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ABSTRACT
In multiagent systems, strategic settings are often analyzed
under the assumption that the players choose their strategies
simultaneously. However, this model is not always realistic.
In many settings, one player is able to commit to a strat-
egy before the other player makes a decision. Such models
are synonymously referred to as leadership, commitment, or
Stackelberg models, and optimal play in such models is often
significantly different from optimal play in the model where
strategies are selected simultaneously.

The recent surge in interest in computing game-theoretic
solutions has so far ignored leadership models (with the ex-
ception of the interest in mechanism design, where the de-
signer is implicitly in a leadership position). In this pa-
per, we study how to compute optimal strategies to commit
to under both commitment to pure strategies and commit-
ment to mixed strategies, in both normal-form and Bayesian
games. We give both positive results (efficient algorithms)
and negative results (NP-hardness results).
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1. INTRODUCTION
In multiagent systems with self-interested agents (includ-

ing most economic settings), the optimal action for one agent
to take depends on the actions that the other agents take.
To analyze how an agent should behave in such settings, the
tools of game theory need to be applied. Typically, when a
strategic setting is modeled in the framework of game the-
ory, it is assumed that players choose their strategies si-
multaneously. This is especially true when the setting is
modeled as a normal-form game, which only specifies each
agent’s utility as a function of the vector of strategies that
the agents choose, and does not provide any information on
the order in which agents make their decisions and what
the agents observe about earlier decisions by other agents.
Given that the game is modeled in normal form, it is typ-
ically analyzed using the concept of Nash equilibrium. A
Nash equilibrium specifies a strategy for each player, such
that no player has an incentive to individually deviate from
this profile of strategies. (Typically, the strategies are al-
lowed to be mixed, that is, probability distributions over the
original (pure) strategies.) A (mixed-strategy) Nash equi-
librium is guaranteed to exist in finite games [18], but one
problem is that there may be multiple Nash equilibria. This
leads to the equilibrium selection problem of how an agent
can know which strategy to play if it does not know which
equilibrium is to be played.

When the setting is modeled as an extensive-form game,
it is possible to specify that some players receive some in-
formation about actions taken by others earlier in the game
before deciding on their action. Nevertheless, in general,
the players do not know everything that happened earlier
in the game. Because of this, these games are typically still
analyzed using an equilibrium concept, where one specifies
a mixed strategy for each player, and requires that each
player’s strategy is a best response to the others’ strategies.
(Typically an additional constraint on the strategies is now
imposed to ensure that players do not play in a way that is
irrational with respect to the information that they have re-
ceived so far. This leads to refinements of Nash equilibrium
such as subgame perfect and sequential equilibrium.)

However, in many real-world settings, strategies are not
selected in such a simultaneous manner. Oftentimes, one
player (the leader) is able to commit to a strategy before
another player (the follower). This can be due to a vari-
ety of reasons. For example, one of the players may ar-
rive at the site at which the game is to be played before
another agent (e.g., in economic settings, one player may
enter a market earlier and commit to a way of doing busi-



ness). Such commitment power has a profound impact on
how the game should be played. For example, the leader
may be best off playing a strategy that is dominated in the
normal-form representation of the game. Perhaps the earli-
est and best-known example of the effect of commitment is
that by von Stackelberg [25], who showed that, in Cournot’s
duopoly model [5], if one firm is able to commit to a pro-
duction quantity first, that firm will do much better than in
the simultaneous-move (Nash) solution. In general, if com-
mitment to mixed strategies is possible, then (under minor
assumptions) it never hurts, and often helps, to commit to
a strategy [26]. Being forced to commit to a pure strategy
sometimes helps, and sometimes hurts (for example, com-
mitting to a pure strategy in rock-paper-scissors before the
other player’s decision will naturally result in a loss). In
this paper, we will assume commitment is always forced; if
it is not, the player who has the choice of whether to com-
mit can simply compare the commitment outcome to the
non-commitment (simultaneous-move) outcome.

Models of leadership are especially important in settings
with multiple self-interested software agents. Once the code
for an agent (or for a team of agents) is finalized and the
agent is deployed, the agent is committed to playing the
(possibly randomized) strategy that the code prescribes. Thus,
as long as one can credibly show that one cannot change the
code later, the code serves as a commitment device. This
holds true for recreational tournaments among agents (e.g.,
poker tournaments, RoboSoccer), and for industrial appli-
cations such as sensor webs.

Finally, there is also an implicit leadership situation in the
field of mechanism design, in which one player (the designer)
gets to choose the rules of the game that the remaining play-
ers then play. Mechanism design is an extremely important
topic to the EC community: the papers published on mech-
anism design in recent EC conferences are too numerous
to cite. Indeed, the mechanism designer may benefit from
committing to a choice that, if the (remaining) agents’ ac-
tions were fixed, would be suboptimal. For example, in a
(first-price) auction, the seller may wish to set a positive
(artificial) reserve price for the item, below which the item
will not be sold—even if the seller values the item at 0. In
hindsight (after the bids have come in), this (näıvely) ap-
pears suboptimal: if a bid exceeding the reserve price came
in, the reserve price had no effect, and if no such bid came
in, the seller would have been better off accepting a lower
bid. Of course, the reason for setting the reserve price is
that it incentivizes the bidders to bid higher, and because
of this, setting artificial reserve prices can actually increase
expected revenue to the seller.

A significant amount of research has recently been de-
voted to the computation of solutions according to various
solution concepts for settings in which the agents choose
their strategies simultaneously, such as dominance [7, 11, 3]
and (especially) Nash equilibrium [8, 21, 16, 15, 2, 22, 23,
4]. However, the computation of the optimal strategy to
commit to in a leadership situation has gone ignored. The-
oretically, leadership situations can simply be thought of as
an extensive-form game in which one player chooses a strat-
egy (for the original game) first. The number of strategies
in this extensive-form game, however, can be exceedingly
large. For example, if the leader is able to commit to a
mixed strategy in the original game, then every one of the
(continuum of) mixed strategies constitutes a pure strategy

in the extensive-form representation of the leadership situ-
ation. (We note that a commitment to a distribution is not
the same as a distribution over commitments.) Moreover,
if the original game is itself an extensive-form game, the
number of strategies in the extensive-form representation of
the leadership situation (which is a different extensive-form
game) becomes even larger. Because of this, it is usually
not computationally feasible to simply transform the origi-
nal game into the extensive-form representation of the lead-
ership situation; instead, we have to analyze the game in its
original representation.

In this paper, we study how to compute the optimal strat-
egy to commit to, both in normal-form games (Section 2)
and in Bayesian games, which are a special case of extensive-
form games (Section 3).

2. NORMAL-FORM GAMES
In this section, we study how to compute the optimal

strategy to commit to for games represented in normal form.

2.1 Definitions
In a normal-form game, every player i ∈ {1, . . . , n} has a

set of pure strategies (or actions) Si, and a utility function
ui : S1×S2×. . .×Sn → R that maps every outcome (a vector
consisting of a pure strategy for every player, also known
as a profile of pure strategies) to a real number. To ease
notation, in the case of two players, we will refer to player
1’s pure strategy set as S, and player 2’s pure strategy set
as T . Such games can be represented in (bi-)matrix form,
in which the rows correspond to player 1’s pure strategies,
the columns correspond to player 2’s pure strategies, and
the entries of the matrix give the row and column player’s
utilities (in that order) for the corresponding outcome of the
game. In the case of three players, we will use R, S, and T ,
for player 1, 2, and 3’s pure strategies, respectively. A mixed
strategy for a player is a probability distribution over that
player’s pure strategies. In the case of two-player games,
we will refer to player 1 as the leader and player 2 as the
follower.

Before defining optimal leadership strategies, consider the
following game which illustrates the effect of the leader’s
ability to commit.

2, 1 4, 0
1, 0 3, 1

In this normal-form representation, the bottom strategy
for the row player is strictly dominated by the top strategy.
Nevertheless, if the row player has the ability to commit to
a pure strategy before the column player chooses his strat-
egy, the row player should commit to the bottom strategy:
doing so will make the column player prefer to play the
right strategy, leading to a utility of 3 for the row player.
By contrast, if the row player were to commit to the top
strategy, the column player would prefer to play the left
strategy, leading to a utility of only 2 for the row player. If
the row player is able to commit to a mixed strategy, then
she can get an even greater (expected) utility: if the row
player commits to placing probability p > 1/2 on the bot-
tom strategy, then the column player will still prefer to play
the right strategy, and the row player’s expected utility will
be 3p + 4(1 − p) = 4 − p ≥ 3. If the row player plays each
strategy with probability exactly 1/2, the column player is



indifferent between the strategies. In such cases, we will as-
sume that the column player will choose the strategy that
maximizes the row player’s utility (in this case, the right
strategy). Hence, the optimal mixed strategy to commit to
for the row player is p = 1/2. There are a few good rea-
sons for this assumption. If we were to assume the opposite,
then there would not exist an optimal strategy for the row
player in the example game: the row player would play the
bottom strategy with probability p = 1/2 + ε with ε > 0,
and the smaller ε, the better the utility for the row player.
By contrast, if we assume that the follower always breaks
ties in the leader’s favor, then an optimal mixed strategy
for the leader always exists, and this corresponds to a sub-
game perfect equilibrium of the extensive-form representa-
tion of the leadership situation. In any case, this is a stan-
dard assumption for such models (e.g. [20]), although some
work has investigated what can happen in the other sub-
game perfect equilibria [26]. (For generic two-player games,
the leader’s subgame-perfect equilibrium payoff is unique.)
Also, the same assumption is typically used in mechanism
design, in that it is assumed that if an agent is indifferent be-
tween revealing his preferences truthfully and revealing them
falsely, he will report them truthfully. Given this assump-
tion, we can safely refer to “optimal leadership strategies”
rather than having to use some equilibrium notion.

Hence, for the purposes of this paper, an optimal strategy
to commit to in a 2-player game is a strategy s ∈ S′ that
maximizes maxt∈BR(s) ul(s, t), where BR(s) =
arg maxt∈T uf (s, t). (ul and uf are the leader and follower’s
utility functions, respectively.) We can have S′ = S for the
case of commitment to pure strategies, or S′ = ∆(S), the
set of probability distributions over S, for the case of com-
mitment to mixed strategies. (We note that replacing T
by ∆(T ) makes no difference in this definition.) For games
with more than two players, in which the players commit
to their strategies in sequence, we define optimal strategies
to commit to recursively. After the leader commits to a
strategy, the game to be played by the remaining agents is
itself a (smaller) leadership game. Thus, we define an op-
timal strategy to commit to as a strategy that maximizes
the leader’s utility, assuming that the play of the remaining
agents is itself optimal under this definition, and maximizes
the leader’s utility among all optimal ways to play the re-
maining game. Again, commitment to mixed strategies may
or may not be a possibility for every player (although for the
last player it does not matter if we allow for commitment to
mixed strategies).

2.2 Commitment to pure strategies
We first study how to compute the optimal pure strategy

to commit to. This is relatively simple, because the number
of strategies to commit to is not very large. (In the following,
#outcomes is the number of complete strategy profiles.)

Theorem 1. Under commitment to pure strategies, the
set of all optimal strategy profiles in a normal-form game
can be found in O(#players · #outcomes) time.

Proof. Each pure strategy that the first player may com-
mit to will induce a subgame for the remaining players. We
can solve each such subgame recursively to find all of its
optimal strategy profiles; each of these will give the origi-
nal leader some utility. Those that give the leader maximal
utility correspond exactly to the optimal strategy profiles of
the original game.

We now present the algorithm formally. Let Su(G, s1) be
the subgame that results after the first (remaining) player
in G plays s1 ∈ SG

1 . A game with 0 players is simply an
outcome of the game. The function Append(s, O) appends
the strategy s to each of the vectors of strategies in the set
O. Let e be the empty vector with no elements. In a slight
abuse of notation, we will write uG

1 (C) when all strategy
profiles in the set C give player 1 the same utility in the
game G. (Here, player 1 is the first remaining player in the
subgame G, not necessarily player 1 in the original game.)
We note that arg max is set-valued. Then, the following
algorithm computes all optimal strategy profiles:

Algorithm Solve(G)

if G has 0 players
return {e}

C ← ∅
for all s1 ∈ SG

1 {
O ← Solve(Su(G, s1))
O′ ← arg maxo∈O uG

1 (s1, o)
if C = ∅ or uG

1 (s1, O
′) = uG

1 (C)
C ← C∪Append(s1, O

′)
if uG

1 (s1, O
′) > uG

1 (C)
C ←Append(s1, O

′)
}
return C

Every outcome is (potentially) examined by every player,
which leads to the given runtime bound.

As an example of how the algorithm works, consider the
following 3-player game, in which the first player chooses
the left or right matrix, the second player chooses a row,
and the third player chooses a column.

0,1,1 1,1,0 1,0,1
2,1,1 3,0,1 1,1,1
0,0,1 0,0,0 3,3,0

3,3,0 0,2,0 3,0,1
4,4,2 0,0,2 0,0,0
0,5,1 0,0,0 3,0,0

First we eliminate the outcomes that do not correspond
to best responses for the third player (removing them from
the matrix):

0,1,1 1,0,1
2,1,1 3,0,1 1,1,1
0,0,1

3,0,1
4,4,2 0,0,2
0,5,1

Next, we remove the entries in which the third player
does not break ties in favor of the second player, as well
as entries that do not correspond to best responses for the
second player.

0,1,1
2,1,1 1,1,1

0,5,1

Finally, we remove the entries in which the second and
third players do not break ties in favor of the first player, as
well as entries that do not correspond to best responses for
the first player.

2,1,1



Hence, in optimal play, the first player chooses the left
matrix, the second player chooses the middle row, and the
third player chooses the left column. (We note that this
outcome is Pareto-dominated by (Right, Middle, Left).)

For general normal-form games, each player’s utility for
each of the outcomes has to be explicitly represented in the
input, so that the input size is itself Ω(#players ·#outcomes).
Therefore, the algorithm is in fact a linear-time algorithm.

2.3 Commitment to mixed strategies
In the special case of two-player zero-sum games, comput-

ing an optimal mixed strategy for the leader to commit to
is equivalent to computing a minimax strategy, which mini-
mizes the maximum expected utility that the opponent can
obtain. Minimax strategies constitute the only natural solu-
tion concept for two-player zero-sum games: von Neumann’s
Minimax Theorem [24] states that in two-player zero-sum
games, it does not matter (in terms of the players’ utilities)
which player gets to commit to a mixed strategy first, and a
profile of mixed strategies is a Nash equilibrium if and only
if both strategies are minimax strategies. It is well-known
that a minimax strategy can be found in polynomial time,
using linear programming [17]. Our first result in this sec-
tion generalizes this result, showing that an optimal mixed
strategy for the leader to commit to can be efficiently com-
puted in general-sum two-player games, again using linear
programming.

Theorem 2. In 2-player normal-form games, an optimal
mixed strategy to commit to can be found in polynomial time
using linear programming.

Proof. For every pure follower strategy t, we compute a
mixed strategy for the leader such that 1) playing t is a best
response for the follower, and 2) under this constraint, the
mixed strategy maximizes the leader’s utility. Such a mixed
strategy can be computed using the following simple linear
program:

maximize
∑

s∈S

psul(s, t)

subject to
for all t′ ∈ T ,

∑

s∈S

psuf (s, t) ≥ ∑

s∈S

psuf (s, t′)
∑

s∈S

ps = 1

We note that this program may be infeasible for some
follower strategies t, for example, if t is a strictly domi-
nated strategy. Nevertheless, the program must be feasible
for at least some follower strategies; among these follower
strategies, choose a strategy t∗ that maximizes the linear
program’s solution value. Then, if the leader chooses as her
mixed strategy the optimal settings of the variables ps for
the linear program for t∗, and the follower plays t∗, this
constitutes an optimal strategy profile.

In the following result, we show that we cannot expect to
solve the problem more efficiently than linear programming,
because we can reduce any linear program with a probability
constraint on its variables to a problem of computing the
optimal mixed strategy to commit to in a 2-player normal-
form game.

Theorem 3. Any linear program whose variables xi (with
xi ∈ R

≥0) must satsify
∑

i

xi = 1 can be modeled as a prob-

lem of computing the optimal mixed strategy to commit to in
a 2-player normal-form game.

Proof. Let the leader have a pure strategy i for every
variable xi. Let the column player have one pure strat-
egy j for every constraint in the linear program (other than∑

i

xi = 1), and a single additional pure strategy 0. Let the

utility functions be as follows. Writing the objective of the
linear program as maximize

∑

i

cixi, for any i, let ul(i, 0) =

ci and uf (i, 0) = 0. Writing the jth constraint of the linear
program (not including

∑

i

xi = 1) as
∑

i

aijxi ≤ bj , for any

i, j > 0, let ul(i, j) = mini′ ci′ − 1 and uf (i, j) = aij − bj .
For example, consider the following linear program.

maximize 2x1 + x2

subject to
x1 + x2 = 1
5x1 + 2x2 ≤ 3
7x1 − 2x2 ≤ 2

The optimal solution to this program is x1 = 1/3, x2 =
2/3. Our reduction transforms this program into the fol-
lowing leader-follower game (where the leader is the row
player).

2, 0 0, 2 0, 5
1, 0 0, -1 0, -4

Indeed, the optimal strategy for the leader is to play the
top strategy with probability 1/3 and the bottom strategy
with probability 2/3. We now show that the reduction works
in general.

Clearly, the leader wants to incentivize the follower to play
0, because the utility that the leader gets when the follower
plays 0 is always greater than when the follower does not
play 0. In order for the follower not to prefer playing j > 0
rather than 0, it must be the case that

∑

i

pl(i)(aij − bj) ≤
0, or equivalently

∑

i

pl(i)aij ≤ bj . Hence the leader will

get a utility of at least mini′ ci′ if and only if there is a
feasible solution to the constraints. Given that the pl(i)
incentivize the follower to play 0, the leader attempts to
maximize

∑

i

pl(i)ci. Thus the leader must solve the original

linear program.

As an alternative proof of Theorem 3, one may observe
that it is known that finding a minimax strategy in a zero-
sum game is as hard as the linear programming problem [6],
and as we pointed out at the beginning of this section, com-
puting a minimax strategy in a zero-sum game is a special
case of the problem of computing an optimal mixed strategy
to commit to.

This polynomial-time solvability of the problem of com-
puting an optimal mixed strategy to commit to in two-player
normal-form games contrasts with the unknown complexity
of computing a Nash equilibrium in such games [21], as well
as with the NP-hardness of finding a Nash equilibrium with
maximum utility for a given player in such games [8, 2].

Unfortunately, this result does not generalize to more than
two players—here, the problem becomes NP-hard. To show
this, we reduce from the VERTEX-COVER problem.

Definition 1. In VERTEX-COVER, we are given a graph
G = (V, E) and an integer K. We are asked whether there



exists a subset of the vertices S ⊆ V , with |S| = K, such
that every edge e ∈ E has at least one of its endpoints in S.
BALANCED-VERTEX-COVER is the special case of
VERTEX-COVER in which K = |V |/2.

VERTEX-COVER is NP-complete [9]. The following
lemma shows that the hardness remains if we require K =
|V |/2. (Similar results have been shown for other NP-complete
problems.)

Lemma 1. BALANCED-VERTEX-COVER is
NP-complete.

Proof. Membership in NP follows from the fact that
the problem is a special case of VERTEX-COVER, which
is in NP. To show NP-hardness, we reduce an arbitrary
VERTEX-COVER instance to a BALANCED-VERTEX-
COVER instance, as follows. If, for the VERTEX-COVER
instance, K > |V |/2, then we simply add isolated vertices
that are disjoint from the rest of the graph, until K = |V |/2.
If K < |V |/2, we add isolated triangles (that is, the com-
plete graph on three vertices) to the graph, increasing K by
2 every time, until K = |V |/2.

Theorem 4. In 3-player normal-form games, finding an
optimal mixed strategy to commit to is NP-hard.

Proof. We reduce an arbitrary BALANCED-VERTEX-
COVER instance to the following 3-player normal-form game.
For every vertex v, each of the three players has a pure strat-
egy corresponding to that vertex (rv, sv, tv, respectively). In
addition, for every edge e, the third player has a pure strat-
egy te; and finally, the third player has one additional pure
strategy t0. The utilities are as follows:

• for all r ∈ R, s ∈ S, u1(r, s, t0) = u2(r, s, t0) = 1;

• for all r ∈ R, s ∈ S, t ∈ T−{t0}, u1(r, s, t) = u2(r, s, t) =
0;

• for all v ∈ V, s ∈ S, u3(rv, s, tv) = 0;

• for all v ∈ V, r ∈ R, u3(r, sv, tv) = 0;

• for all v ∈ V , for all r ∈ R − {rv}, s ∈ S − {sv},
u3(r, s, tv) = |V |

|V |−2
;

• for all e ∈ E, s ∈ S, for both v ∈ e, u3(rv, s, te) = 0;

• for all e ∈ E, s ∈ S, for all v /∈ e, u3(rv, s, te) = |V |
|V |−2

.

• for all r ∈ R, s ∈ S, u3(r, s, t0) = 1.

We note that players 1 and 2 have the same utility function.
We claim that there is an optimal strategy profile in which
players 1 and 2 both obtain 1 (their maximum utility) if
and only if there is a solution to the BALANCED-VERTEX-
COVER problem. (Otherwise, these players will both obtain
0.)

First, suppose there exists a solution to the BALANCED-
VERTEX-COVER problem. Then, let player 1 play every
rv such that v is in the cover with probability 2

|V | , and let

player 2 play every sv such that v is not in the cover with
probability 2

|V | . Then, for player 3, the expected utility

of playing tv (for any v) is (1 − 2
|V | )

|V |
|V |−2

= 1, because

there is a chance of 2
|V | that rv or sv is played. Addition-

ally, the expected utility of playing te (for any e) is at most

(1 − 2
|V | )

|V |
|V |−2

= 1, because there is a chance of at least
2
|V | that some rv with v ∈ e is played (because player 1 is

randomizing over the pure strategies corresponding to the
cover). It follows that playing t0 is a best response for player
3, giving players 1 and 2 a utility of 1.

Now, suppose that players 1 and 2 obtain 1 in optimal
play. Then, it must be the case that player 3 plays t0. Hence,
for every v ∈ V , there must be a probability of at least 2

|V |
that either rv or sv is played, for otherwise player 3 would
be better off playing tv. Because players 1 and 2 have only
a total probability of 2 to distribute, it must be the case
that for each v, either rv or sv is played with probability
2
|V | , and the other is played with probability 0. (It is not

possible for both to have nonzero probability, because then
there would be some probability that both are played si-
multaneously (correlation is not possible), hence the total
probability of at least one being played could not be high
enough for all vertices.) Thus, for exactly half the v ∈ V ,
player 1 places probability 2

|V | on rv. Moreover, for every

e ∈ E, there must be a probability of at least 2
|V | that some

rv with v ∈ e is played, for otherwise player 3 would be bet-
ter off playing te. Thus, the v ∈ V such that player 1 places
probability 2

|V | on rv constitute a balanced vertex cover.

3. BAYESIAN GAMES
So far, we have restricted our attention to normal-form

games. In a normal-form game, it is assumed that every
agent knows every other agent’s preferences over the out-
comes of the game. In general, however, agents may have
some private information about their preferences that is not
known to the other agents. Moreover, at the time of com-
mitment to a strategy, the agents may not even know their
own (final) preferences over the outcomes of the game yet,
because these preferences may be dependent on a context
that has yet to materialize. For example, when the code for
a trading agent is written, it may not yet be clear how that
agent will value resources that it will negotiate over later,
because this depends on information that is not yet avail-
able at the time at which the code is written (such as orders
that will have been placed to the agent before the negotia-
tion). In this section, we will study commitment in Bayesian
games, which can model such uncertainty over preferences.

3.1 Definitions
In a Bayesian game, every player i has a set of actions Si,

a set of types Θi with an associated probability distribution
πi : Θi → [0, 1], and, for each type θi, a utility function

uθi
i : S1 × S2 × . . .× Sn → R. A pure strategy in a Bayesian

game is a mapping from the player’s types to actions, σi :
Θi → Si. (Bayesian games can be rewritten in normal form
by enumerating every pure strategy σi, but this will cause
an exponential blowup in the size of the representation of
the game and therefore cannot lead to efficient algorithms.)

The strategy that the leader should commit to depends
on whether, at the time of commitment, the leader knows
her own type. If the leader does know her own type, the
other types that the leader might have had become irrele-
vant and the leader should simply commit to the strategy
that is optimal for the type. However, as argued above, the
leader does not necessarily know her own type at the time of
commitment (e.g., the time at which the code is submitted).
In this case, the leader must commit to a strategy that is



dependent upon the leader’s eventual type. We will study
this latter model, although we will pay specific attention to
the case where the leader has only a single type, which is
effectively the same as the former model.

3.2 Commitment to pure strategies
It turns out that computing an optimal pure strategy to

commit to is hard in Bayesian games, even with two players.

Theorem 5. Finding an optimal pure strategy to commit
to in 2-player Bayesian games is NP-hard, even when the
follower has only a single type.

Proof. We reduce an arbitrary VERTEX-COVER in-
stance to the following Bayesian game between the leader
and the follower. The leader has K types θ1, θ2, . . . , θK ,
each occurring with probability 1/K, and for every vertex
v ∈ V , the leader has an action sv. The follower has only a
single type; for each edge e ∈ E, the follower has an action
te, and the follower has a single additional action t0. The
utility function for the leader is given by, for all θl ∈ Θl and
all s ∈ S, u

θl
l (s, t0) = 1, and for all e ∈ E, u

θl
l (s, te) = 0.

The follower’s utility is given by:

• For all v ∈ V , for all e ∈ E with v /∈ e, uf (sv, te) = 1;

• For all v ∈ V , for all e ∈ E with v ∈ e, uf (sv, te) =
−K;

• For all v ∈ V , uf (sv, t0) = 0.

We claim that the leader can get a utility of 1 if and only if
there is a solution to the VERTEX-COVER instance.

First, suppose that there is a solution to the VERTEX-
COVER instance. Then, the leader can commit to a pure
strategy such that for each vertex v in the cover, the leader
plays sv for some type. Then, the follower’s utility for play-
ing te (for any e ∈ E) is at most K−1

K
+ 1

K
(−K) = − 1

K
,

so that the follower will prefer to play t0, which gives the
leader a utility of 1, as required.

Now, suppose that there is a pure strategy for the leader
that will give the leader a utility of 1. Then, the follower
must play t0. In order for the follower not to prefer playing te

(for any e ∈ E) instead, for at least one v ∈ e the leader must
play sv for some type θl. Hence, the set of vertices v that the
leader plays for some type must constitute a vertex cover;
and this set can have size at most K, because the leader
has only K types. So there is a solution to the VERTEX-
COVER instance.

However, if the leader has only a single type, then the
problem becomes easy again (#types is the number of types
for the follower):

Theorem 6. In 2-player Bayesian games in which the
leader has only a single type, an optimal pure strategy to
commit to can be found in O(#outcomes · #types) time.

Proof. For every leader action s, we can compute, for
every follower type θf ∈ Θf , which actions t maximize the
follower’s utility; call this set of actions BRθf (s). Then, the
utility that the leader receives for committing to action s
can be computed as

∑

θf∈Θf

π(θf )maxt∈BRθf
(s) ul(s, t), and

the leader can choose the best action to commit to.

3.3 Commitment to mixed strategies
In two-player zero-sum imperfect information games with

perfect recall (no player ever forgets something that it once
knew), a minimax strategy can be constructed in polynomial
time [12, 13]. Unfortunately, this result does not extend to
computing optimal mixed strategies to commit to in the
general-sum case—not even in Bayesian games. We will ex-
hibit NP-hardness by reducing from the INDEPENDENT-
SET problem.

Definition 2. In INDEPENDENT-SET, we are given a
graph G = (V, E) and an integer K. We are asked whether
there exists a subset of the vertices S ⊆ V , with |S| = K,
such that no edge e ∈ E has both of its endpoints in S.

Again, this problem is NP-complete [9].

Theorem 7. Finding an optimal mixed strategy to com-
mit to in 2-player Bayesian games is NP-hard, even when
the leader has only a single type and the follower has only
two actions.

Proof. We reduce an arbitrary INDEPENDENT-SET
instance to the following Bayesian game between the leader
and the follower. The leader has only a single type, and for
every vertex v ∈ V , the leader has an action sv. The follower
has a type θv for every v ∈ V , occurring with probability

1
(|E|+1)|V | , and a type θe for every e ∈ E, occurring with

probability 1
|E|+1

. The follower has two actions: t0 and t1.

The leader’s utility is given by, for all s ∈ S, ul(s, t0) = 1
and ul(s, t1) = 0. The follower’s utility is given by:

• For all v ∈ V , uθv
f (sv, t1) = 0;

• For all v ∈ V and s ∈ S − {sv}, uθv
f (s, t1) = K

K−1
;

• For all v ∈ V and s ∈ S, uθv
f (s, t0) = 1;

• For all e ∈ E, s ∈ S, uθe
f (s, t0) = 1;

• For all e ∈ E, for both v ∈ e, uθe
f (sv, t1) = 2K

3
;

• For all e ∈ E, for all v /∈ e, uθe
f (sv, t1) = 0.

We claim that an optimal strategy to commit to gives the

leader an expected utility of at least |E|
|E|+1

+ K
(|E|+1)|V | if

and only if there is a solution to the INDEPENDENT-SET
instance.

First, suppose that there is a solution to the
INDEPENDENT-SET instance. Then, the leader could com-
mit to the following strategy: for every vertex v in the in-
dependent set, play the corresponding sv with probability
1/K. If the follower has type θe for some e ∈ E, the expected
utility for the follower of playing t1 is at most 1

K
2K
3

= 2/3,
because there is at most one vertex v ∈ e such that sv is
played with nonzero probability. Hence, the follower will
play t0 and obtain a utility of 1. If the follower has type
θv for some vertex v in the independent set, the expected
utility for the follower of playing t1 is K−1

K
K

K−1
= 1, because

the leader plays sv with probability 1/K. It follows that the
follower (who breaks ties to maximize the leader’s utility)
will play t0, which also gives a utility of 1 and gives the
leader a higher utility. Hence the leader’s expected utility

for this strategy is at least |E|
|E|+1

+ K
(|E|+1)|V | , as required.



Now, suppose that there is a strategy that gives the leader

an expected utility of at least |E|
|E|+1

+ K
(|E|+1)|V | . Then, this

strategy must induce the follower to play t0 whenever it
has a type of the form θe (because otherwise, the utility

could be at most |E|−1
|E|+1

+ |V |
(|E|+1)|V | = |E|

|E|+1
< |E|

|E|+1
+

K
(|E|+1)|V | ). Thus, it cannot be the case that for some edge

e = (v1, v2) ∈ E, the probability that the leader plays one of
sv1 and sv2 is at least 2/K, because then the expected utility
for the follower of playing t1 when it has type θe would be at
least 2

K
2K
3

= 4/3 > 1. Moreover, the strategy must induce
the follower to play t0 for at least K types of the form θv.
Inducing the follower to play t0 when it has type θv can
be done only by playing sv with probability at least 1/K,
which will give the follower a utility of at most K−1

K
K

K−1
= 1

for playing t1. But then, the set of vertices v such that sv

is played with probability at least 1/K must constitute an
independent set of size K (because if there were an edge e
between two such vertices, it would induce the follower to
play t1 for type θe by the above).

By contrast, if the follower has only a single type, then we
can generalize the linear programming approach for normal-
form games:

Theorem 8. In 2-player Bayesian games in which the
follower has only a single type, an optimal mixed strategy
to commit to can be found in polynomial time using linear
programming.

Proof. We generalize the approach in Theorem 2 as fol-
lows. For every pure follower strategy t, we compute a mixed
strategy for the leader for every one of the leader’s types
such that 1) playing t is a best response for the follower,
and 2) under this constraint, the mixed strategy maximizes
the leader’s ex ante expected utility. To do so, we generalize
the linear program as follows:

maximize
∑

θl∈Θl

π(θl)
∑

s∈S

pθl
s uθl

l (s, t)

subject to
for all t′ ∈ T ,

∑

θl∈Θl

π(θl)
∑

s∈S

p
θl
s uf (s, t) ≥

∑

θl∈Θl

π(θl)
∑

s∈S

p
θl
s uf (s, t′)

for all θl ∈ Θl,
∑

s∈S

p
θl
s = 1

As in Theorem 2, the solution for the linear program that
maximizes the solution value is an optimal strategy to com-
mit to.

This shows an interesting contrast between commitment
to pure strategies and commitment to mixed strategies in
Bayesian games: for pure strategies, the problem becomes
easy if the leader has only a single type (but not if the fol-
lower has only a single type), whereas for mixed strategies,
the problem becomes easy if the follower has only a single
type (but not if the leader has only a single type).

4. CONCLUSIONS AND FUTURE
RESEARCH

In multiagent systems, strategic settings are often ana-
lyzed under the assumption that the players choose their
strategies simultaneously. This requires some equilibrium

notion (Nash equilibrium and its refinements), and often
leads to the equilibrium selection problem: it is unclear to
each individual player according to which equilibrium she
should play. However, this model is not always realistic. In
many settings, one player is able to commit to a strategy
before the other player makes a decision. For example, one
agent may arrive at the (real or virtual) site of the game
before the other, or, in the specific case of software agents,
the code for one agent may be completed and committed be-
fore that of another agent. Such models are synonymously
referred to as leadership, commitment, or Stackelberg mod-
els, and optimal play in such models is often significantly
different from optimal play in the model where strategies
are selected simultaneously. Specifically, if commitment to
mixed strategies is possible, then (optimal) commitment
never hurts the leader, and often helps.

The recent surge in interest in computing game-theoretic
solutions has so far ignored leadership models (with the ex-
ception of the interest in mechanism design, where the de-
signer is implicitly in a leadership position). In this paper,
we studied how to compute optimal strategies to commit
to under both commitment to pure strategies and commit-
ment to mixed strategies, in both normal-form and Bayesian
games. For normal-form games, we showed that the optimal
pure strategy to commit to can be found efficiently for any
number of players. An optimal mixed strategy to commit
to in a normal-form game can be found efficiently for two
players using linear programming (and no more efficiently
than that, in the sense that any linear program with a prob-
ability constraint can be encoded as such a problem). (This
is a generalization of the polynomial-time computability of
minimax strategies in normal-form games.) The problem
becomes NP-hard for three (or more) players. In Bayesian
games, the problem of finding an optimal pure strategy to
commit to is NP-hard even in two-player games in which the
follower has only a single type, although two-player games
in which the leader has only a single type can be solved
efficiently. The problem of finding an optimal mixed strat-
egy to commit to in a Bayesian game is NP-hard even in
two-player games in which the leader has only a single type,
although two-player games in which the follower has only a
single type can be solved efficiently using a generalization
of the linear progamming approach for normal-form games.
The following two tables summarize these results.

2 players ≥ 3 players
normal-form O(#outcomes) O(#outcomes·

#players)
Bayesian, O(#outcomes· NP-hard
1-type leader #types)
Bayesian, NP-hard NP-hard
1-type follower
Bayesian (general) NP-hard NP-hard

Results for commitment to pure strategies. (With more
than 2 players, the “follower” is the last player to commit,

the “leader” is the first.)



2 players ≥ 3 players
normal-form one LP-solve per NP-hard

follower action
Bayesian, NP-hard NP-hard
1-type leader
Bayesian, one LP-solve per NP-hard
1-type follower follower action
Bayesian (general) NP-hard NP-hard

Results for commitment to mixed strategies. (With more
than 2 players, the “follower” is the last player to commit,

the “leader” is the first.)

Future research can take a number of directions. First,
we can empirically evaluate the techniques presented here on
test suites such as GAMUT [19]. We can also study the com-
putation of optimal strategies to commit to in other1 con-
cise representations of normal-form games—for example, in
graphical games [10] or local-effect/action graph games [14,
1]. For the cases where computing an optimal strategy to
commit to is NP-hard, we can also study the computation
of approximately optimal strategies to commit to. While the
correct definition of an approximately optimal strategy is in
this setting may appear simple at first—it should be a strat-
egy that, if the following players play optimally, performs
almost as well as the optimal strategy in expectation—this
definition becomes problematic when we consider that the
other players may also be playing only approximately opti-
mally. One may also study models in which multiple (but
not all) players commit at the same time.

Another interesting direction to pursue is to see if com-
puting optimal mixed strategies to commit to can help us
in, or otherwise shed light on, computing Nash equilibria.
Often, optimal mixed strategies to commit to are also Nash
equilibrium strategies (for example, in two-player zero-sum
games this is always true), although this is not always the
case (for example, as we already pointed out, sometimes the
optimal strategy to commit to is a strictly dominated strat-
egy, which can never be a Nash equilibrium strategy).

5. REFERENCES
[1] N. A. R. Bhat and K. Leyton-Brown. Computing

Nash equilibria of action-graph games. In Proceedings
of the 20th Annual Conference on Uncertainty in
Artificial Intelligence (UAI), Banff, Canada, 2004.

[2] V. Conitzer and T. Sandholm. Complexity results
about Nash equilibria. In Proceedings of the
Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI), pages 765–771,
Acapulco, Mexico, 2003.

[3] V. Conitzer and T. Sandholm. Complexity of
(iterated) dominance. In Proceedings of the ACM
Conference on Electronic Commerce (ACM-EC),
pages 88–97, Vancouver, Canada, 2005.

[4] V. Conitzer and T. Sandholm. A generalized strategy
eliminability criterion and computational methods for
applying it. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pages 483–488,
Pittsburgh, PA, USA, 2005.

[5] A. A. Cournot. Recherches sur les principes
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