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Abstract

Coalition formation is an important capability of auto-
mated negotiation among self-interested agents. In or-
der for coalitions to be stable, a key question that must
be answered is how the gains from cooperation are to
be distributed. Recent research has revealed that tra-
ditional solution concepts, such as the Shapley value,
core, least core, and nucleolus, are vulnerable to various
manipulations in open anonymous environments such
as the Internet. These manipulations include submit-
ting false names, collusion, and hiding some skills. To
address this, a solution concept called the anonymity-
proof core, which is robust against such manipulations,
was developed. However, the representation size of the
outcome function in the anonymity-proof core (and sim-
ilar concepts) requires space exponential in the number
of agents/skills.
This paper proposes a compact representation of the
outcome function, given that the characteristic function
is represented using a recently introduced compact lan-
guage that explicitly specifies only coalitions that in-
troduce synergy. This compact representation scheme
can successfully express the outcome function in the
anonymity-proof core. Furthermore, this paper devel-
ops a new solution concept, the anonymity-proof nu-
cleolus, that is also expressible in this compact repre-
sentation. We show that the anonymity-proof nucleolus
always exists, is unique, and is in the anonymity-proof
core (if the latter is nonempty), and assigns the same
value to symmetric skills.

Introduction
Coalition formation is an important capability in automated
negotiation among self-interested agents. In order for coali-
tions to be stable, a key question that must be answered
is how the gains from cooperation are to be distributed.
Coalitional game theory provides a number of solution con-
cepts for this, such as the Shapley value, the core, the least
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core, and the nucleolus. Some of these solution concepts
have already been adopted in the multi-agent systems litera-
ture (Zlotkin & Rosenschein 1994; Shehory & Kraus 1998;
Conitzer & Sandholm 2003; 2004).

Besides being of interest to the game-theory and multi-
agent systems research communities, the Internet and e-
commerce growth have expanded the application areas of
coalitional game theory. For example, consider a large num-
ber of companies, some subsets of which could form prof-
itable virtual organizations that can respond to larger or
more diverse orders than an individual company can. Due
to Internet advance, forming such virtual organizations be-
comes much easier, but the companies must agree on how to
divide the profits among themselves.

However, Yokooet al. (2005) have pointed out that exist-
ing solution concepts have limitations when applied to open
anonymous environments such as the Internet. In such en-
vironments, an agent can use multiple identifiers (orfalse
names), to pretend to be multiple agents. Also, multiple
agents can collude and pretend to be a single agent. Fur-
thermore, an agent might try to hide some of its skills.
These manipulations are virtually impossible to detect in
open anonymous environments, and have thus become an
issue in such environments specifically.

Yokoo et al. (2005) have developed a new solution con-
cept called theanonymity-proof core, which is robust against
these manipulations. However, the anonymity-proof core
has one serious limitations, i.e., the representation size of the
outcome function requires space exponential in the number
of agents/skills.

This paper proposes a compact representation scheme us-
ing a synergy coalition group (SCG), which only specifies
which coalitions introduce new synergy (Conitzer & Sand-
holm 2003). This compact representation scheme can ex-
press the outcome functions of the anonymity-proof core.
The size of the representation depends on how much syn-
ergy each coalition introduces.

Some prior research has studied compact representation
schemes in coalitional games. Deng & Papadimitriou (1994)
studied games where the players are nodes of a graph with
weights on the edges, and the value of a coalition is deter-
mined by the total weight of the edges contained in it. Faigle
et al. (1997) studied the complexity of testing membership
in the core in minimum cost spanning tree games. How-



ever, their results depend heavily on compact game repre-
sentations specific to the game families under study. In con-
trast, we study a natural representation that can capture any
characteristic function game, similar to (Conitzer & Sand-
holm 2003; Ieong & Shoham 2005). However, they do not
address the various manipulations that are an issue in open
anonymous environments.

Model
Traditionally, value division in coalition formation is stud-
ied in characteristic function games, where each potential
coalition (that is, each subsetX of the agents) has value
w(X) that it can obtain. This assumes that utility is transfer-
able (for example, utility can be transferred using side pay-
ments) and that a coalition’s value is independent of what
non-members of the coalition do.

The characteristic function by itself does not give suf-
ficient information to assess what manipulations may be
performed by agents in an open anonymous environment.
Yokoo et al. (2005) introduced a more fine-grained repre-
sentation of what each agent brings to the table. Instead of
defining the characteristic function over agents, we define it
over theskills that the agents possess.1

Definition 1 (skills and agents) LetT be the set of all pos-
sible skills. Each agentt has a subset of skillsSt ⊂ T . We
assume that the skills are unique:∀t 6= u, St ∩ Su = ∅.2
Definition 2 (characteristic function defined over skills)
A characteristic functionv : 2T → < assigns a value to
each set of skills.

We denote byw the characteristic function defined over
agents and byv the characteristic function defined over
skills. For a given set of agentsX, let SX =

⋃
t∈X St.

Thus,w(X) = v(SX). Typically, bothv andw are weakly
increasing: adding more skills or agents to a coalition never
causes harm. We also assume zero-normalized games in the
characteristic function, i.e., the value of a single skill is zero.
The length of the (näıve) representation of a characteristic
function is exponential in the number of skills. We will de-
scribe how to represent it compactly later.

We assume that the coalition and the value division (pay-
offs to agents) are established as follows. There exists a
party whom we will call themechanism designer. The
mechanism designer knowsT , the set of all possible skills3,
andv, the characteristic function over skills. If agentt is
interested in joining a coalition, it declares its skills it has
to the mechanism designer. The mechanism designer deter-
mines the value division among participants.

1The word “skills” should not be interpreted too strictly—while
the skills may indeed correspond to the abilities of the agents, they
may also correspond to, for example, resources that the agents pos-
sess.

2This is just for simplifying for the notation; even if there are
identical skills, we can give them different names.

3We do not require that each skill inT is actually possessed
by some agent; the only thing that is required is that every skill
that an agent possesses is indeed inT . Therefore, the mechanism
designer really only needs to know an upper bound on the set of
skills possessed by the agents.

For this setting, Yokooet al. (2005) identified the follow-
ing three types of manipulations by the agents, i.e.,hiding
skills, using false names, andacting in collusion.

• An agentt can declare that its skill set isS′t ⊆ St. It is
assumed that an agent cannot claim to have skills that it
does not have. Such a lie is detectable because the lie will
be exposed if the agent is called on to apply such skills.

• Agentt can use multiple identifiers and declare that each
identifier has subset of the skillsSt. Because the skills are
unique, two different identifiers cannot declare having the
same skill.4 Thus, a false-name manipulation by agentt
corresponds to a partition ofSt into multiple identifiers.

• Multiple agents can collude, i.e., pretend to be a single
agent. They can declare that this agent’s skills are the
union of their skills (or a subset of this union, thus com-
bining collusion with skill hiding).

By using the characteristic function defined over skills,
the latter two manipulations become ineffective. Thus, we
can concentrate our attention on hiding skills to develop a
solution concept robust to such manipulations.

Anonymity-proof core
In this section, we briefly review the recent solution concept
called theanonymity-proof core(Yokoo et al. 2005). As
that paper showed, the anonymity-proof core can be charac-
terized by certain axiomatic conditions. We assume that the
only knowledge that the mechanism designer has isT and
v, the set of all possible skills and the characteristic function
defined overT , respectively. He does not know the number
of agents, or the skills possessed by each agent. He must
define an outcome functionπ that decides, for all possible
skill reports by the agents, how to divide the value generated
by these skills.

The outcome function defined in (Yokooet al. 2005) de-
pends on a set of skills that an agent declares and a set of
skills that other agents in a coalition declare. However, to
simplify the notations, we introduce another formation of
an outcome function. We can use this simplified formation
without loss of generality as long as the outcome function is
anonymity-proof.

More specifically, letS be the set of skills present in a
game. Then, the outcome functionπ(s, S) takess ∈ S
andS as arguments and returns the payoff to the agent that
hass, when the agent declares its skills ass and the total
set of skills declared by the agents isS. Notice that, if an
agent declares multiple skills, the payoff is the sum of the
outcome functions of each of the skills. Before introducing
the anonymity-proof core, we formally define an anonymity-
proof outcome function.

Definition 3 (anonymity-proof outcome function) An
outcome functionπ is anonymity-proofif

• π achieves Pareto efficiency:∀S,
∑

s∈S π(s, S) = v(S),
and
4Alternatively, we can consider a case where agents can declare

that they have multiple “copies” of a single skill. We hope to ad-
dress this model in our future works.



• π is robust against hiding skills:∀S, ∀S′, ∀S′′, subject to
S′′ ⊂ S′ ⊆ S,∑

s∈S′′ π(s, S \ (S′ \ S′′)) ≤ ∑
s∈S′ π(s, S).

Yokoo et al. (2005) pointed out that conventional (agent-
based) outcome functions are vulnerable to false-name ma-
nipulations and collusion, but they also proved that directly
applying any solution concept to the skills is robust against
false-name manipulations and collusion. Hence, as de-
fined above, anonymity-proof outcome functions are robust
against such manipulations.

Now we are ready to introduce the anonymity-proof core.
Any anonymity-proof outcome function satisfies Pareto ef-
ficiency and provides no incentive for agents to use false-
name manipulations, collusion, or hiding of skills. There-
fore, to define the anonymity-proof core, we only need to
add thenon-blockingcondition described below.

Definition 4 (anonymity-proof core) An anonymity-proof
outcome functionπ is in theanonymity-proof coreif it sat-
isfies the non-blocking condition:

• π is never blocked by any coalitionS′, that is,∀S, ∀S′ ⊆
S,

∑
s∈S′ π(s, S) ≥ v(S′).

In short, the anonymity-proof core is a combination of
core outcomes (each of which satisfies the non-blocking
condition) for each possible sets of skills. These core out-
comes must be chosen so that the no-hiding condition is sat-
isfied.

Example 1 Let there be a set of skillsT = {a, b, c, d, e}.
Let the characteristic function over skills be:

• v({a, b, c, d, e}) = 2,
• v({a, b, d, e}) = v({b, c, d, e}) = 2,
• v({a, b, c, d}) = v({a, b, c, e}) = v({a, c, d, e}) = 1,
• v({a, b, c}) = v({a, b, d}) = v({a, b, e}) =

v({a, d, e}) = v({b, c, d}) = v({b, c, e}) =
v({b, d, e}) = v({c, d, e}) = 1,

• v({a, b}) = v({b, c}) = v({d, e}) = 1,
• for any other subsetS ⊂ T , v(S) = 0.

In this example, if there exist all of five skills, the conven-
tional core gives1 to b, p to d, q to e, and0 to a and c, so
that p ≥ 0, q ≥ 0, p + q = 1. If p = q = 0.5, this value
division is the nucleolus.

Then, the anonymity-proof core gives the following out-
come function: for allp and q, subject top ≥ 0, q ≥ 0,
p + q = 1,

• π(b, {a, b, . . .}) = π(b, {b, c, . . .}) = 1,
• π(d, {d, e, . . .}) = p, π(e, {d, e, . . .}) = q, and
• for any other skills and subsetS ⊂ T , π(s, S) = 0.

As Example 1 shows, for the second argument of the out-
come functions, all possible combinations of skills should
be considered. If the mechanism designer knows the set of
skills possessed by agents beforehand, then it is suffice to
specify the value division for these skills. However, in this
setting, we assume the mechanism designer knows only an
upper bound on the set of skills. Thus, the mechanism de-
signer needs to prepare value divisions for all possible sub-
sets of skills. In general, for a game with a set of skillsS,

where|S| = n, a traditional solution concept needs to spec-
ify the value division only forS, while an outcome function
that is in the anonymity-proof core (and similar concepts)
has to specify value divisions for all subsets ofS, the number
of which is2n−1. Thus, the length of the (naı̈ve) represen-
tation of the outcome function is exponential in the number
of skills.

Compact representation of outcome functions
To overcome this problem, we develop a compact repre-
sentation scheme that can express any outcome functions in
the anonymity-proof core. We assume that the characteris-
tic function is represented using a recently introduced com-
pact language for this purpose, thesynergy coalition group
(SCG), which explicitly specifies only coalitions that intro-
duce synergy (Conitzer & Sandholm 2003).

Definition 5 (synergy coalition group) The synergy coali-
tion groupSCG is a set of coalitions, each of which has
some synergy, i.e.,∀S ∈ SCG, ∀{S1, . . . , Sk}, where all
theSj are disjoint and

⋃
1≤j≤k Sj = S, v(S) >

∑
Sj

v(Sj)
holds.

For example, for the coalitional game in Example 1, the
SCG is [{a, b}, {b, c}, {d, e}].

To describe a characteristic function, it suffices to only
specifyv(S) for each element ofSCG. The value for coali-
tion S, which is not an element ofSCG, is defined as fol-
lows: v(S) = max{∑1≤j≤k v(Sj)|

⋃
1≤j≤k Sj = S and

all theSj are disjoint}.
From SCG, we create a group of coalitions called the

generalized synergy coalition group (GSCG), which is a su-
perset of theSCG and contains a union of any number of
elements ofSCG that have a nonempty intersection.

Definition 6 (generalized synergy coalition group)The
generalized synergy coalition groupGSCG is the smallest
group of coalitions that satisfies the following conditions:

• ∀S, if S ∈ SCG, thenS ∈ GSCG,
• ∀S1 ∈ GSCG, ∀S2 ∈ GSCG, if S1 ∩ S2 6= ∅, then

S1 ∪ S2 ∈ GSCG.

For example,GSCG for the coalitional game in Exam-
ple 1 is the union ofSCG and{a, b, c}.
Definition 7 (projection onto GSCG) For a set of skillsS,
projectionPS of S ontoGSCG is defined as follows:

PS = {G|G ∈ GSCG, G ⊆ S,
and ∀G′, where G ⊂ G′ ⊆ S, G′ 6∈ GSCG}.

For example, for the five skills game in Example 1, the
projectionP{a,b,c,d,e} ontoGSCG is [{a, b, c}, {d, e}].

Now, we are ready to define a compact representation
scheme of an outcome function.

Definition 8 (compact representation) A compact out-
come functionπc takes set of skillsG, which is an element
of GSCG and a skill s, which is an element ofG, as
arguments, and returns the value division of skills when
skillsG exist.



Next, we show how a standard outcome function can be
derived from a compact outcome function.

Definition 9 (compactly expressible outcome function)
An outcome functionπ is expressible by a compact outcome
functionπc if the following equation holds for alls andS,
wheres ∈ S.

π(s, S) =

{
πc(s,G) where s ∈ G and G ∈ PS

if such G exists,
0 otherwise.

A compact outcome functionπc defines the value division
among skills inG ∈ GSCG. In Example 1, we describe the
value divisions for{a, b}, {a, c}, {d, e}, and{a, b, c}.

Next, we examine the condition thatπc should satisfy so
that the outcome functionπ that is expressible byπc be-
comes anonymity-proof.

Definition 10 (no-hiding condition for compact outcome
function) A compact outcome functionπc satisfies the no-
hiding condition if it satisfies the following condition:∀G ∈
GSCG, ∀S, S′, whereS′ ⊂ S ⊆ G, let PG\(S\S′) be the
projection ofG \ (S \ S′) ontoGSCG,

∑

P∈PG\(S\S′)

∑

s∈(S′∩P )

πc(s, P ) ≤
∑

s∈(G∩S)

πc(s,G).

Theorem 1 An outcome functionπ, which is expressible by
a compact outcome functionπc, is anonymity-proof ifπc sat-
isfies the no-hiding condition.

Proof We derive a contradiction by assuming that hiding
some skills is beneficial. We assume there exist three mutu-
ally disjoint sets of skillsS1, S2, andS3, where an agent has
S1 ∪S2 and other agents haveS3. We assume for the agent,
hidingS2 is beneficial, i.e.,

∑

s∈S1

π(s, S1 ∪ S3) >
∑

s∈(S1∪S2)

π(s, S1 ∪ S2 ∪ S3).

For simplicity, we assume that the projection ofS1∪S2∪S3

onto GSCG has a unique element ofG. If the projection
has multiple elements, we can derive the same conclusion
by applying a similar argument herein to each element.

For eachs ∈ (S1 ∩ G), there exists at most one set that
containss in the projection ofG \ (G ∩ S2) ontoGSCG.
Let us denote the set asP . If no such a set exists, we assume
P is an empty set. Also, for eachs ∈ (S1 ∩G), there exists
at most one set that containss in the projection ofS1 ∪ S3

ontoGSCG. Let us denote the set asP ′. If no such a set
exists, we assumeP ′ is an empty set.

Then, we show thatP = P ′ holds. It is clear thatP ′ ⊆ G,
otherwise, the projection ofS1 ∪ S2 ∪ S3 ontoGSCG must
containG ∪ P ′ instead ofG. If P andP ′ are different, then
eitherP or P ′ must be a proper subset ofP ∪P ′. However,
P ∪ P ′ is also a member ofGSCG and a subset ofS1 ∪ S3

and G. This means thatP ∪ P ′ should have been chosen
instead ofP or P ′.

From the definition and the no-hiding condition, the fol-
lowing formulae hold:
∑

s∈(S1∪S2)
π(s, S1 ∪ S2 ∪ S3) =

∑
s∈((S1∪S2)∩G) πc(s,G)

≥ ∑
s∈(S1∩G) πc(s, P ),

∑
s∈S1

π(s, S1 ∪ S3) =
∑

s∈(S1∩G) πc(s, P ′)
=

∑
s∈(S1∩G) πc(s, P ).

From these formulae, we obtain
∑

s∈S1
π(s, S1 ∪ S3) ≤∑

s∈(S1∪S2)
π(s, S1 ∪ S2 ∪ S3), but this contradicts the as-

sumption that
∑

s∈S1
π(s, S1∪S3) >

∑
s∈(S1∪S2)

π(s, S1∪
S2 ∪ S3) holds.2

Next, we examine the condition thatπc should satisfy so
that the outcome functionπ that is expressible byπc is in
the anonymity-proof core.

Definition 11 (non-blocking condition for SCG) A com-
pact outcome functionπc satisfies the non-blocking condi-
tion for SCG, if ∀G ∈ GSCG, ∀S ∈ SCG, whereS ⊆ G,∑

s∈S πc(s,G) ≥ v(S) holds.

Theorem 2 An outcome functionπ, which is expressible by
a compact outcome functionπc, is in the anonymity-proof
core if πc satisfies the no-hiding condition and the non-
blocking condition forSCG.

Proof First, we show that ifπ is blocked by a coalition,
then π is also blocked by an element ofSCG (this char-
acteristic corresponds to Lemma 2 described in Conitzer
& Sandholm (2003)). Let us assumeC is a blocking
coalition when there exists a set of skillsS, i.e., v(C) >∑

P∈PS

∑
s∈(C∩P ) π(s, S) holds. Then, let us choose

{C1, ..., Ck} so thatCj ∈ SCG, all of theCj are disjoint,
andv(C) = v(C1)+ . . .+v(Ck) holds. From the definition
of SCG, we can always choose such{C1, ..., Ck}. Then,
the following condition holds:

∑

1≤j≤k

v(Cj) >
∑

1≤j≤k

∑

P∈PS

∑

s∈(Cj∩P )

πc(s, S).

Thus, for at least oneCj ,

v(Cj) >
∑

P∈PS

∑

s∈(Cj∩P )

πc(s, S),

which means thatCj ∈ SCG is also a blocking coalition.
Now, let us assume that althoughπc satisfies the no-hiding

condition and the non-blocking condition for each element
of SCG, π is not in the anonymity-proof core. This means
that there exists a blocking coalition. Thus, there must be an
element ofSCG that is a blocking coalition. However, this
contradicts the assumption that the non-blocking condition
for SCG holds.2

Example 2 Consider the skills and the functionv of Exam-
ple 1. The outcome function in the anonymity-proof core
is compactly expressible by the following compact outcome
function in the anonymity-proof core. For allp andq, sub-
ject top ≥ 0, q ≥ 0, p + q = 1,

• πc(a, {a, b, c}) = 0, πc(b, {a, b, c}) = 1,
πc(c, {a, b, c}) = 0,

• πc(a, {a, b}) = 0, πc(b, {a, b}) = 1,

• πc(b, {b, c}) = 1, πc(c, {b, c}) = 0,

• πc(d, {d, e}) = p, πc(e, {d, e}) = q.



From this compact representation, we can rederive
the original outcome function. For example, let us
derive π(d, {a, b, c, d, e}). For the five skills game,
since P{a,b,c,d,e} consists of[{a, b, c}, {d, e}], we have
π(d, {a, b, c, d, e}) = πc(d, {d, e}) = p. Alternatively,
when an agent has two skillsb andd, the outcome function is
the sum ofπ(b, {a, b, c, d, e}) andπ(d, {a, b, c, d, e}), which
is πc(b, {a, b, c}) + πc(d, {d, e}) = 1 + p.

For this game, while the outcome function requires to
specify the value for

∑
2≤j≤5 j · 5Cj = 75 combinations,

the compact outcome function needs to specify only 9 com-
binations. As Example 2 shows, our proposed compact rep-
resentation scheme significantly reduces the representation
size. Furthermore, the following theorem shows that we can
find an outcome function that is compactly expressible if the
anonymity-proof core is nonempty.

Theorem 3 If an outcome functionπ is in the anonymity-
proof core, then there exists an outcome functionπc that is
compactly expressible and is in the anonymity-proof core.

Proof Let us choose a compact outcome functionπc so that
∀G ∈ GSCG, ∀s ∈ G, πc(s,G) = π(s,G) holds. From
the assumption thatπ is anonymity-proof, it is clear thatπc

satisfies the no-hiding condition and the non-blocking con-
dition. Thus, by Theorem 2, the outcome function which is
expressible byπc is in the anonymity-proof core.2.

Anonymity-proof nucleolus
In this section, we develop a new solution concept called
anonymity-proof nucleolus. We extend the traditional nu-
cleolus (Schmeidler 1969) to the anonymity-proof nucleolus
using our compact representation.

Before introducing the anonymity-proof nucleolus, we
briefly explain the traditional nucleolus. For any outcome
(payoff) vector, for any coalition, we can consider theex-
cess(or dissatisfaction) of that coalition, which is the differ-
ence between the value of the characteristic function for that
coalition, and the sum of values that agents (skills) in the
coalition obtain. Now consider the vector of all the coali-
tions’ excesses, sorted in descending order. The nucleolus
chooses the outcome that lexicographically minimizes this
vector—that is, it first minimizes the greatest excess, then
the second-greatest excess, etc. The nucleolus has some de-
sirable properties: for a transferable utility game, it always
exists, is unique (even if the core of the game is empty), is
in the core if the core is nonempty, and is symmetric.

The same properties hold for the anonymity-proof nucleo-
lus. In particular, the allocation is uniquely determined, even
if the anonymity-proof core is empty, and the anonymity-
proof nucleolus belongs to the anonymity-proof core if the
anonymity-proof core is nonempty. Before we define the
anonymity-proof nucleolus, let us defineexcessand thecom-
pact excess vector.

Definition 12 (excess and compact excess vector)Given
a set of skillsG, which is an element ofGSCG, and a
subset of skillsS ⊆ G, let us define theexcessof S as
v(S) − ∑

s∈S πc(s,G). Thecompact excess vectorfor a
compact outcome functionπc is defined as the vector of

excesses for coalitions, where each coalitionS satisfies
either thatS is in SCG or S consists of exactly one skill, in
descending order.

We can now introduce the anonymity-proof nucleolus.

Definition 13 (anonymity-proof nucleolus) The
anonymity-proof nucleolus is the compact outcome
function that satisfies the no-hiding condition and gives the
(lexicographically) best compact excess vector.

Example 3 Consider the skills and the functionv of Exam-
ple 1. In this example, if there exist all of five skills, the
conventional nucleolus gives 1 to b, 0.5 to d and e, and 0 to
a and c. On the other hand, the outcome function in the
anonymity-proof nucleolus is expressible by the following
compact outcome function:

• πc(a, {a, b, c}) = 0, πc(b, {a, b, c}) = 1,
πc(c, {a, b, c}) = 0,

• πc(a, {a, b}) = 0, πc(b, {a, b}) = 1,
• πc(b, {b, c}) = 1, πc(c, {b, c}) = 0,
• πc(d, {d, e}) = 0.5, πc(e, {d, e}) = 0.5.

We now prove several basic properties of the anonymity-
proof nucleolus.

Theorem 4 The anonymity-proof nucleolus is unique.

Proof We derive a contradiction assuming that there exist
two distinct compact outcome functionsπ′c andπ′′c that sat-
isfy the no-hiding condition and give the identical compact
excess vector, which is lexicographically best. Let a com-
pact output functionπc be the average ofπ′c and π′′c , i.e.,
∀s ∈ G,G ∈ GSCG, πc(s,G) = (π′c(s,G) + π′′c (s,G))/2.
It is clear that πc satisfies the no-hiding condition, since
both π′c and π′′c satisfy the no-hiding condition. Also, we
can show thatπc gives a lexicographically better compact
excess vector than that ofπ′c or π′′c , using a similar argu-
ment as the proof of Theorem 2 in Schmeidler (1969). This
contradicts the assumption thatπ′c and π′′c give the lexico-
graphically best compact excess vector.2

Theorem 5 The anonymity-proof nucleolus always exists.

Proof It is suffice to show that there exists at least one com-
pact outcome function that satisfies no-hiding condition. Let
us consider the following compact outcome function.

• Assume a lexicographic order among all skillsT is de-
fined.∀G ⊆ GSCG, we setπc(s,G) as follows:
πc(s,G) = v(G) if s is the first skill withinG that ap-
pears in the lexicographic order,
πc(s,G) = 0 otherwise.

It is clear that this compact output function satisfies the no-
hiding condition, i.e., hiding skills is clearly useless.2.

Theorem 6 If the anonymity-proof core is nonempty, then
the anonymity-proof nucleolus is in the anonymity-proof
core.

Proof Assumeπc is the anonymity-proof nucleolus. From
Theorem 3, if the anonymity-proof core is nonempty, there
exists a compact outcome functionπ′c that gives an outcome
function that is in the anonymity-proof core. Each element of



the compact excess vector ofπ′c must be non-positive since
π′c satisfies the non-blocking condition. Since the compact
excess vector ofπc is lexicographically better than that of
π′c, each element of the compact excess vector ofπc must be
non-positive. This means that the outcome function that is
expressible byπc is also in the anonymity-proof core.2

Theorem 7 If two skillss, s′ are symmetric, i.e.,∀S, where
s 6∈ S, s′ 6∈ S, v(S ∪ {s}) = v(S ∪ {s′}) holds, then the
anonymity-proof nucleolusπc gives the same value fors, s′.

Proof We derive a contradiction by assuming that the
anonymity-proof nucleolusπc gives different values for sym-
metric skillss, s′, i.e., one of the following conditions holds:

πc(s, S ∪ {s}) 6= πc(s′, S ∪ {s′}),
πc(s, S ∪ {s} ∪ {s′}) 6= πc(s′, S ∪ {s} ∪ {s′}).

Let us choose another anonymity-proof compact outcome
functionπ′c, which satisfies the following conditions:

π′c(s, S ∪ {s}) = πc(s′, S ∪ {s′}),
π′c(s

′, S ∪ {s′}) = πc(s, S ∪ {s}),
π′c(s, S ∪ {s} ∪ {s′}) = πc(s′, S ∪ {s} ∪ {s′}),
π′c(s

′, S ∪ {s} ∪ {s′}) = πc(s, S ∪ {s} ∪ {s′}), and
π′c(·, ·) = πc(·, ·) otherwise.

It is clear thatπ′c gives the same compact excess vector as
that ofπc. However, this contradicts the assumption thatπc

is the anonymity-proof nucleolus, since from Theorem 4, the
anonymity-proof nucleolus must be determined uniquely.2

Discussion
In the worst case, the size of theGSCG can be exponential
to the size of theSCG. For example, assume the following
k elements of theSCG exist:{a, a1}, {a, a2}, . . . , {a, ak}.
Then, the size of theGSCG becomes2k − 1. However,
in practice, the size ofGSCG can be much smaller. To
estimate its size, we ran the following simulation: assuming
there exists15 skills, 100 members ofSCG are drawn iid
from a uniform distribution. In this case, the average size of
GSCG was around3, 400, which is only10% of 215.

Note that the anonymity-proof nucleolus does not al-
ways minimize the largest excess. Consider the follow-
ing example with7 skills: v({a, b, c}) = v({a, b, d}) =
v({a, c, d}) = v({b, c, d}) = 1, v({e, f}) = v({e, g}) =
v({f, g}) = 1. In this case, if all 7 skills are declared, the
anonymity-proof nucleolus gives1/4 to each of{a, b, c, d}
and1/3 to each of{e, f, g}. Hence,{a, b, c, e, f} has an
excess of1/4 + 1/3 = 7/12. Now, let us consider the
value division that gives(1+ ε)/4 to each of{a, b, c, d} and
(1 − ε)/3 to each of{e, f, g}, that is, we redistribute a lit-
tle from {e, f, g} to {a, b, c, d}. Now, {a, b, c, e, f} has an
excess of7/12 − ε/12. In fact, in this case, the excess of
{a, b, c, e, f} is the largest. Thus the anonymity-proof nu-
cleolus does not minimize the largest excess.

However, the anonymity-proof nucleolus does minimize
the largest excess of the members ofSCG. This appears
to be a reasonable compromise given the cost of comput-
ing/representing the value division that minimizes the largest
excess in general.

Conclusion
Anonymity-proof solution concepts are developed so that
they are robust to various manipulations in open anonymous
environments. However, the representation size of the out-
come function is exponential in the number of skills that
agents declare (while that of the outcome function of con-
ventional solution concepts is linear).

This paper developed a compact representation of the
outcome function using a synergy coalition group (SCG),
which only specifies which coalitions introduce new syn-
ergy. We demonstrated that this compact representation
scheme can successfully express outcome functions in the
anonymity-proof core and can effectively reduce the repre-
sentation size of the outcome function.

In addition, we introduced a new solution concept, i.e., the
anonymity-proof nucleolus. We showed that it always exists,
is unique, is symmetric, and belongs to the anonymity-proof
core when the latter is nonempty.
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