
Coalition Structure Generation Utilizing

Compact Characteristic Function
Representations

Naoki Ohta1, Vincent Conitzer2, Ryo Ichimura1, Yuko Sakurai1, Atsushi
Iwasaki1, and Makoto Yokoo1

1 Department of ISEE, Kyushu University, Fukuoka 819-0395, Japan,
{ohta@agent, ichimura@agent, sakurai@agent, iwasaki@,

yokoo@}is.kyushu-u.ac.jp
2 Department of Computer Science, Duke University, Durham, NC 27708, USA,

conitzer@cs.duke.edu

Abstract. This paper presents a new way of formalizing the Coalition
Structure Generation problem (CSG), so that we can apply constraint
optimization techniques to it. Forming effective coalitions is a major
research challenge in AI and multi-agent systems. CSG involves parti-
tioning a set of agents into coalitions so that social surplus is maximized.
Traditionally, the input of the CSG problem is a black-box function called
a characteristic function, which takes a coalition as an input and returns
the value of the coalition. As a result, applying constraint optimization
techniques to this problem has been infeasible. However, characteristic
functions that appear in practice often can be represented concisely by a
set of rules, rather than a single black-box function. Then, we can solve
the CSG problem more efficiently by applying constraint optimization
techniques to the compact representation directly.
We present new formalizations of the CSG problem by utilizing recently
developed compact representation schemes for characteristic functions.
We first characterize the complexity of the CSG under these represen-
tation schemes. In this context, the complexity is driven more by the
number of rules rather than by the number of agents. Furthermore, as
an initial step towards developing efficient constraint optimization algo-
rithms for solving the CSG problem, we develop mixed integer program-
ming formulations and show that an off-the-shelf optimization package
can perform reasonably well, i.e., it can solve instances with a few hun-
dred agents, while the state-of-the-art algorithm (which does not make
use of compact representations) can solve instances with up to 27 agents.

Keywords: multiagent systems, coalition structure generation, constraint
optimization

1 Introduction

Coalition formation is an important capability in automated negotiation among
self-interested agents. Coalition structure generation (CSG) involves partitioning

a set of agents into coalitions so that social surplus is maximized. This problem
has become a popular research topic in AI and multi-agent systems. Possible
applications of CSG include distributed vehicle routing (Sandholm and Lesser,
1997), multi-sensor networks (Dang et al., 2006), etc. The CSG problem is equiv-
alent to a complete set partition problem (Yeh, 1986), and various algorithms for
solving the CSG problem have been developed. Sandholm et al. (1999) propose
an anytime algorithm with worst-case guarantees. However, to obtain an optimal
coalition structure, this algorithm must check all coalition structures. Thus, the
worst-case time complexity is O(nn), where n is the number of agents. On the
other hand, Dynamic Programming (DP) based algorithms (Yeh, 1986; Rothkopf
et al., 1998; Rahwan and Jennings, 2008b) are guaranteed to find an optimal so-
lution in O(3n). Shehory and Kraus (1998) propose a greedy algorithm that puts
constraints on the possible size of the coalitions.

Arguably, the state-of-the-art algorithm is the IP (integer partition) algo-
rithm (Rahwan et al., 2007). This is an anytime algorithm, which divides the
search space into partitions based on integer partition, and performs branch &
bound search. Although the worst-case time complexity for obtaining an opti-
mal solution is O(nn), in practice, IP is much faster than DP based algorithms.
Furthermore, Rahwan and Jennings (2008a) introduce an extension of the IP
algorithm that utilizes DP for preprocessing.

As far as we are aware, all existing works on CSG assume that the char-
acteristic function is represented implicitly, and we have oracle access to the
function—that is, the value of a coalition (or a coalition structure as a whole)
can be obtained using some procedure. This is because representing an arbitrary
characteristic function explicitly requires Θ(2n) numbers, which is prohibitive
for large n. When a characteristic function is represented by a black-box func-
tion, there is no room for applying constraint optimization techniques. Thus,
this problem has been irrelevant to the CP community.

However, characteristic functions that appear in practice often display sig-
nificant structure, and it is likely that such characteristic functions can be rep-
resented much more concisely. Indeed, recently, several new methods for repre-
senting characteristic functions have been developed (Ieong and Shoham, 2005;
Conitzer and Sandholm, 2004, 2006). These representation schemes capture char-
acteristics of interactions among agents in a natural and concise manner, and can
reduce the representation size significantly. Surprisingly, to our knowledge, these
representation schemes have not yet been used for CSG; this is what we set out
to do in this paper. Using these compact representation schemes, a characteristic
function is represented by a set of rules, rather than a single black-box function.
It is likely that we can solve the CSG problem more efficiently by applying
constraint optimization techniques to the compact representation directly.

We examine three representative compact representation schemes: (i) marginal
contribution nets (MC-nets) (Ieong and Shoham, 2005), (ii) synergy coalition
groups (SCGs) (Conitzer and Sandholm, 2006), and (iii) SCGs in multi-issue
domains (Conitzer and Sandholm, 2004). The optimal choice of a representation
scheme depends on the application.

There exist several other compact representation schemes, e.g., logic-based
approaches (Wooldridge and Dunne, 2004, 2006) and skill-based approaches
(Yokoo et al., 2005; Bachrach and Rosenschein, 2008). In this paper, we restrict
our attention to the schemes mentioned earlier, since they are more closely re-
lated to the traditional CSG problem.

Quite interestingly, we find that there exists some common structure among
these cases: in essence, the problem is to find a subset of rules that maximizes the
sum of rule values under certain constraints. For each case, we show that solving
the CSG problem is NP-hard, and the size of a problem instance is naturally
measured by the number of rules rather than the number of agents.

Furthermore, as an initial step towards developing efficient constraint op-
timization algorithms for solving the CSG problem, we give a mixed integer
programming (MIP) formulation that captures the above mentioned structure.
We show that an off-the-shelf optimization package (CPLEX) can solve the re-
sulting MIP problem instances reasonably well, i.e., it can solve instances with a
few hundred agents, while the state-of-the-art algorithm (which does not make
use of compact representations) can solve instances up to 27 agents.

The rest of this paper is organized as follows. First, we review the model of
coalition structure generation (Section 2). Next, we introduce solution algorithms
when the characteristic function is represented by MC-nets (Section 3), SCGs
(Section 4) and SCGs in multi-issue domains (Section 5). Finally, we show the
evaluation results and discussions (Section 6).

2 Model

Let A = {1, 2, . . . , n} be the set of agents. We assume a characteristic function
game, i.e., the value of a coalition S is given by a characteristic function v. A
characteristic function v : 2A → � assigns a value to each set of agents (coali-
tion) S ⊆ A. We assume that each coalition’s value is nonnegative. This is not an
unreasonable assumption (Sandholm et al., 1999); even if some coalition’s values
are negative, as long as each coalition’s value is bounded (i.e., not infinitely neg-
ative), we can normalize the coalition values so that all values are non-negative.
This rescaled game is strategically equivalent to the original game.

A coalition structure CS is a partition of A, into disjoint, exhaustive coali-
tions. To be more precise, CS = {S1, S2, . . .} satisfies the following conditions:

∀i, j (i �= j), Si ∩ Sj = ∅,
⋃

Si∈CS

Si = A.

In other words, in CS, each agent belongs to exactly one coalition, and some
agents may be alone in their coalitions.

For example, in a game with three agents a, b, and c, there are seven possible
coalitions: {a}, {b}, {c}, {a, b},{b, c}, {a, c}, {a, b, c}, and five possible coalition
structures: {{a}, {b}, {c}}, {{a, b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}}, {{a, b, c}}.

The value of a coalition structure CS, denoted as V (CS), is given by:

V (CS) =
∑

Si∈CS

v(Si).

An optimal coalition structure CS∗ is a coalition structure that satisfies the
following condition:

∀CS, V (CS∗) ≥ V (CS).

We say a characteristic function is super-additive, if for any disjoint sets
Si, Sj, v(Si ∪ Sj) ≥ v(Si) + v(Sj) holds. If the characteristic function is super-
additive, solving CSG becomes trivial, i.e., the grand coalition (the coalition of
all agents) is optimal.

Super-additivity means that any pair of coalitions is better off by merging
into one. One might think that super-additivity holds in most of the cases since
the agents in the composite coalition can work separately and perform at least
as well as the case that they were in different coalitions. However, organizing
a large coalition can be costly, e.g., there might be coordination overhead like
communication costs, or possible anti-trust penalties. Also, if time is limited, the
agents may not have time to carry out the communications and computations
required to coordinate effectively within the composite coalition, so component
coalitions may be more advantageous. Thus, we assume a characteristic function
can be non-super-additive.

3 CSG using MC-nets

Ieong and Shoham (2005) develop a concise representation of a characteristic
function called marginal contribution networks (MC-nets).

Definition 1 (MC-nets). An MC-net consists of a set of rules R. Each rule
r ∈ R is of the form: (Pr, Nr) → vr, where Pr ⊆ A, Nr ⊆ A, Pr ∩Nr = ∅, vr ∈
�. We say that rule r is applicable to coalition S if Pr ⊆ S and Nr ∩ S = ∅,
i.e., S contains all agents in Pr (positive literals), and it contains no agent in
Nr (negative literals). For a coalition S, v(S) is given as

∑
r∈RS

vr, where RS

is the set of rules applicable to S. Thus, for a coalition structure CS, V (CS) is
given as

∑
S∈CS

∑
r∈RS

vr.

Example 1. Let there be five agents a, b, c, d, e and four rules: r1 : ({b, e}, {}) →
3, r2 : ({a, b, c}, {d}) → 2, r3 : ({a, d}, {}) → 1, and r4 : ({c}, {e}) → 1. In this
case, r1 and r2 are applicable to coalition {a, b, c, e}, but r3 and r4 are not. Thus,
v({a, b, c, e}) is equal to 3 + 2 = 5.

In the original definition from (Ieong and Shoham, 2005), a rule may have
a negative value. In this paper, we assume all rules have positive values. Fur-
thermore, we assume each rule has at least one positive literal. Under these
restrictions, we can guarantee that having more applicable rules never hurts,
and each rule is applicable to only one coalition. Even under these restrictions,

MC-nets can represent any characteristic function. This is because, in the worst
case, for each coalition S ⊆ A, we can create a rule (S, A \ S) → v(S), i.e., each
rule is applicable only to S.

Definition 2 (Feasible rule set). We say a set of rules R′ ⊆ R is feasible if
there exists CS where each rule r ∈ R′ is applicable to some S ∈ CS.

In Example 1, {r2, r4} is feasible because each rule is applicable to CS =
{{a, b, c}, {d, e}}. On the other hand, {r1, r2, r4} and {r2, r3} are infeasible. The
problem of finding CS∗ is equivalent to finding a feasible rule set R′, so that∑

r∈R′ vr is maximized.

Definition 3 (Relations between rules). The possible relations between two
rules r and r′ can be classified into the following four nonoverlapping and ex-
haustive cases:

Compatible on the same coalition: Pr ∩Pr′ �= ∅ and Pr ∩Nr′ = Pr′ ∩Nr =
∅. For example, in Example 1, r1 and r2 are compatible on the same coalition:
if r1 and r2 are applicable at the same time, there must be a coalition S with
S ⊇ {a, b, c, e} and d �∈ S.

Incompatible: Pr ∩Pr′ �= ∅, and (Pr ∩Nr′ �= ∅ or Pr′ ∩Nr �= ∅). For example,
r2 and r3 are incompatible: these two rules are not applicable at the same
time.

Compatible on different coalitions: Pr ∩ Pr′ = ∅, and (Pr ∩ Nr′ �= ∅ or
Pr′ ∩Nr �= ∅). For example, r1 and r4 are compatible on different coalitions:
if r1 and r4 are applicable at the same time, there must be two different
coalitions S1 and S2, where S1 ⊇ {b, e} and S2 ⊇ {c}.

Independent: Pr ∩Pr′ = ∅, and Pr ∩Nr′ = Pr′ ∩Nr = ∅. For example, r1 and
r3 are independent. These two rules can be applied to the same coalition or
to different coalitions.

Let us consider a graphical representation of an MC-net in which each vertex
is a rule, and between any two vertices, there exists an edge whose type is one
of the four cases described above. Figure 1 shows the graphical representation
of Example 1 (“independent” edges are not shown).

The following conditions characterize whether a rule set is feasible.

Theorem 1. A set of rules R′ is feasible if and only if it satisfies the following
conditions.

(a) R′ includes no pair of rules/vertices connected by an “incompatible” edge,
and

(b) if two rules/vertices in R′ are connected by a “compatible on different coali-
tions” edge, then they are not reachable via “compatible on the same coali-
tion” edges within R′.

Proof. First, we prove the “if” part. From (a), there exists no incompatible edge
within R′. From (b), R′ can be divided into groups G1, G2, . . . , Gk where the rules
within Gi are reachable from each other by “compatible on the same coalition”

r4
({c}, {e})

r1
({b, e}, {})

r3
({a, d}, {})

r2
({a, b, c}, {d})

compatible on
different coalitions

compatible on
the same coalition

incompatible
compatible on
the same coalition

Fig. 1. Graphical representation of Example 1.

edges, there exists no “compatible on different coalitions” edge between rules in
Gi, and there exists no “compatible on the same coalition” edge between rules
that belong to different groups.

Let us choose CS = {S1, S2, . . . , Sk} so that Si is the union of all positive
literals of r ∈ Gi. Then, for i �= j, Si ∩Sj = ∅ holds. This is because Si ∩ Sj �= ∅
would imply that there exists at least one pair r ∈ Gi, r

′ ∈ Gj for which r and r′

are connected by a “compatible on the same coalition” edge (since there cannot
be an “incompatible” edge between them)—but this is in contradiction with
the way in which G1, . . . , Gk are chosen. Thus, {S1, . . . , Sk} is a valid coalition
structure.3

Now, we show that for any r ∈ Gi, r is applicable to coalition Si. Clearly, Si

contains all the positive literals of r. It remains to show that Si does not contain
any negative literal of r. For the sake of contradiction, assume Si contains agent
a, where a is a negative literal of r. Then, there exists another rule r′ ∈ Gi for
which a is a positive literal. There must be a “compatible on different coalitions”
or an “incompatible” edge between r and r′. Either case leads to a contradiction.
Hence, R′ is feasible.

Next, we prove the “only if” part. We show that if R′ does not satisfy the
above conditions, then there exists no coalition structure where R′ is applicable.
Clearly, if (a) is not satisfied, i.e., some r, r′ ∈ R′ are connected by an “incompat-
ible” edge, then there exists no coalition structure where r and r′ are applicable
at the same time.

Now, let us assume (b) is not satisfied, i.e., there exist ri, rj ∈ R′ such that
ri and rj are connected by a “compatible on different coalitions” edge, and they
are reachable by “compatible on the same coalition” edges within R′. Assume ri

is applicable to coalition Si and rj is applicable to coalition Sj . Since ri and rj

are connected by a “compatible on different coalitions” edge, Si and Sj must be
different. However, Si must contain all positive literals of rules reachable from ri

3 If some agent is not included in any Si, we can assume the agent forms its own
coalition.

via “compatible on the same coalition” edges: otherwise, some rule in R′ is not
applicable. Similarly, Sj must contain all positive literals of rules reachable from
rj via “compatible on the same coalition” edges. Since ri and rj are reachable
from each other via “compatible on the same coalition” edges, Si and Sj must
be the same—but this contradicts the fact that they must be different. �

Theorem 2. When the characteristic function is represented as an MC-net,
finding an optimal coalition structure is NP-hard. Moreover, unless P = NP,
there exists no polynomial-time O(|R|1−ε) approximation algorithm for any ε >
0, where |R| is the number of rules.

Proof. The maximum independent set problem is to choose V ′ ⊆ V for a graph
G = (V, E) such that there exists no edge between vertices in V ′, and |V ′| is
maximized under this constraint. It is NP-hard and, unless P = NP , there exists
no polynomial-time O(|V |1−ε) approximation algorithm for any ε > 0 (H̊astad,
1999; Zuckerman, 2007). We reduce an arbitrary maximal independent set in-
stance to a CSG problem instance, as follows. For each v ∈ V , let there be an
agent av; also, for each e ∈ E, let there be an agent ae. For each v ∈ V , we create
a rule rv where Prv = {av}∪{ae : v ∈ e}, Nrv = {aw : (v, w) ∈ E}, and vrv = 1.
Thus, rules are “incompatible” if they correspond to neighboring vertices, and
“independent” otherwise. It follows that feasible rule sets correspond exactly to
independent sets of vertices. �

The reduction in Theorem 2 relies heavily on “incompatibilities” between
rules. If there are no “incompatibilities” then the problem is equivalent to the
multi-cut problem (Vazirani, 2001), which is a generalization of the min-cut
problem.

Definition 4 (MIP formulation of CSG for MC-nets). The problem of
finding a feasible rule set R′ that maximizes

∑
r∈R′ vr can be modeled as follows.

max
∑

r∈R vr · x(r)
s.t.∀e = (r, r′), where e is an “incompatible” edge,

x(r) + x(r′) ≤ 1, — (i)
∀e = (ri, rj), where e is

a “compatible on different coalitions” edge and i < j,
dis(e, ri) = 0, dis(e, rj) ≥ 1, — (ii)
∀e′ = (r1, r2), where e′ is

a “compatible on the same coalition” edge,
dis(e, r1) ≤ dis(e, r2) + (1 − x(r1)) + (1 − x(r2)), — (iii)
dis(e, r2) ≤ dis(e, r1) + (1 − x(r1)) + (1 − x(r2)), — (iv)

∀r ∈ R, x(r) ∈ {0, 1}.
x(r) = 1 means that rule r is selected. The constraint (i) ensures that two rules
connected by an “incompatible” edge will not be selected at the same time.
Also, for each “compatible on different coalitions” edge e = (ri, rj), we define
a distance/potential for e, so that dis(e, ri) = 0 and dis(e, rj) ≥ 1 (ii). The
constraints (iii) and (iv) ensure that if both of r1 and r2 are selected, where r1

and r2 are connected by a “compatible on the same coalition” edge, then the
distance/potential of these two rules for the aforementioned e must be equal.
Then, the facts that dis(e, ri) = 0 and dis(e, rj) ≥ 1 ensure that ri and rj are not
reachable from each other via “compatible on the same coalition” edges. Using
such a distance/potential is a standard method for representing connectivity
constraints in MIP formalization without enumerating possible paths.

In this formulation, the number of binary variables is equal to the number
of rules. The number of constraints is din + dcd(2dcs + 1), where din, dcd, dcs

are the number of edges with types “incompatible”, “compatible on different
coalitions”, and “compatible on the same coalition”, respectively.

4 CSG using Synergy Coalition Groups

Conitzer and Sandholm (2006) introduce a concise representation of a charac-
teristic function called a synergy coalition group (SCG). The main idea is to
explicitly represent the value of a coalition only when there exists some positive
synergy.

Definition 5 (SCG). An SCG consists of a set of pairs of the form: (S, v(S)).
For any coalition S, the value of the characteristic function is:

v(S) = max{
∑

Si∈pS

v(Si)},

where pS is a partition of S, i.e., all the Si are disjoint and
⋃

Si∈pS
Si = S, and

for all the Si, (Si, v(Si)) ∈ SCG. To avoid senseless cases that have no feasible
partitions, we require that ({a}, 0) ∈ SCG whenever {a} does not receive a value
elsewhere in SCG.

Thus, if the value of a coalition S is not given explicitly in SCG, it is calculated
from the possible partitions of S. Using this original definition, we can repre-
sent only super-additive characteristic functions, i.e., for any disjoint sets Si, Sj ,
v(Si∪Sj) ≥ v(Si)+v(Sj) holds. But, as mentioned in Section 2, if the character-
istic function is super-additive, solving CSG becomes trivial: the grand coalition
is optimal. To allow for characteristic functions that are not super-additive, we
add the following requirement on the partition pS .

– ∀p′S ⊆ pS , where |p′S | ≥ 2, (
⋃

Si∈p′
S

Si, v(
⋃

Si∈p′
S

Si)) is not an element of
SCG.

This additional condition requires that if the value of a coalition is explicitly
given in SCG, then we cannot further divide it into smaller subcoalitions to
calculate values. In this way, we can represent negative synergies.

Example 2. Let there be five agents a, b, c, d, e and let SCG = {({a}, 0), ({b}, 0),
({c}, 1), ({d}, 2), ({e}, 3), ({a, b}, 3), ({a, b, c}, 3)}. In this case, v({d, e}) = v({d})+
v({e}) = 5, and v({a, b, c, d, e}) = v({a, b, c}) + v({d}) + v({e}) = 8. For
v({a, b, c, d, e}), we cannot use v({a, b}) + v({c}) + v({d}) + v({e}) = 9, because
{a, b} ∪ {c} = {a, b, c} appears in SCG.

The (modified) SCG can represent any characteristic function, including
characteristic functions that are non-super-additive, or even non-monotone. This
is because in the worst case, we can explicitly give the value of every coalition.
Due to the additional condition, only these explicit values can then be used to
calculate the characteristic function.

We show that when searching for CS∗, we need to consider only the coalitions
that are explicitly described in SCG.

Theorem 3. There exists a coalition structure CS for which V (CS) = V (CS∗)
and ∀S ∈ CS, (S, v(S)) ∈ SCG.

Proof. For the sake of contradiction, let us assume there exists some CS∗ so that
V (CS∗) is strictly larger than any CS that consists of only elements of SCG.
Let us examine some coalition S ∈ CS∗ that is not an element of SCG. From
the definition of SCG, there exists a partition of S (denoted as pS) such that
v(S) =

∑
Si∈pS

v(Si), and each Si is an element of SCG. Then, by replacing
each such S by pS , we obtain a new coalition structure CS that consists of
only elements of SCG, and V (CS) = V (CS∗) holds—so we have the desired
contradiction. �

Due to Theorem 3, finding CS∗ is equivalent to a weighted set packing
problem—equivalently, to the winner determination problem in combinatorial
auctions (Sandholm, 2002), where each agent is an item and each coalition de-
scribed in SCG is a bid.

Theorem 4. When the characteristic function is represented as an SCG, find-
ing an optimal coalition structure is NP-hard. Moreover, unless P = NP, there
exists no polynomial-time O(|SCG|1−ε) approximation algorithm for any ε > 0.

Proof. This follows directly from the corresponding inapproximability for the
winner determination problem (Sandholm, 2002) and the maximum independent
set problem (Zuckerman, 2007).

Definition 6 (MIP formulation of CSG for SCG). The problem of finding
CS∗ can be modeled as follows.

max
∑

(S,v(S))∈SCG

v(S) · x(S)

s.t. ∀a ∈ A,
∑

S�a

x(S) = 1,

x(S) ∈ {0, 1}.

x(S) is 1 if S is included in CS∗, 0 otherwise.

In this formulation (which corresponds to a standard winner determination
formulation), the number of binary variables is equal to |SCG|, and the number
of constraints is equal to the number of agents.

5 CSG in Multi-issue Domain

Conitzer and Sandholm (2004) introduce the concept of a multi-issue domain.
In a multi-issue domain, there are k independent issues. The overall value of a
coalition is the sum of the values of the coalition for the individual issues. More
specifically, we assume there are k characteristic functions v1, v2, . . . , vk such
that for any S ⊆ A, v(S) =

∑k
i=1 vi(S). If each vi can be represented concisely,

then this leads to a concise representation for v. In this paper, we assume that
vi is represented by SCGi.

Definition 7 (SCGs in multi-issue domains). We represent the charac-
teristic function by a vector of SCGs (SCG1, . . . , SCGk). For any S ⊆ A,
v(S) =

∑k
i=1 vi(S), where vi is calculated using SCGi. Also, for a coalition

structure CS, we denote Vi(CS) =
∑

S∈CS vi(S). Thus, V (CS) =
∑k

i=1 Vi(CS).

Example 3. Let there be four agents a, b, c, d and two SCGs : SCG1 = {({a}, 0),
({b}, 0), ({c}, 1), ({d}, 0), ({a, b}, 2), ({a, b, c}, 2)}, SCG2 = {({a}, 0), ({b}, 0),
({c}, 0), ({d}, 1), ({a, b, c}, 2)}.

In this case, v({a, b, c}) is v1({a, b, c}) + v2({a, b, c}) = 2 + 2 = 4.

When there are multiple issues, an optimal coalition structure CS∗ may
need to contain a coalition S that is not explicitly described in any SCGi. For
example, assume that in issue i, a and b have a strong positive synergy. Also,
in issue j, b and c have a strong positive synergy. Then, coalition {a, b, c} may
need to be included in CS∗, even though {a, b, c} appears in neither SCGi nor
SCGj .

Definition 8 (Value-producing subset). Given a coalition structure CS, we
say that SCG′

i (where SCG′
i ⊆ SCGi) is a value-producing subset of SCGi

for CS, if SCG′
i consists exactly of elements of SCGi that are used to calculate

Vi(CS). Thus, Vi(CS) =
∑

(S,vi(S))∈SCG′
i
vi(S).

In Example 3, SCG′
1 = {({a, b, c}, 2), ({d}, 0)} and SCG′

2 = {({a, b, c}, 2), ({d}, 1)}
are value-producing subsets for CS = {{a, b, c}, {d}}. From this definition, a
value-producing subset SCG′

i must contain all agents, and elements of SCG′
i

must be disjoint. We call a subset that satisfies these conditions a valid subset.

Definition 9 (Valid subset). SCG′
i ⊆ SCGi is a valid subset if⋃

(S,vi(S))∈SCG′
i
S = A, and ∀(S, vi(S)), (S′, vi(S′)) ∈ SCG′

i where S �= S′,
S ∩ S′ = ∅ holds.

Theorem 5. A valid subset SCG′
i ⊆ SCGi is a value-producing subset of SCGi

for CS if and only if for each S ∈ CS, either one of the following conditions
holds:

1. (S, vi(S)) ∈ SCG′
i,

2. ∃pS, where pS is a partition of S, such that |pS| ≥ 2, ∀S′ ∈ pS , (S′, vi(S′)) ∈
SCG′

i, and ∀p′S ⊆ pS, where |p′S | ≥ 2, (
⋃

S′′∈p′
S

S′′, vi(
⋃

S′′∈p′
S

S′′)) �∈ SCGi.

We omit the proof since it is straightforward from the (modified) definition of
the SCG representation. Quite interestingly, we can define the possible relations
between elements in SCGs in the same way as we did for MC-nets.

Definition 10 (Relations between coalitions). The possible relations be-
tween two coalitions (S, vi(S)) ∈ SCGi and (S′, vj(S′)) ∈ SCGj can be classified
into the following four cases, which are nonoverlapping and exhaustive:

Compatible on the same coalition: i �= j and S ∩ S′ �= ∅. For example,
in Example 3, ({a, b}, 2) ∈ SCG1 and ({a, b, c}, 2) ∈ SCG2 are compatible
on the same coalition. If these two elements are a part of value-producing
subsets at the same time, there must be a coalition S with S ⊇ {a, b, c}.

Incompatible: i = j and S ∩ S′ �= ∅. For example, ({a, b}, 2) ∈ SCG1 and
({a, b, c}, 2) ∈ SCG1 are incompatible. They cannot be used simultaneously.

Compatible on different coalitions: i = j, and there exists (S ∪ S′, vi(S ∪
S′)) ∈ SCGi. For example, ({a, b}, 2) ∈ SCG1 and ({c}, 1) ∈ SCG1 are
compatible on different coalitions. If these two elements are included in value-
producing subsets at the same time, there must be two coalitions S1, S2, where
S1 ⊇ {a, b} and S2 ⊇ {c}, since if there exists S ⊇ {a, b, c}, then, we need
to use ({a, b, c}, 2) for calculating v1. To be more precise, this relation must
be extended to a hyper-edge. If there exists (S, vi(S)) ∈ SCGi, such that
∀S′ ∈ pS , (S′, vi(S′)) ∈ SCGi holds, where pS is a partition of S, then, we
create a hyper-edge connecting the elements in pS. Note that we need to add
hyper-edges only for sub-additive cases.

Independent: otherwise. For example, ({a, b}, 2) ∈ SCG1 and ({d}, 0) ∈ SCG1

are independent. They can be used in both cases.

The following conditions characterize whether coalitions are value-producing.

Theorem 6. (SCG′
1, . . . , SCG′

k), where each SCG′
i is a valid subset of SCGi,

is a vector of value-producing subsets for some CS if and only if the following
conditions hold:

(a) (SCG′
1, . . . , SCG′

k) include no pair of coalitions connected by an “incom-
patible” edge, and

(b) if a set of coalitions in (SCG′
1, . . . , SCG′

k) is connected by a “compatible on
different coalitions” hyper-edge, then there exists at least one element that
is not reachable from other elements via “compatible on the same coalition”
edges.

We omit the proof since it is basically the same as that of Theorem 1.

Definition 11 (MIP formulation in multi-issue domains). The problem
of finding value-producing subsets that maximize the summation of values can be
modeled as follows.

max
∑

p=(S,v∗(S))∈S
k
i=1 SCGi

v∗(S) · x(p)
s.t.∀e = (p, p′), where e is an “incompatible” edge,

x(p) + x(p′) ≤ 1,
∀e = (p1, p2, . . . , pl), where e is

a “compatible on different coalitions” hyper-edge,
dis(e, p1) = 0, dis(e, p2) + . . . + dis(e, pl) ≥ 1, — (i)
∀e′ = (pi, pj), where e′ is

a “compatible on the same coalition” edge,
dis(e, pi) ≤ dis(e, pj) + (1 − x(pi)) + (1 − x(pj)),
dis(e, pj) ≤ dis(e, pi) + (1 − x(pi)) + (1 − x(pj)),

∀p ∈ ⋃k
i=1 SCGi, x(p) ∈ {0, 1}.

x(p) = 1 means the element p in
⋃k

i=1 SCGi is selected. This formulation is
basically the same as Definition 4, except for the constraint (i). This constraint
means that for a hyper-edge e that connects nodes p1, p2, . . . , pl, at least one ele-
ment must be unreachable. The number of variables and constraints are basically
the same as MC-nets.

Theorem 7. When the characteristic function is represented as SCGs in a
multi-issue domain, finding an optimal coalition structure is NP-hard. More-
over, unless P = NP, there exists no polynomial-time O(m1−ε) approximation
algorithm for any ε > 0, where m is the number of elements in SCGs.

Proof. We can use the same proof as Theorem 2. �

6 Evaluation and Discussion

We experimentally evaluated the performance of our proposed methods. All the
tests were run on a Core 2 Duo E6850 3GHz processor with 8GB RAM. The
test machine runs WindowsXP Professional x64 Edition SP2. We used CPLEX
version 11.2, a general-purpose mixed integer programming package.

We show results for the following cases: (i) MC-nets, (ii) SCGs, and (iii) SCGs
in multi-issue domains. The problem instances are generated slightly differently
in each case. For case (ii), we use a decay distribution (Sandholm, 2002) described
as follows. Create a coalition with one random agent. Then repeatedly add a new
random agent with probability α until an agent is not added or the coalition
includes all agents. Choose the value of the coalition between 0 and the number
of agents in the coalition uniformly at random. We use α = 0.55. For case (i),
we first create a rule (S, {}) → v(S) for each SCG in case (ii). Then, we modify
each rule by randomly moving an agent from the positive to the negative literals
with probability p. We use p = 0.2. For case (iii), the way of generating problem
instances is basically identical to case (ii), but we create five issues and each
issue has the same number of rules. For each issue, we assume 30% of agents are
involved.

In Figure 2 (a), we set #rules=#agents4, and vary #agents from 10 to 120.
In Figure 2 (b), (c), (d), we set #rules to 60, 90, and 120, respectively, and vary
#agents. Each data point is the median of 50 problem instances.
4 By #rules, we mean the number of elements in SCG/SCGs in cases (ii) and (iii).

(i) MC-nets (ii) SCGs (iii) multi-issue domains

(a) #rules = #agents (b) #rules = 60

(c) #rules = 90 (d) #rules = 120

10-1

100

101

102

103

104

 60 90 120 150 180 210 240

ti
m

e
[m

s]

#agents

10-1

100

101

102

103

104

105

 20 40 60 80 100 120

ti
m

e
[m

s]

#agents

100

101

102

103

104

 90 120 150 180 210 240 270

ti
m

e
[m

s]

#agents

100

101

102

103

104

105

 120 150 180 210 240 270 300

ti
m

e
[m

s]

#agents

Fig. 2. Computation time for MC-nets, SCGs, SCGs in multi-issue domains

In Figure 2 (b), (c), (d), the CSG problem actually becomes easier when
#agents increases. Since #rules, i.e., the number of vertices in the graph, is
constant, the graph becomes more sparse by increasing #agents. As long as
#rules is the same, case (ii) solves much faster than (i) and (iii). Also, as long
as #rules is the same, case (i) and (iii) are about the same, except for the
instances where #agents is large (Figure 2 (b), (c), (d)). This is because case
(iii) has more constraints since it tends to have more “compatible on different
coalitions” hyper-edges. We have tried several different settings and confirmed
that the trends are basically similar.

The SCG representation has an advantage since the MIP formulation is
simple and the resulting problem instances can be solved quite efficiently. Fur-
thermore, we can leverage existing mature techniques for winner determination
problems, including constraint-based approaches such as (Hoos and Boutilier,
2000). When using the MC-net or multi-issue representation, the limiting factor

would be the number of edges (excluding “independent” edges) between rules,
since we need to use auxiliary variables for representing connectivity constraints.
However, in many cases, we can represent a characteristic function much more
concisely by using MC-nets or multi-issue domains than by using SCGs.

As discussed in (Sandholm, 2002), specialized algorithms are usually more
efficient than CPLEX for solving the winner determination problem. Thus, we
can expect that specialized algorithms would be more efficient that CPLEX for
solving the CSG problem. Here, we discuss several directions how specialized
algorithms can be constructed. Certainly, we can use a depth-first branch and
bound procedure. If we relax integer variables to continuous ones in the MIP
formalization, we can obtain an admissible estimation. Of course, CPLEX per-
forms a similar procedure, but we can use specialized graph-based heuristics for
selecting nodes/rules. Furthermore, it would be possible that we have an effi-
cient algorithm when a graph has some special structure (e.g., the graph is tree,
or the graph can be divided into independent subgraphs by removing a small
number of nodes). Also, if there exists no “incompatible” edge, then the problem
is equivalent to the multi-cut problem (Vazirani, 2001). There exists an efficient
approximation algorithm for the multi-cut problem (Vazirani, 2001). We can
construct an algorithm that interleaves the selection among incompatible rules
and the application of the approximate algorithm for the multi-cut problem.

Rahwan et al. (2007) reports that their IP algorithm can solve problem in-
stances with 27 agents in less than 90 minutes. Also, they report that an ex-
tension of the IP algorithm that utilizes DP for preprocessing (Rahwan and
Jennings, 2008a) can obtain four-fold speed-up compared to IP. We cannot di-
rectly compare our results with these results, since the formalizations of the
CSG are different. Here, we are not comparing the efficiency of particular algo-
rithms, but checking the scalability of different formalizations. Their algorithms
inevitably evaluate all possible (2n) coalitions. Thus, it is very unlikely that their
approaches can scale up to n = 100. On the other hand, the advantage of these
approaches is that they do not rely on particular representations.

7 Conclusion

We showed that coalition structure generation can scale up significantly when
the characteristic function is represented using recently developed compact rep-
resentation schemes: MC-nets, SCGs, and SCGs in multi-issue domains, even
though we use an off-the-shelf optimization package. For each case, we proved
that the problem is NP-hard and inapproximable and developed MIP formula-
tions. Experimental results illustrated that while the state-of-the-art algorithm,
which does not make use of compact representations, requires around 90 minutes
to solve a problem with 27 agents, our methods can solve a problem with 120
agents and 120 rules in less than 20 seconds. Future work includes developing
new algorithms (i) that can find an optimal solution more efficiently, (ii) that can
return a suboptimal solution in any time, and (iii) that can find an approximate
solution quickly, utilizing constraint optimization techniques.

Acknowledgments

The authors would like to thank Takayoshi Shoudai and Hirotaka Ono for their
helpful comments on the earlier version of this paper. This work is partially
supported by Japan Society for the Promotion of Science with Grant-in-Aid
for Scientific Research (A) 20240015 and 20240003. Conitzer is supported by
NSF award number IIS-0812113, a Research Fellowship from the Alfred P. Sloan
Foundation, and a Yahoo! Faculty Research Grant.

Bibliography

Y. Bachrach and J. S. Rosenschein. Coalitional skill games. In Proceedings of
the 7th international joint conference on Autonomous agents and multiagent
systems (AAMAS), pages 1023–1030, 2008.

V. Conitzer and T. Sandholm. Computing Shapley values, manipulating value
division schemes, and checking core membership in multi-issue domains. In
Proceedings of the 19th National Conference on Artificial Intelligence (AAAI),
pages 219–225, 2004.

V. Conitzer and T. Sandholm. Complexity of constructing solutions in the core
based on synergies among coalitions. Artificial Intelligence, 170(6):607–619,
2006.

V. D. Dang, R. K. Dash, A. Rogers, and N. R. Jennings. Overlapping coalition
formation for efficient data fusion in multi-sensor networks. In Proceedings of
the 21st National Conference on Artificial Intelligence (AAAI), pages 635–640,
2006.

H. H. Hoos and C. Boutilier. Solving combinatorial auctions using stochastic
local search. In Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI), pages 22–29, 2000.

J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:
105–142, 1999.

S. Ieong and Y. Shoham. Marginal contribution nets: a compact representation
scheme for coalitional games. In Proceedings of the 6th ACM Conference on
Electronic Commerce (ACM EC), pages 193–202, 2005.

T. Rahwan and N. R. Jennings. Coalition structure generation: dynamic pro-
gramming meets anytime optimisation. In Proceedings of the 23rd Conference
on Artificial Intelligence (AAAI), pages 156–161, 2008a.

T. Rahwan and N. R. Jennings. An improved dynamic programming algorithm
for coalition structure generation. In Proceedings of the 7th International joint
Conference on Autonomous Agents and Multi-agent Systems (AAMAS), pages
1417–1420, 2008b.

T. Rahwan, S. D. Ramchurn, V. D. Dang, A. Giovannucci, and N. R. Jennings.
Anytime optimal coalition structure generation. In Proceedings of the 22nd
Conference on Artificial Intelligence (AAAI), pages 1184–1190, 2007.

M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally manageable
combinatorial auctions. Management Science, 44(8):1131–1147, 1998.

T. Sandholm. Algorithm for optimal winner determination in combinatorial
auctions. Artificial Intelligence, 135(1-2):1–54, 2002.

T. Sandholm and V. R. Lesser. Coalitions among computationally bounded
agents. Artificial Intelligence, 94(1-2):99–137, 1997.

T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. Coalition
structure generation with worst case guarantees. Artificial Intelligence, 111
(1-2):209–238, 1999.

O. Shehory and S. Kraus. Methods for task allocation via agent coalition for-
mation. Artificial Intelligence, 101(1-2):165–200, 1998.

V. V. Vazirani. Approximation Algorithms. Springer, 2001.
M. Wooldridge and P. E. Dunne. On the computational complexity of qualitative

coalitional games. Artificial Intelligence, 158(1):27–73, 2004.
M. Wooldridge and P. E. Dunne. On the computational complexity of coalitional

resource games. Artificial Intelligence, 170(10):835–871, 2006.
D. Y. Yeh. A dynamic programming approach to the complete set partitioning

problem. BIT Numerical Mathematics, 26(4):467–474, 1986.
M. Yokoo, V. Conitzer, T. Sandholm, N. Ohta, and A. Iwasaki. Coalitional

games in open anonymous environments. In Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI), pages 509–515, 2005.

D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3:103–128, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

