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Abstract. We study the problem of allocating a single item repeatedly among
multiple competing agents, in an environment where monetary transteroa
possible. We design (Bayes-Nash) incentive compatible mechanistdothat
rely on payments, with the goal of maximizing expected social welfarefitgte
focus on the case of two agents. We introduce an artificial paymentsystdch
enables us to construapeatedallocation mechanismsithout paymentbased
on one-shotllocation mechanismaith paymentsUnder certain restrictions on
the discount factor, we propose several repeated allocation mectsah&sed
on artificial payments. For the simple model in which the agents’ valuatiens a
either high or low, the mechanism we propose).i84-competitive against the
optimal allocation mechanism with payments. For the general case oframy p
distribution, the mechanism we propose)i85-competitive. We generalize the
mechanism to cases of three or more agents. For any number of @gemteech-
anism we obtain is at lea8t75-competitive. The obtained competitive ratios im-
ply that for repeated allocation, artificial payments may be used to reptate
monetary payments, without incurring too much loss in social welfare.

1 Introduction

An important class of problems at the intersection of corapstience and economics
deals with allocating resources among multiple competgengs. For example, an op-
erating system allocates CPU time slots to different appbos. The resources in this
example are the CPU time slots and the agents are the appiicafnother example
scenario, closer to daily life, is “who gets the TV remotettoli’ Here the resource is
the remote control and the agents are the members of thelmdsén both scenarios
the resources are allocated repeatedly among the agedtsiaretary transfers are in-
feasible (or at least inconvenient). In this paper, we itigate problems like the above.
That is, we study how to allocate resources in a repeateihgettithout relying on
payments. Our objective is to maximize social welfare, ablocative efficiency.

The problem of allocating resources among multiple comgedgents when mone-
tary transfers are possible has been studied extensivbhtinthe one-shot mechanism
design setting [9, 6, 20, 16, 19, 15] and the repeated s¢ftihgd, 10, 5]. A question that
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has recently been drawing the attention of computer seiesris how to design mecha-
nisms without payments to achieve competitive performamyzeénst mechanisms with
payments [21, 13F This paper falls into this category. We consider mechanisitis
out payments in repeated settings. A paper that lays out mfathe foundations for
repeated games is due to Abretal. [2], in which the authors investigate the problem
of finding pure-strategy sequential equilibria of repeagathes with imperfect moni-
toring. Their key contribution is the state-based apprdacisolving repeated games,
where in equilibrium, the game is always istatewhich specifies the players’ long-run
utilities, and on which the current period’s payoffs aredshsThere are many papers
that rely on the same or a similar state-based approach§22718].

The following papers are more related to our work: Fudenletrgl. [14] give a
folk theorem for repeated games with imperfect public infation. Both [14] and our
paper are built on the (dynamic programming stglelf-generatingechnique in [2] (it
is calledself-decomposabie [14]). However, [14] considers self-generation based on
a certain supporting hyperplane, which is guaranteed t&t exily when the discount
factor goes td.. 4 Therefore, their technique does not apply to our problenabse we
are dealing with non-limit discount factorsAnother difference between [14] and our
paper is that we are designing specific mechanisms in thisrpagstead of trying to
prove the existence of a certain class of mechanisms. WitHinot discount factors, it
is generally difficult to precisely characterize the setezfdible utility vectors (optimal
frontier) for the agents. Several papers have already gexpdifferent ways of approx-
imation (for cases of non-limit discount factors). Athelyal. [4] study approximation
by requiring that the payoffs of the agents must be symmetrizhat, from a technical
perspective, appears to be the paper closest to the worksipaiper, Athey and Bag-
well [3] investigate collusion in a repeated game by appnating the optimal frontier
by a line segment (the same technique also appears in theovAitkdulkadirdjlu and
Bagwell [1]). One of their main results is that if the discodector reaches a certain
threshold (still strictly less thal), then the approximation comes at no cost. That is, the
optimal (first-best) performance can be obtained. Howekieir technique only works
for finite type spaces, as it builds on uneven tie-breaking.

The main contribution of this paper can be summarized asvisll First, we in-
troduce a new technique for approximating the optimal fearfor repeated allocation
problem. Our technique works for non-limit discount fast@nd is not restricted to
symmetric payoffs or finite type spaces. The technique wpgse is presented in the
form of an artificial payment system, which corresponds fgraximating the optimal
frontier by triangles. The artificial payment system enahig to construct repeated al-

% In the previous work, as well as in this paper, the first-best result eathieved by mecha-
nisms with payments.

41n [14], it is shown that any feasible and individually rational equilibriuay@ff vectorv
can be achieved in a perfect public equilibrium (self-generated basegrtain supporting
hyperplanes), as long as the discount factor reaches a threShéldwever, the threshold
3 depends on. If we consider all possible values of then we essentially require that the
discount factor/threshold approathsince any discount factor that is strictly less tHatoes
not work (for somev).

5 In this paper, we also require that the discount factor reaches adfdebht here the threshold
is a constant that works for all possible priors.



location mechanisms without payments based on one-sloobéitbn mechanisms with
payments. We analytically characterize several repedi@chtion mechanisms that do
not rely on payments, and prove that they are competitivenagthe optimal mecha-
nism with payments.

This paper also contributes to the line of research on degjgrompetitive mech-
anisms without payments. The proposed artificial paymestiesy provides a link be-
tween mechanisms with payments and mechanisms without gratgmBy proposing
specific competitive mechanisms that do not rely on paymens paper also pro-
vides an answer to the questidkre monetary payments necessary for designing good
mechanisms®@ur results imply that in repeated settings, artificial papts are “good
enough” for designing allocation mechanisms with high alogielfare. Conversely, it
is easy to see that for one-shot settings, artificial paysnare completely useless in the
problem we study (single-item allocation).

The idea of designing mechanisms without payments to aghiempetitive per-
formance against mechanisms with payments was explicdiynéd by Procaccia and
Tennenholtz [21], in their paper titlefpproximate Mechanism Design Without Money
That paper carries out a case study on locating a publidtfafik agents with single-
peaked valuations. (The general idea of approximate méahasesign without pay-
ments dates back further, at least to work by Dekedl. [13] in a machine learning
framework.) To our knowledge, along this line of research,ake the first to to study
allocation of private goods. Unlike the models studied ia #bove two papers [13,
21], where agents may have consensus agreement, when wenaidesing the allo-
cation of private goods, the agents are fundamentally iflicarNevertheless, it turns
out that even here, some positive results can be obtainkd #ltocation is carried out
repeatedly. Thus, we believe that our results provide mdtdit insights to this line of
research.

2 Model Description

We study the problem of allocating a single item repeatedlyvben two (and later in
the paper, more than two) competing agents. Before eactasitben period, the agents
learn their (private) valuations for having the item in thatiod (but not for any future
periods). These preferences are independent and idéndesttibuted, across agents as
well as periods, according to a distributiéh We assume that these valuations are non-
negative and have finite expectatiohsdoes not change over time. There are infinitely
many periods, and agents’ valuations are discounted aogptal a discount factog.

Our objective is to design a mechanism that maximizes egpesxcial welfare under
the following constraints (we allow randomized mechanjsms

— (Bayes-Nash) Incentive Compatibiliffruthful reporting is a Bayes-Nash equilib-
rium.
— No PaymentsNo monetary transfers are ever made.

In the one-shot mechanism design setting, incentive cahifitgtis usually achieved
through payments. This ensures that agents have no ineg¢ataverbid, because they
may have to make large payments. In the repeated allocatiting there are other



ways to achieve incentive compatibility: for example, if agent strongly prefers to
obtain the item in the current period, the mechanism canrertbat she is less likely
to obtain it in future periods. In a sense, this is an artifif@em of payment. Such pay-
ments introduce some new issues that do not always occurmmatietary payments,
including that each agent effectively has a limited budgetresponding to a limited
amount of future utility that can be given up); and if one agaakes a payment to an-
other agent by sacrificing some amount of future utility, tberesponding increase in
the latter agent’s utility may be different from the deceeasthe former agent’s utility.

3 State-Based Approach

Throughout the paper, we adopt the state-based approactiuned in Abrewet al.[2].

In their paper, the authors investigated the problem of figgiure-strategy sequen-
tial equilibria of repeated games with imperfect monitgrifTheir problem can be
rephrased as follows: Given a game, what are the possiblegqttategy sequential
equilibria? Even though in our paper we are considering ferdifit problem (we are
designingthe game), the underlying ideas still apply. In their paptates correspond
to possible equilibria, while in our paper, states correspto feasible mechanisms.
In this section, we review a list of basic results and obg@ma on the state-based
approach, specifically in the context of repeated allocatio

Let M be an incentive compatible mechanism without payments foaréicular
(fixed) repeated allocation problem, defined by a particiylae distribution and a dis-
count factor. If, undeM/, the expected long-term utilities of agentsand2 (at the
beginning) arer andy respectively, then we denote mechanidfrby state(z, y). All
mechanisms that can be denotedbyy) are considered equivalent. If we are about to
apply mechanisnd/, then we say the agents are in statey). In the first period, based
on the agents’ reported values, the mechanism specifieshbetho allocate the item
in this period, and what to do in the future periods. The rolethe future is itself a
mechanism. Hence, a mechanism specifies how to allocateetheniithin the first pe-
riod, as well as the state (mechanism) that the agents wiitl inethe second period. We
have that(L, y) = Evl,vg [(7"1 (’Ul, ’1)2), T2 (’Ul, ’02)) + 6(81 (Ul, ’UQ), So (’Ul, ’1)2))], where
v1, vg are the first-period valuations;, ro are the immediate rewards obtained from
the first-periodallocation rule and(sy, s2) gives the second-period state, representing
thetransition rule

State(z,y) is called afeasiblestate if there is a feasible mechanism (that is, an
incentive compatible mechanism without payments) comedjmg to it. We denote the
set of feasible states h§*. Let e be an agent’s expected valuation for the item in a
single periodFE = ﬁ is the maximal expected long-term utility an agent can rexei
(corresponding to the case where she receives the item g peeiod). LetO be the
set of state§(z,y)|0 <2 < E,0 <y < E}. We have that* C O — {(E,E)} € O.

S* is convex, for the following reason. (&1, y1 ) and(x4, y2 ) are both feasible, then
(mtr2 widue) s glso feasible (it corresponds to the randomized mecivawnisere we
flip a coin to decide which of the two mechanisms to appl/).is symmetric with
respect to the diagongl = z: if (x,y) is feasible, then so i§y, z) (by switching the
roles of the two agents).



The approximate shape 6F is illustrated in Figure 1. There are three noticeable
extreme stateg0, 0) (nobody ever gets anything)Z, 0) (agentl always gets the item),
and(0, £) (agent2 always gets the item)™* is confined by the x-axis (fronf0, 0) to
(E,0)), the y-axis (from(0, 0) to (0, £')), and, most importantly, the bold curve, which
corresponds to the optimal frontier. The square specifietthéylotted lines represents
0.
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Fig. 1. The shape of™. Fig. 2. Bow shape approximated by triangle.

Our objective is to find the state:*, y*) € S* that maximizest* + y* (expected
social welfare). By convexity and symmetry, it does not hortonsider only cases
wherez* = y*.

We now define a notion of when one set of stategererated byanother. Recall
that a mechanism specifies how to allocate the item withirfiteeperiod, as well as
which state the agents transition to for the second perietlSlbe any set of states with
S C O. Let us assume that, in the second period, exactly the statesare feasible.
That is, we assume that, if and only(if, y) € S, starting at the second period, there
exists a feasible mechanism under which the expectededilf agentl and2 arex
andy, respectively. Based on this assumption, we can constnaentive compatible
mechanisms starting at the first period, by specifyingalimcation rule for the first
period, as well as ransition rulethat specifies the states thto which the agents will
transition for the beginning of the second period. Now, wiy oreed to make sure that
the first period is incentive compatible. That is, the altararule in the first period,
combined with the rule for selecting the state at the stathefsecond period, must
incentivize the agents to report their true valuations enfitst period. We say the set of
resulting feasible states for the first periogénerated by, and is denoted bgen(S).

The following claim provides a general guideline for desmgnfeasible mecha-
nisms.

Claim 1 ForanyS C O, if S C Gen(S), thenS C S*. Thatis, ifS is self-generating
then all the states ity are feasible.



We now consider starting with the squapethat containsS* and iteratively gener-
ating sets. LeD? = O andO*™! = Gen(O?) for all i. The following claim, together
with Claim 1, provide a general approach for computiig

Claim 2 TheO’ form a sequence of (weakly) decreasing sets that convesgesit it
converges at all. That is§* = Gen(S*). S* C O for all i. Ot C O for all 4. If
O = O**!, thenO! = S*.

The above guideline leads to a numerical solution technfqudinite valuation
spaces. With a properly chosen numerical discretizatiberse, we are able to com-
pute an underestimation @# for all i, by solving a series of linear programs. The
underestimations of th@’ always converge to an underestimationsf (a subset of
S*). Thatis, we end up with a set of feasible mechanisms. Welsoeahle to show that
as the discretization step size goe$tahe obtained feasible set approaclsés That
is, the numerical solution technique produces an optimalmaeism in the limit as the
discretization becomes finer. Details of the numerical tsemlutechnique are omitted
due to space constraint.

One drawback of the numerical approach is that the obtairezhemism does not
have an elegant form. This makes it harder to analyze. Freragknts’ perspective, it is
difficult to comprehend what the mechanism is trying to doiclvimay lead to irrational
behavior. Another drawback of the numerical approach isittenly applies to cases
of finite valuation spaces. For the rest of the paper, we takera analytical approach.
We aim to design mechanisms that can be more simply and ¢hegiascribed, work
for any valuation space, and are (hopefully) close to ogifyna

At the end of Section 4.2, we will compare the performancethefmechanisms
obtained numerically and the mechanisms obtained by thgtarah approach.

4 Competitive Analytical Mechanism

In this section, we propose the idea of an artificial paymgstesn. Based on this, we
propose several mechanisms that can be elegantly descebddve can prove that
these mechanisms are close to optimality.

4.1 Artificial Payment System

Let us recall the approximate shapessf(Figure 2). The area covered I8y consists of
two parts. The lower left part is a triangle whose vertices(ar0), (£, 0), and(0, E).
These three states are always feasible, and so are thegcoombinations. The upper
right part is a bow shape confined by the straight line and thedurve from(0, F) to
(E,0). To solve forS*, we are essentially solving for the largest bow shape ygatipf
that the union of the bow shape and the lower-left triangkel§generating. Here, we
consider an easier problem. Instead of solving for the &rgew shape, we solve for
the largest triangle (whose vertices &beFE),(E,0), and(z*, z*)) so that the union of
the two triangles is self-generating (illustrated in Fig@). That is, we want to find the
largest value ofc* that satisfies that the set of convex combination§006), (E, 0),
(0, E), and(xz*, z*) is self-generating.



The triangle approximation corresponds taatificial payment systenhet (z*, z*)

be any feasible state satisfying > % Such a feasible state always existsg(

(£,Z)). We can implement an artificial payment system basedzonz*), (E,0),
and(0, E), as follows. At the beginning of a period, the agents are thudd the default
option is that they move to stafte*, z*) at the beginning of the next period. However,
if agent1 wishes to pay; (v1 < Bz*) units of artificial currency to agelt(and agent
2 is not paying), then the agents will move to* — 4, 2" + E;j”* %1). That is, the
future state is moved; units to the left along the straight line connectiftg F') and
(z*,z*). (This corresponds to going to each of these two states witrtain proba-
bility.) By paying v, units of artificial currency, agerits expected utility is decreased

by v; (the expected utility is decreased ﬁéf at the start of the next period). When

agentl paysw; units of artificial currency, agert receives onIyE;:"*vl (also as a
result of future utility). In effect, a fraction of the paymids lost in transmission. Sim-
ilarly, if agent2 wishes to pay- (v2 < Bz*) units of artificial currency to agert
(and agentl is not paying), then the agents will move to* + E;;’”* %, - ).
That is, the future state is movég units towards the bottom along the straight line
connecting(z*, z*) and(E, 0). If both agents wish to pay, then the agents will move
to (z* — % 4 Bt w2 g+ — 82 4 Eox- ) which is a convex combination ¢6,0),
(0,E), (E,0), and(x*, x*).

Effectively, both agents havelaudgetof Sz*, and when an agent pays the other
agent, there is gift taxwith ratel — Z=2-.

Based on the above artificial payment system, our approaithdssign repeated
allocation mechanisms without payments, based on onealoaiation mechanisms
with payments. In order for this to work, the one-shot altmramechanisms need to
take the gift tax into account, and an agent’s payment shoeNgr exceed the budget
limit.

The budget constraint is difficult from a mechanism desigspective. We circum-
vent this based on the following observation. An agent'sgeds at Ieas,ﬁ% = 2fﬁ2ﬁ,
which goes to infinity ag goes tol. As a result, for sufficiently large discount factors,
the budget constraint will not be binding. For the remairafehis paper, we ignore the
budget limit when we design the mechanisms. Then, for eatdiretl mechanism, we
specify how large the discount factor has to be for the mdashato be well defined
(that is, the budget constraint is not violated). This aflavs to work around the budget
constraint. The drawback is obvious: our proposed mechenimly work for discount
factors reaching a (constant) threshold (though it is nateatictive as studying the
limit case ass — 1).

4.2 High/Low Types

We start with the simple model in which the agents’ valuatiare eithefd (high) with
probability p or L (low) with probability 1 — p. Without loss of generality, we assume
thatZ = 1. We will construct a repeated allocation mechanism witlpayments based
on the followingpay-onlyone-shot allocation mechanism:



Allocation: If the reported types are the same, we determine the winngipipyng
a (fair) coin. If one agent’s reported value is high and theeoagent’s reported value
is low, then we allocate the item to the agent reporting high.

Payment:An agent pay$ if its reported type is low. An agent pagsif its reported
type is high (whether she wins or not); this payment does adbghe other agent.

Claim 3 The above pay-only mechanism is (Bayes-Nash) incentivpatiie.

Now we return to repeated allocation settings. Supfeser*) is a feasible state.
That is, we have an artificial payment system with gift tave rat- E;f . We apply

the above one-shot mechanism, with the modifications thatweim ag’ent pay};,, itis

paying artificial currency instead of real currency, anddtieer agent receivé;E;f* .
We note that the amount an agent receives is only based orhtbeagent’s reported
value. Therefore, the above modifications do not affectriberitives.

Under the modified mechanism, an agent’s expected utilimlﬂ%waLPE;—f*Jr
Bz*. In the above expressioft, = 2p(1 — p)H + p?H + (1 — p)? is the expected value
of the higher reported valuég is then the ex ante expected utility received by an agent
as a result of the allocatior? = £ is the expected amount of artificial payment an

agent paysPE;—f* is the expected amount of artificial payment an agent resgiue
is the expected future utility by default (if no payments mna&de).

If both agents report low, then, at the beginning of the nexigal, the agents go to
(z*,z*) by default. If agent reports high and ageftreports low, then the agents go to
(z* — %, x* + ggf: ), which is a convex combination ¢&*, z*) and(0, E). If agent
1 reports low and agerit reports high, then the agents go(tg" + gg—;f,x* — ﬁ),
which is a convex combination ¢f:*, z*) and(E, 0). If both agents report high, then
the agents go tr* — 55 + 552 2 — ;5 4 £=27) which is a convex combination
of (z*,2*) and (0,0). Let S be the set of all convex combinations @f, 0), (E, 0),
(0, E), and (z*, 2*). The future states given by the above mechanism are always in
S. If an agent’s expected utility under this mechanism is gretnan or equal ta:™,
then S is self-generating. That igx*, «*) is feasible as long as* satisfiesz* <
LT _P+PEZ 4 go~,

We rewrite it asaz*? + bz* 4+ ¢ < 0, wherea = 1 — 3, b = 2P — L, and
¢ = —FEP. The largest:* satisfying the above inequality is simply the larger salati

of az*? + b + ¢ = 0, which is L2V L L L0 0EE,

This leads to a feasible mechanigifi* (corresponding to statec*, z*)). The ex-
pected social welfare undar* is 22*, wherez* equals the above solution.
We have not considered the budget limit. For the abdie to be well-defined

(satisfying the budget constraint), we negd > 1. Sincez* > £ = 95 > =25

we only need to make sure thgﬂ—ﬁ > 1. Therefore, if3 > 1, thenM* is well-
defined. For specific priord/* could be well-defined even for smallgr

Next, we show that (whenevar * is well-defined)A* is very close to optimality.
Consider thdirst-best allocation mechanisrthe mechanism that always successfully
identifies the agent with the higher valuation and alloc#tesitem to this agent (for

free). This mechanism is not incentive compatible, and é@at feasible. The expected




social welfare achieved by the first-best allocation meis}naﬁs%, which is an upper
bound on the expected social welfare that can be achievedybgnachanism with (or
without) payments (it is a strict upper bound, as the dAGVAhanism [12] is efficient,
incentive compatible, and budget balanced).

Definition 1. When the agents’ valuations are either high or low, the pdistribution
over the agents’ valuations is completely characterizethbyalues off andp. LetWW
be the expected social welfare under a feasible mechahisioet W " be the expected
social welfare under the first-best allocation mechanidmi’l > oW ¥ for all H and
p, then we sayM is a-competitive. We catk a competitive raticof M.

Claim 4 WheneverM* is well-defined for allH andp, (e.g, 8 > %), M* is 0.94-
competitive.

As a comparison, the lottery mechanism that always chobsesinner by flipping
a fair coin has competitive ratio (exactl§)s (if H is much larger that and unlikely
to occur).

In the following table, for different values off, p, and 3, we compareM ™ to
the near-optimafeasiblemechanism obtained with the numerical solution technique.
The table elements are the expected social welfare uhdethe near-optimal feasible
mechanism, the first-best allocation mechanism, and theryotnechanism.

M™* |Optimal First-best Lottery
H=2p=0.2,=0.5]2.6457 | 2.6725 | 2.7200 | 2.4000
H=4,p=0.4,6=0.5]5.5162 | 5.7765 | 5.8400 | 4.4000
H =16,p =0.8,3 = 0.5[30.3421{30.8000| 30.8000 {26.0000
H=2p=0.2,=0.8]6.6143 | 6.7966 | 6.8000 | 6.0000
H=2,p=0.8,6=0.819.4329 | 9.8000 | 9.8000 | 9.0000
H =16,p = 0.8, 3 = 0.8]75.8552[77.0000] 77.0000 |65.0000

4.3 General Valuation Space

In this section, we generalize the earlier approach to gématuation spaces. We I¢t
denote the probability density function of the prior distition. (A discrete prior distri-
bution can always be smoothed to a continuous distributiahis arbitrarily close.)

We will construct a repeated allocation mechanism with@ytnpents based on the
following pay-onlyone-shot allocation mechanism:

Allocation: The agent with the higher reported value wins the item.

PaymentAn agent pays, ¢f(t)dt if it reportso.

This mechanism is actually®alAGVA mechanism [12], which is known to be
(Bayes-Nash) incentive compatible.

5 “The” dAGVA mechanism often refers to a specific mechanism in a cla8ages-Nash in-
centive compatible mechanisms, namely one that satisfies budgetéallarthis paper, we
will use “dAGVA mechanisms” to refer to the entire class, including onesateanot budget-
balanced. Specifically, we will only use dAGVA mechanisms in which paysare always
nonnegative.



The process is similar to that in the previous section. Dusp@ce constraints,
we omit the details. At the end, we obtain a feasible mechadis*. The expected

social welfare unded/* is 2z*, wherez* equals= 2P+‘/(2;1 ﬁ);H(lfﬁ)EP. Here,

T = [ 57 max{t, v} f(t)f(v)dtdv is the expected value of the higher valuation.
P = [ [; tf(t)dtf(v)dv is the expected amount an agent pays.

For the aboveM/* to be well-defined, we need the budggt* to be greater than
or equal tof0 tf(t)dt = e (the largest possible amount an agent pays). Sirice

= 555, We only need to make surﬁz— > e. Therefore, if3 > 2, thenM* is
WeII defined. For specific priorg/* may be well-defined for smallet.

Next, we show that (whenevéd* is well-defined)M* is competitive against the
first-best allocation mechanism fall prior distribution f. Naturally, the competitive
ratio is slightly worse than the one obtained previoushhigh/low valuations. We first

generalize the definition of competitiveness appropryatel

Definition 2. Let W be the expected social welfare under a feasible mechanism
Let W¥ be the expected social welfare under the first-best allocathechanism. If
W > oW for all prior distributions, then we say that/ is a-competitive. We calk
a competitive raticof M.

Claim 5 Wheneven/* is well-defined for all prior distributionsg.g.,3 > %), M*is
0.85-competitive.

5 Three or More Agents

We have focused on allocation problems with two agents.ignsiction, we generalize
our analytical approach to cases of three or more agents.

Let n be the number of agents. We will continue with the state-tbaggproach.
That is, a mechanism (state) is denoted by a vector bnnegative real values. For
example, if under mechanisi/, agenti’s long-term expected utility equals;, then
mechanismV/ is denoted by(z1, zo, ..., z,). If we are about to apply mechanish,
then we say the agents are in state, zs, ..., z,).

For anyn, it is easy to see that the set of feasible states is convesyndetric
with respect to permutations of the agents. A state is céfledf all its elements are
equal. For exampld,l, 1,1) is a fair state:¢ = 3). When there is no ambiguity about
the number of agents, the fair state «, . . ., z) is denoted simply by.

An artificial payment system can be constructed in a way thainnilar to the case
of two agents. Let,,_; be any feasible fair state for the casewef 1 agents. Then, the
following n states are also feasible for the case afgents:

(O,Mnfl, .o 7/1,»,1,1), (,U/n,ho,Mn,l, .o ,,U,nfl), ey (Mnfl, . ,,Ulnfl,O).

n—1 n—2 n—1

We denote the abovestates by, fori = 1,2,...,n. LetS be the set of all feasible
states with at least one element that eqoal$ is self-generating. Suppose we have a
fair stateu,, for the case oh agents. LetS be the smallest convex set containing
and all the states ii¥. Thes; are in bothS and S. An artificial payment system can



be implemented as follows (for the casenofigents): The agents will go to statg by
default. If for alli, agenti chooses to pay; units of artificial currency, then we move
to a new state whosé' element equalg,, — % +~)_.; 5. Herey = ”#17“ !
The new statd/ isin S. (The reason is the folﬁowmg If only agehis paymg and itis

payingnuv; instead ofv;, then the new stat&/; is (u,, + v ; R T A/ 3 L —

1—1
%,un +7%, ceoy p 7 3 ) which is a convex combination ¢f,, ands;. The

average of thé/; over alli is just M. ThusM is a convex combination gf,, and the
54, Which impliesM < S. 8)

With the above artificial payment system, by allocating tieeni to the agent with
the highest reported value and charging the agents dAGVAnpays, we get an in-
centive compatible mechanism. We denote agsmneported value by, for all i. The
dAGVA payment for agent equalsE,,_, (I(v; > max{v_;}) max{v_;}), wherel is
the characteristic function (which evaluatesiton true and to0 otherwise) and_; is
the set of reported values from agents other than

We still useP to denote the expected amount of payment from an agent. WE use
to denote the expected value of the highest reported vahe eXpected utility for an
agentis ther, — P + (n — 1) =22 P + Bpu,,.

To showsS is self-generating, we only need to shayy is in Gen(S). That is, i,
is a feasible fair state as long as satisfies the following inequalityi,, < % - P+

(TL _ 1)“71,71_/"‘np + ﬂ,un-

_T o
The largest solution ofi,, equalc" —nPhy/(nP 221+;()1 A)n—Dpn=aP

The above expression increases when the valyg of increases. The hlghest value
for 11 is E (when there is only one agent, we can simply give the itemeatent for
free). A natural way of solving for a good fair statg is to start withy; = F, then
apply the above technique to solve for, thenpus, etc.

Next, we present a claim that is similar to Claim 5.

Claim 6 Letn be the number of agents. L&{;" be the mechanism obtained by the
technique proposed in this section. Whene@'e)> 2+3 , M is well defined for all
priors, and is«,,-competitive, where; = 1, and forn > 1,

L _ntnu—ut+y/(n—nutu—2)2+4a %
ap, = min n= VI 5 ) nl .
{1<u< -1 } o

Forall i, a;; > 2 holds.

As a comparison, the lottery mechanism that always chobsasinner uniformly
at random has competitive ratio (exactly) which goes td asn goes to infinity.

7 It should be noted that when one agent paytheneveryother agent receives. In a sense,
~ already incorporates the fact that the payment must be divided amohigle agents.

8 The above argument assumes that the available budget is at kst the maximum amount
an agent pays.
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