed
integer program formulation of the clearing problem, anolebd that for concave bids
(where valuation functions and payment willingness fuorcdi are concave), the pro-
gram reduces to a linear program and can hence be solvedyimguoial time. We then
showed that the clearing problem for a subclass of concaleibiat least as hard as
the decision variant of linear programming, suggestingwecannot do much better
than a linear programming implementation for such bids. W8e eonsidered the case
where each charity has a target amount, and bidders’ wilesg-to-pay functions are
concave. Here, we showed that the optimal surplus can bexipmated to a ration,
the number of charities, in polynomial time (and no signifitabetter approximation
is possible in polynomial time unless P=NP); no polynontiimle approximation ratio
is possible for maximizing the total donated, unless P=NiBs8quently, we showed
that the clearing problem is much easier when bids are dqoeail (where payment
willingness functions are linear)—for maximizing surpldiise problem decomposes
across charities, and for maximizing the total donatedeady approach is optimal if
the bids are concave (although this latter problem is weldKiyhard when the bids are
not concave). For the quasilinear setting, we studied trehar@sm design question of
incentivizing the bidders to report their preferenceshfiwity. We showed that an ex-
post efficient mechanism is impossible even with only oneighand a very restricted
class of bids. We also showed that even though the clearoiggm decomposes over
charities in the quasilinear setting, there can be benefiiaking the charities from a
mechanism design standpoint. Finally, we discussed arriexget in which we used
this methodology to collect money for victims of the 2004iamdOcean Tsunami.
There are many directions for future research. One dinedsido create a frame-
work that simultaneously generalizes both our frameworkthe Ghosh and Mahdian
framework, so that donations can be conditional on who d@nlabw much to which
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charities. Another direction is to build a publicly availaiVeb-based implementation
of one of these markets. One can also study the scalabilipgoMIP/LP approach.
It may be helpful to identify other classes of bids for whitie tclearing problem is
tractable. Much work remains to be done on the mechanisng@soblem. Finally,
are there good iterative markets for charitable donatitins?
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A Comparison to combinatorial auctions and exchanges

In a combinatorial auctionthere aren items for sale, and bidders can place bids on
bundlesof one or more items. The auctioneer subsequently labelskid@s winning
or losing, under the constraint that no item can be in mora tiree winning bid, to
maximize the sum of the values of the winning bids. (This iswn as theclearing
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problemor thewinner determination problemVariants include combinatoriabverse
auctions, where the auctioneer is seeking to procure a $&na$; and combinatorial
exchangeswhere bidders can both buy and sell items (even within tmeeshid).
Other extensions include allowing ferde constraintsas well as the specification of
attributesof the items in bids. Combinatorial auctions and exchangesagopular
research topic; for an overview, see a recent book summagrike state of the art [12].

The problems of clearing expressive charity donation ntar&ed clearing combi-
natorial auctions or exchanges are very different in foatiah. Nevertheless, there are
interesting parallels. One of the main reasons for theastén combinatorial auctions
and exchanges is that they allow fxpressive biddingA bidder can express exactly
how much each possibdlocationis worth to her, and thus the globally optimal allo-
cation can be chosen by the auctioneer. Compare this to artidding to bid on two
different items in two different (single-item) auctionsitiout any way of expressing
that (for instance) one item is worthless if the other itemaswon. In this scenario,
the bidder may win the first item but not the second (because tivas another high
bid on the second item that she did not anticipate), leadiregonomic inefficiency.

Expressive bidding is also one of the main benefits of an espre charity donation
market. Here, bidders can express exactly how much they #iiegato donate for
every vector of amounts donated to charities. This may abl@ders to negotiate a
complex arrangement of who gives how much to which charityictv is beneficial
to all parties involved; no such arrangement may have besailge if the bidders
had been restricted to using simple matching offers on iddal charities. Again,
expressive bidding is necessary to achieve economic effigié

Another parallel is the computational complexity of theacleg problem. In or-
der to achieve the full economic efficiency allowed by the kais expressiveness (or
even come close to it), hard computational problems mustobhed in combinato-
rial auctions and exchanges, as well as in an expressivéyctanation market (as is
demonstrated in the main body of the paper).

B Avoiding indirect payments

In an initial implementation, the approach of having doorasi made out to a central
entity (thecente), and having the center forward these payments to the @wnhay
not be desirable. Rather, it may be preferable to hgerally decentralizedolution,
where the bidders write out checks to the charities direatlyording to a solution
based on the bids that is computed by the center. In this soettae center merely has
to verify that bidders are giving the prescribed amountsvakdages of this include
that the center can keep its legal status minimal, as welhaswe do not require
the bidders to trust the center to transfer their donationthé charities (or require
some complicated verification protocol). It is also a stegetals a fully decentralized
solution, if this is desirable.

1"This does not mean that expressive bidding is alvsyfficientfor economic efficiency: for example,
even when expressive bidding is possible, bidders may gtcally misreport their preferences, resulting in
economic inefficiency with respect to their true preferences
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To bring this about, we can still use the approach describéu main body of the
paper. After we clear the market in the manner describec tiveg know the amount
that each bidder is supposed to give, and the amount thatobachy is supposed to
receive. Then, it is straightforward to give some specificadf who should give how
much to which charity, that is consistent with that solutiémy greedy algorithm that
increases the cash flow from any bidder who has not yet paidgéndo any charity
that has not yet received enough, until either the biddephasenough or the charity
has received enough, will provide such a specification. @Alhis is assuming that
>, = > 7. Inthe case where there is nonzero surplus, thdt)sy,, > > 7.,

b [ b, [
we can distribute this surplus across the bidders by notirrieguher;l to pay the full
amount, or across the charities by giving them more thandhgisn specifies.)

Nevertheless, with this approach, a bidder may have to wuta check to a charity
that she does not care for at all. This is likely to lead to claimmts and noncompliance
with the solution. We can address this issue by letting eadtielb specify explicitly
(before the clearing of the market) which charities she wdé willing to make a
check out to. These additional constraints, of course, rhange the optimal solution.
In general, checking whether a given centralized solutiith(zero surplus) can be
accomplished through decentralized payments when thersuagh constraints can be
modeled as a MAX-FLOW problem. In the MAX-FLOW instance, rinés an edge
from the source node to each biddeb;, with a capacity ofr,, (as specified in the
centralized solution); an edge from each bidbleto each charity; that the bidder is
willing to donate money tawith a capacity obo; and an edge from each charityto
the target node with capacityr., (as specified in the centralized solution).

We can also integrate the direct-payment model into the Mif®duced earlier. To
do so, we add variables., ;, indicating how muclb; pays toc;, with the constraints
that for eachr;, m., = > 7., »,; and for eactb;, m,, = > 7, »,. Additionally, there

b, ci
is a constraintr., ,, = 0 whenever biddeb; is unwilling to pay charity;. The rest of
the MIP can be formulated in terms of thg, and,,, as before.

We note that the main part of this paper corresponds to theadpase where there
are no constraints on which bidders can donate to whichtérso all of the hardness
results from the main part of the paper still apply to the aigayment model.
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