
Compilation Complexity of Common Voting Rules∗

Lirong Xia
Department of Computer Science

Duke University
Durham, NC 27708, USA

lxia@cs.duke.edu

Vincent Conitzer
Department of Computer Science

Duke University
Durham, NC 27708, USA

conitzer@cs.duke.edu

Abstract

In computational social choice, one important problem is to
take the votes of a subelectorate (subset of the voters), and
summarize them using a small number of bits. This needs to
be done in such a way that, if all that we know is the summary,
as well as the votes of voters outside the subelectorate, we can
conclude which of the m alternatives wins. This corresponds
to the notion of compilation complexity, the minimum number
of bits required to summarize the votes for a particular rule,
which was introduced by Chevaleyre et al. [IJCAI-09]. We
study three different types of compilation complexity. The
first, studied by Chevaleyre et al., depends on the size of the
subelectorate but not on the size of the complement (the voters
outside the subelectorate). The second depends on the size of
the complement but not on the size of the subelectorate. The
third depends on both.

We first investigate the relations among the three types of
compilation complexity. Then, we give upper and lower
bounds on all three types of compilation complexity for the
most prominent voting rules. We show that for l-approval
(when l ≤ m/2), Borda, and Bucklin, the bounds for all three
types are asymptotically tight, up to a multiplicative constant;
for l-approval (when l > m/2), plurality with runoff, all Con-
dorcet consistent rules that are based on unweighted majority
graphs (including Copeland and voting trees), and all Con-
dorcet consistent rules that are based on the order of pairwise
elections (including ranked pairs and maximin), the bounds
for all three types are asymptotically tight up to a multiplica-
tive constant when the sizes of the subelectorate and its com-
plement are both larger than m1+ǫ for some ǫ > 0.

Introduction

In multiagent systems, often the agents want to make a joint
decision, despite the fact that they have different preferences
over the m alternatives. A natural way to do this is by vot-
ing over the alternatives. In a typical voting setting, the vot-
ers (agents) first report their (ordinal) preferences simultane-
ously. Then, a voting rule is applied to choose the winning

∗We thank Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, and
anonymous AAAI reviewers for helpful comments. Lirong Xia is
supported by a James B. Duke Fellowship and Vincent Conitzer
is supported by an Alfred P. Sloan Research Fellowship. We also
thank NSF for support under award numbers IIS-0812113 and CA-
REER 0953756.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

alternative. However, the assumption that the voters report
their votes simultaneously is often violated in real-life: usu-
ally, there is some period for voting, and each agent can cast
her vote anywhere in this period (but only once). In this
case, it can be practical to concisely summarize (compile)
the votes that have arrived so far. This has a potential pri-
vacy benefit: in principle, the detailed information of exactly
which voter cast which vote can be thrown away, so that there
is less risk that an outside party finds out how a particular
voter voted.1 As we will see, this approach in some cases
also allows the winner to be announced much faster after the
last vote arrives, compared to the case where we do not do
any computation until the very end.

There are additional benefits to compiling the votes of a
subelectorate. For example, suppose that votes are collected
in multiple locations. Rather than bringing all the votes
(whether in physical or digital form) to the same place, the
votes can simply be compiled locally, and then forwarded to
a central office. Compiling the votes of subelectorates is also
algorithmically useful for computing the backward induc-
tion winner in Stackelberg voting games (Xia and Conitzer
2010).

Chevaleyre et al. (2009) introduced the notion of compila-
tion complexity as the minimum number of bits needed to
store the summary of the votes of the subelectorate for a
voting rule. More precisely, the setting is as follows. Sup-
pose the votes are divided into the subelectorate, consisting
of k known votes, and the complement, consisting of u un-
known votes. In the Chevaleyre et al. framework, u is con-
sidered to be unknown. Hence, the compilation complex-
ity is defined as a function of the voting rule r and k, as
follows. It is the least number of bits needed to be able to
summarize any profile of k votes, in such a way that for any
number u, if we are given any profile of the u votes in the
complement, then from this profile and the summary of the
subelectorate, we can infer the winner under r for the to-
tal electorate. Formally, when summarizing a subelectorate,
a profile P for the subelectorate is mapped to a string of
bits f(P) ∈ {0, 1}∗, representing the votes in the subelec-
torate. We require that for any two profiles P1 and P2, if
f(P1) = f(P2), then for any profile Q for the complement

1This may make it more difficult to verify the winner of the
election later so it requires a large degree of trust in the system.

(which can have any size in the Chevaleyre et al. setting),
we must have r(P1 ∪ Q) = r(P2 ∪ Q), where r is the vot-
ing rule. (If not, then f is leaving out relevant information.)
f is called a compilation function. For given r, m, k, some
compilation function f uses the minimum number of bits;
that number of bits is the compilation complexity, denoted
by Cm,k,?(r). The question mark indicates that the number
u is unknown.

It has been pointed out (Chevaleyre et al. 2009) that
Cm,k,?(r) is related to the following core computational so-
cial choice problems. It is related to the complexity of ter-
minating elicitation (Conitzer and Sandholm 2002; Walsh
2008): given a subset of the votes, is the winner already de-
termined? This problem, in turn, is related to the complexity
of possible and necessary winner determination (Konczak
and Lang 2005; Pini et al. 2007; Xia and Conitzer 2008a;
Betzler, Hemmann, and Niedermeier 2009): given a set of
incomplete votes (modeled as partial orders) and an alterna-
tive c, we are asked whether there exists an extension (resp.,
for any extension), c is the winner. Another related problem
is the communication complexity of voting rules (Conitzer
and Sandholm 2005): what is the smallest number of bits
that must be transferred (among the voters and the center) to
compute the winner?

We can extend the Chevaleyre et al. framework by con-
sidering cases where the number of unknown votes, u, is
known (even though the votes themselves are not). This is
a natural assumption in many cases where we know the size
of the electorate. When both k and u are known, the com-
pilation complexity is Cm,k,u(r). We note that Cm,k,u(r) ≤
Cm,k,?(r), because if the summary contains enough infor-
mation to infer the winner for any number of additional
votes, it also contains enough to infer it for a specific num-
ber u of unknown votes. Moreover, in some cases this in-
equality is strict. As an illustrative example, in the extreme
case where u = 0, the only summary that we need is sim-
ply which alternative won, so that Cm,k,0(r) = ⌈log m⌉ for
any m and r. In fact, that argument does not even depend
on k—so we can also say that Cm,?,0(r) = ⌈log m⌉. Here,
Cm,?,u(r) corresponds to using a compilation function that
works for any profile consisting of any number of known
votes, but a fixed number of unknown votes—in some sense,
the opposite of the Chevaleyre et al. framework. It always
holds that Cm,k,u(r) ≤ Cm,?,u(r).

Chevaleyre et al. focused strictly on Cm,k,?(r), and con-
ducted case studies for some common voting rules. While
these results provide upper bounds on Cm,k,u(r), these up-
per bounds are good only when u is much larger than k; and,
as we will see, they will become quite loose when k is much
larger than u. The authors briefly discussed the idea of using
Cm,?,u(r) as another upper bound. However, no tight bound
was proved for the most intriguing, general case Cm,k,u(r)
(both k and u are known) for any common voting rule.

Our contributions. In this paper, we first study the re-
lations among Cm,k,?(r), Cm,?,u(r), and Cm,k,u(r). (For
all common voting rules r, Cm,?,?(r) = ∞.) We re-
call that Cm,k,?(r) and Cm,?,u(r) are upper bounds on
Cm,k,u(r) (Chevaleyre et al. 2009). Our first result
shows that, conversely, Cm,k,?(r) and Cm,?,u(r) can also be

bounded above by a function that takes limits of Cm,k,u(r)
in a particular way, for anonymous voting rules r satisfying
a condition called h-canceling-out (which includes all the
rules in this paper).

Then, we study upper and lower bounds on compilation
complexity for most common voting rules in use, includ-
ing l-approval, Borda, Bucklin, Copeland, maximin, plural-
ity with runoff, ranked pairs, and voting trees. We obtain
asymptotically tight bounds on the three types of compila-
tion complexity for some rules. Notably, when k and u are
both at least slightly larger than m (more precisely, both are
larger than m1+ǫ for some ǫ > 0), all bounds derived in this
paper are asymptotically tight. Our results are summarized
in Table 1.
Discussion. Among the three types of compilation complex-
ity, Cm,k,? and Cm,k,u seem the most natural. The former is
useful when we do not know how many unknown votes there
are; the latter is useful when we do. The former also serves
as a useful upper bound on the latter.

It must be admitted that Cm,?,u is clearly less natural.
Nevertheless, it does fit certain situations. For example, sup-
pose that the members of a coalition want to manipulate the
election and vote at the last moment, based on everybody
else’s votes. They need to summarize the votes submitted by
everyone else, and then submit their votes in response im-
mediately. A natural strategy for them is the following: in
advance of the election, build a lookup table that maps each
possible summary of the others’ votes to a bundle of votes
that the coalition will submit. Hence, the coalition requires
a compilation function, preferably one that results in a small
table (that is, one with low compilation complexity). How-
ever, when the coalition builds the table, it may not be clear
yet how large the number k of voters outside the coalition
will be. If so, their summarization scheme needs to work for
subelectorate profiles of all possible sizes, corresponding to
Cm,?,u. (If k is known in advance, this problem corresponds
to Cm,k,u.) Indeed, as we will see, if u (the coalition size) is
small, then the lookup table will be small.

That being said, we believe that the main use of Cm,?,u

is as an upper bound on Cm,k,u, as suggested by Chevaleyre
et al. In fact, perhaps the simplest approach to compiling
votes when both k and u are known is the following. If k
is smaller than u, the chair compiles the votes as if she does
not know u (corresponding to Cm,k,?); if u is smaller than k,
the chair compiles the votes as if she does not know k (cor-
responding to Cm,?,u). Our lower bounds on Cm,k,u show
that, surprisingly, this very intuitive and simple approach is
almost the best we can do for most common voting rules, in
an asymptotic sense.

Preliminaries

Let X be the set of alternatives, |X | = m. A vote is a linear
order over X . The set of all linear orders over X is denoted
by L(X). An n-profile P is a collection of n votes for some
n ∈ N, that is, P ∈ L(X)n. A voting rule r is a mapping that
assigns to each profile a unique winning alternative. That is,
r : {∅} ∪L(X) ∪ L(X)2 ∪ . . . → X . Some common voting
rules are listed below. Ties are assumed to be broken accord-
ing to a fixed order over the alternatives, c1 > . . . > cm.

• (Positional) scoring rules: Given a scoring vector ~v =
(v(1), . . . , v(m)), for any vote V ∈ L(X) and any c ∈ X ,
let s(V, c) = v(j), where j is the rank of c in V . For any
profile P = (V1, . . . , Vn), let s(P, c) =

∑n
i=1 s(Vi, c). The

rule will select c ∈ X so that s(P, c) is maximized. Some
examples of positional scoring rules are Borda, for which the
scoring vector is (m − 1, m − 2, . . . , 0); l-approval (Appl,
with l ≤ m), for which the scoring vector is v(1) = . . . =
v(l) = 1 and vl+1 = . . . = vm = 0; plurality, for which the
scoring vector is (1, 0, . . . , 0); and veto, for which the scor-
ing vector is (1, . . . , 1, 0).
• Copeland: For any two alternatives ci and cj , we can sim-
ulate a pairwise election between them, by seeing how many
votes prefer ci to cj , and how many prefer cj to ci; the win-
ner of the pairwise election is the one preferred more often.
Then, an alternative receives one point for each win in a pair-
wise election, and zero points for each loss. (The results in
this paper hold regardless of the number of points for a tie.)
The winner is the alternative that has the highest score.
• Bucklin: An alternative c’s Bucklin score is the smallest
number t such that more than half of the votes rank c among
the top t alternatives. The winner is the alternative that has
the lowest Bucklin score. (We do not consider any further
tie-breaking for Bucklin.)
• Maximin: Let NP (ci, cj) denote the number of votes that
rank ci ahead of cj in P . The winner is the alternative c that
maximizes min{NP (c, c′) : c′ ∈ X , c′ 6= c}.
• Plurality with runoff: The election has two rounds. In the
first round, all alternatives are eliminated except the two with
the highest plurality scores. In the second round (runoff), the
winner is the alternative that wins the pairwise election be-
tween them.
• Ranked pairs: This rule first creates an entire ranking of
all the alternatives. NP (ci, cj) is defined as for the maximin
rule. In each step, we will consider a pair of alternatives
ci, cj that we have not previously considered; specifically,
we choose the remaining pair with the highest NP (ci, cj).
We then fix the ordering ci ≻ cj , unless this contradicts
orderings that we fixed previously (that is, it violates tran-
sitivity). We continue until we have considered all pairs of
alternatives (hence we end up with a full ranking). The alter-
native at the top of the ranking wins.
• Voting trees: A voting tree is a binary tree with m leaves,
where each leaf is associated with an alternative. In each
round, there is a pairwise election between an alternative ci

and its sibling cj : if a majority of voters prefers ci to cj , then
cj is eliminated, and ci is associated with the parent of these
two nodes; and vice versa. The alternative that is associated
with the root of the tree (wins all its rounds) is the winner.
The voting rule that corresponds to a balanced voting tree is
also known as the cup rule.

For any profile P , we let MP denote the weighted ma-
jority graph of P , defined as follows. MP is a directed
graph whose vertices are the alternatives. For i 6= j, if
NP (ci, cj) > 0, then there is an edge (ci, cj) with weight
wij(MP) = NP (ci, cj). Also, for i < j, if NP (ci, cj) = 0,
then there is an edge (ci, cj) with weight wij(MP) = 0. We
say a voting rule r is based on the:
• Weighted majority graph (WMG), if for any pair of pro-

files P1, P2 such that MP1
= MP2

, we have r(P1) = r(P2).
• Order of pairwise elections (OPE), if for any pair of pro-
files P1, P2 with the property that for any i1, i2, j1, j2 ≤
m, wi1j1(MP1

) ≥ wi2j2(MP1
) ⇐⇒ wi1j1(MP2

) ≥
wi2j2(MP2

), we must have r(P1) = r(P2). That is, the
winner can be determined by comparing the magnitudes of
pairwise results.
• Unweighted majority graph (UMG), if for any pair of
profiles P1, P2 such that for any i, j, wij(MP1

) ≥ 0 ⇐⇒
wij(MP2

) ≥ 0, we have r(P1) = r(P2). That is, only
the signs (but not the magnitudes) of the pairwise results are
used to determine the winner.

Note that any UMG-based rule is an OPE-based rule, and
any OPE-based rule is a WMG-based rule. Copeland and
voting trees are based on UMG; maximin and ranked pairs
are based on OPE; and all of them are based on WMG.

A voting rule r is Condorcet consistent if it always selects
the Condorcet winner (that is, the alternative that wins each
of its pairwise elections) whenever one exists.

Let k denote the number of known votes in the sub-
electorate and let u denote the number of unknown votes
in the complement. We first consider the case where k
is known and u is not. For a voting rule r, a function
f r

m,k,? : L(X)k → {0, 1}∗ is a compilation function if for

any P1, P2 ∈ L(X)k with f r
m,k,?(P1) = f r

m,k,?(P2), and

any profile Q, we must have that r(P1 ∪ Q) = r(P2 ∪ Q).
Similarly, we can define compilation functions for the other
two cases (u is known but k is unknown, and both u and
k are known). In these cases, f r

m,?,u : {∅} ∪ L(X)1 ∪

L(X)2 ∪ . . . → {0, 1}∗ (resp., f r
m,k,u : L(X)k → {0, 1}∗)

is a compilation function if for any pair of profiles (resp.,
k-profiles) P1 and P2, if f r

m,?,u(P1) = f r
m,?,u(P2) (resp.,

f r
m,k,u(P1) = f r

m,k,u(P2)), then for any u-profile Q, we

have that r(P1 ∪ Q) = r(P2 ∪ Q).
Now, we are ready to define the three types of compila-

tion complexity. Let len : {0, 1}∗ → N return the length
of a string. Then, for the case where k is known but u
is not, Cm,k,?(r) = minfr

m,k,?
maxP∈L(X)k len(f r

m,k,?(P))

gives the length of strings that we need to compile profiles,
i.e., the compilation complexity. Similarly, Cm,k,u(r) =
minfr

m,k,u
maxP∈L(X)k len(f r

m,k,u(P)) and Cm,?,u(r) =

minfr
m,?,u

maxP∈{∅}∪L(X)1∪L(X)2∪... len(f r
m,?,u(P)). In

each case, the min must be taken over valid compilation
functions for that case.

Relations among the three types of compilation

complexity

In this section, we invesigate the relations among the three
types of compilation complexity for the same voting rule r.
First, as Chevaleyre et al. (2009) pointed out, Cm,k,?(r) and
Cm,?,u(r) are both at least as large as Cm,k,u(r). They also
provided loose upper bounds for any rule r (O(k log(m!))
on Cm,k,?, and O((m!)u log m) on Cm,?,u).

Lemma 1 (Chevaleyre et al. 2009) ∀m, k, u ∈ N, and for
any rule r, Cm,k,u(r) ≤ min

(

Cm,k,?(r), Cm,?,u(r)
)

.

This lemma will be frequently used in the paper in the fol-
lowing way. Once we obtain an upper bound on Cm,k,?(r)

or Cm,?,u(r), we immediately obtain an upper bound on
Cm,k,u(r); conversely, once we obtain a lower bound on
Cm,k,u(r), we immediately have lower bounds on Cm,k,?(r)
and Cm,?,u(r), respectively. We may also ask: If we obtain
an upper bound on Cm,k,u(r), can we use this to derive up-
per bounds on Cm,k,?(r) and Cm,?,u(r) in some way?

One naı̈ve approach is to take the limit of Cm,k,u(r) as
u → ∞ (to obtain a bound on Cm,k,?(r)). However, this
approach does not work well. For one, it is not guaranteed
that the limit of Cm,k,u(r) when u goes to infinity exists.
Another issue is that, even if limu→∞ Cm,k,u(r) does exist,
it might be smaller than Cm,k,?(r), as shown in the following
example. (A similar example exists for Cm,?,u(r).)
Example 1 Let {A, B, C} be an arbitrary partition of the
possible votes, L(X). Let r be the voting rule defined as fol-
lows. For any profile P , we let:

r(P) =

{

c1 if P ∩ A 6= ∅
c2 otherwise

if |P | is odd;

r(P) =

{

c1 if P ∩ B 6= ∅
c2 otherwise

if |P | is even.

If we know in advance that the total number of votes will
be odd (even), then we only need to keep track of one bit
of information, namely, whether there has been a vote in
A (B). Hence, for any u, we have that Cm,k,u(r) = 1,
so limu→∞ Cm,k,u(r) = 1. However, if we do not know
whether there will be an odd or even number of votes, then
when we want to compile P , we need to keep track of which
of four possible states we are in: (1) P ∩ (A ∪ B) = ∅, (2)
P ∩ A 6= ∅ but P ∩ B = ∅, (3) P ∩ B 6= ∅ but P ∩ A = ∅,
(4) P ∩ B 6= ∅ and P ∩ A 6= ∅. Hence, we need two bits to
keep track of all possibilities, so Cm,k,?(r) = 2.

Of course, the rule in Example 1 is very artificial. It turns out
that common voting rules have structure that does allow us
to obtain upper bounds on Cm,k,?(r) and Cm,?,u(r) from an
upper bound on Cm,k,u(r). This result works for all anony-
mous voting rules for which there exists an h-profile P that
always cancels out.

Definition 1 An anonymous voting rule r satisfies h-
canceling-out, for h ∈ N, if there exists an h-profile P such
that for any profile P ′, r(P ∪ P ′) = r(P ′).
Most common voting rules satisfy h-canceling-out for some
h, e.g., all common rules studied in this paper (except Buck-
lin).

Proposition 1 Plurality with runoff satisfies 2m-canceling-
out; all positional scoring rules satisfy m-canceling-out;
Borda and all WMG-based voting rules satisfy 2-canceling-
out.

The next proposition states that for any r that satisfies h-
canceling-out, the limit of Cm,k,u(r) as u (or k) goes to in-
finity does exist, if we increase u (or k) by h each time.

Proposition 2 Let r be an anonymous voting rule that satis-
fies h-canceling-out. For any k (resp., u) and any 0 ≤ h′ ≤
h−1, limi→∞ Cm,k,h′+ih(r) (resp., limi→∞ Cm,h′+ih,u(r))
exists and is finite.

Finally, we obtain the following bounds on Cm,k,?(r) and
Cm,?,u(r): Cm,k,?(r) (resp., Cm,?,u(r)) is bounded
below by the largest limi→∞ Cm,k,h′+ih(r) (resp.,
limi→∞ Cm,h′+ih,u(r)) among all h′ < h, and is bounded

above by the sum of such limits over all h′ < h. This
implies the lower and upper bounds are within a factor h.

Proposition 3 Let r be an anonymous voting rule that sat-
isfies h-canceling-out. For any 0 ≤ h′ ≤ h − 1, let pk,h′ =
limi→∞ Cm,k,h′+ih(r) and p̂u,h′ = limi→∞ Cm,h′+ih,u(r).
For any k, u, m ∈ N, we have maxh′ pk,h′ ≤ Cm,k,?(r) ≤
∑h−1

h′=0 pk,h′ and maxh′ p̂u,h′ ≤ Cm,?,u(r) ≤
∑h−1

h′=0 p̂u,h′ .

Compilation complexity of common rules

In this section, we study upper and lower bounds on all three
types of compilation complexity for common voting rules,
including l-approval, Borda, Bucklin, plurality with runoff,
all Condorcet-consistent rules (including Copeland, max-
imin, ranked pairs, and voting trees), all WMG-based rules
(including all OPE-based rules and all UMG-based rules),
all OPE-based rules (including maximin, ranked pairs, and
all UMG-based rules), and all UMG-based rules (including
Copeland and voting trees). For each voting rule r, we obtain
bounds in the following way. We first derive upper bounds on
Cm,k,?(r) and Cm,?,u(r), and apply Lemma 1 to obtain an
upper bound on Cm,k,u(r). Then, we derive a lower bound
on Cm,k,u(r), and apply Lemma 1 to obtain lower bounds
on Cm,k,?(r) and Cm,?,u(r).

For each rule that we study, the upper bounds on
Cm,k,?(r) and Cm,?,u(r) are proved by explicitly giving
compilation functions f r

m,k,? and f r
m,?,u. All our compila-

tion functions share a common characteristic: f r
m,k,? maps

each profile P to a vector that represents some type of scores
(different types for different rules) that the alternatives ob-
tain in the profile P . For example, in a plurality election,
we only need to keep track of all alternatives’ current plu-
rality scores. For any k-profile P , f r

m,?,u(P) is obtained by

deriving a (rule-specific) lower bound, such that if the value
of one of the scores in f r

m,k,?(P) is below the lower bound,

it will not make any difference to increase it to the lower
bound—as long as there are only u remaining votes. For ex-
ample, if in a plurality election, a receives 10 votes from the
subelectorate and b only 3, and only u = 4 votes remain in
the complement, we can increase b’s score to 5 and b is still
guaranteed to lose. Better yet, we can then subtract 5 from
everyone’s score (so that a is at 5 and b is at 0). If we do
this, then we are guaranteed that the largest score that we
ever need in fPlu

m,?,4(P) is 5.

The compilation functions f r
m,k,? and f r

m,?,u naturally in-

duce a compilation function f r
m,k,u for Cm,k,u(r), as fol-

lows. If the upper bound for Cm,k,?(r) is smaller than the
upper bound for Cm,?,u(r), then we let f r

m,k,u = f r
m,k,?;

otherwise, we let f r
m,k,u = f r

m,?,u. If we can prove a match-

ing lower bound for Cm,k,u(r) (in the asymptotic sense),
then the compilation function f r

m,k,u defined above is opti-

mal up to a multiplicative constant. To prove a lower bound
on f r

m,k,u(r), we construct a set of k-profiles P that must

be mapped to different strings by any compilation function.
The lower bound is obtained by taking the logarithm of the
set’s size. The proofs for the lower bounds are technically
much more involved. We only show how to construct com-
pilation functions (in proof sketches). The remaining parts

of the proofs are omitted due to the space constraint. The
full version with all proofs can be found online.

Theorem 1 (l-approval) Let l′ = m − l.
• When l ≤ m/2, Cm,k,?(Appl) is Θ

(

m log(1 +

kl/m) + kl log(1 + m/kl)
)

; Cm,?,u(Appl) is Θ(m logu);

and Cm,k,u(Appl) is Θ
(

min(m log(1+ kl/m)+ kl log(1+

m/kl), m logu)
)

.

• When l > m/2, Cm,k,?(Appl) is Θ
(

m log(1+kl′/m)+

kl′ log(1 + m/kl′)
)

; Cm,?,u(Appl) is Ω
(

m log(ul′/m)
)

and is O(m log u); and Cm,k,u(Appl) is Ω
(

min(m log(1 +

kl′/m) + kl′ log(1 + m/kl′), m log(ul′/m))
)

and is

O
(

min(m log(1 + kl′/m) + kl′ log(1 + m/kl′), m log u)
)

.

Proof sketch. [Cm,k,?(Appl)] When l ≤ m/2, we let

f
Appl

m,k,?(P) = (s(P, c1), . . . , s(P, cm)), that is, the total

scores of the alternatives in P ; when l > m/2, we let

f
Appl

m,k,?(P) = (k − s(P, c1), . . . , k − s(P, c1)), that is, the

“complements” of the total scores of the alternatives in P .

[Cm,?,u(Appl)] Let P be a k-profile. Let c be
an alternative that obtains the highest score under P .

The idea in f
Appl

m,?,u is that if the score of an alterna-

tive is smaller than s(P, c) − u, then that alternative
cannot be the winner. Therefore, P can be compiled
into a vector consisting of the differences between s(P, c)
and the scores of the alternatives in P , where the dif-
ferences are capped above by u + 1. Formally, let

emax = max
(

s(P, c1), . . . , s(P, cm)
)

. We let f
Appl

m,?,u(P) =

(max(s(P, c1)+u+1−emax, 0), . . . , max(s(P, cm)+u+
1 − emax, 0)). �

Theorem 2 (Borda) Cm,k,?(Borda) is Θ(m log(km)),2

Cm,?,u(Borda) is Θ(m log(um)), and Cm,k,u(Borda) is
Θ(m log(min(km, um))).

Proof sketch. [Cm,k,?(Borda)] Let fBorda
m,k,? be the com-

pilation function that maps each k-profile to a vector of
m natural numbers representing the total score of each
alternative. That is, for any k-profile P , fBorda

m,k,?(P) =

(s(P, c1), . . . , s(P, cm)) (Chevaleyre et al. 2009).

[Cm,?,u(Borda)] We let fBorda
m,?,u be the compila-

tion function defined as follows. For any k-profile,
suppose fBorda

m,k,?(P) = (e1, . . . , em). Let emax =

max(e1, . . . , em). We let fBorda
m,?,u(P) = (max(e1 + um +

1 − emax, 0), . . . , max(em + um + 1 − emax, 0)). �

Theorem 3 (Bucklin) For any k, u such that min(k, u) ≥
m ≥ 12, Cm,k,?(Bu) is Θ(m2 log k), Cm,?,u(Bu) is

Θ(m2 log u), and Cm,k,u(Bu) is Θ(m2 log(min(k, u))).

Proof sketch. [Cm,k,?(Bu)] Let fBu
m,k,? be the compi-

lation function that maps each profile to a vector of m2

natural numbers, representing the number of times that
each alternative is ranked in each position in the pro-
file. Formally, let fBu(P, c, i) be the number of times
that c is ranked in the ith position. For any k-profile P ,

2This was proved in (Chevaleyre et al. 2009). There was a small
mistake in the proof for the lower bound, which can be fixed.

we let fBu
m,k,?(P) = (fBu(P, c1, 1), . . . , fBu(P, c1, m), . . . ,

fBu(P, cm, 1), . . . , fBu(P, cm, m)).
[Cm,?,u(Bu)] Let f∗

Bu(P, c, i) be the number of times that
c is ranked anywhere in the top i positions. We note that if
f∗

Bu(P, c, i) is no more than ⌊(k+u)/2⌋−u, then effectively
it is the same as if f∗

Bu(P, c, i) is ⌊(k + u)/2⌋ − u, because
there are only u remaining voters. Similarly, if f∗

Bu(P, c, i) is
at least ⌊(k + u)/2⌋+ 1, then it is the same as if f∗

Bu(P, c, i)
is ⌊(k + u)/2⌋ + 1. Therefore, we let fBu

m,?,u(P) consist of

all the f∗
Bu(P, c, i), bounded by the interval [⌊(k + u)/2⌋ −

u, ⌊(k + u)/2⌋ + 1] (we can subtract ⌊(k + u)/2⌋ − u] to
make the interval start at 0). �

Proposition 4 For any UMG-based rule rUMG,
Cm,?,u(rUMG) is O(m2 log u); for any OPE-based rule

rOPE, Cm,?,u(rOPE) is O(m2 log(um)).
Proof sketch. For any UMG-based rule, the compilation
function fUMG

m,?,u(P) produces a modified weighted major-

ity graph M ′
P (from the original majority graph MP with

weights wij(MP)) in the following way. For each edge
ci → cj such that wij(MP) > u + 1, let wij(M

′
P) = u + 1;

for any other edge ci → cj , let wij(M
′
P) = wij(MP).

For any OPE-based rule, the compilation function
fOPE

m,?,u(P) produces a different modified weighted major-

ity graph M ′′
P : First, we order the non-negative weights of

the edges in MP from large to small. Let e1 ≥ . . . ≥
em(m+1)/2 ≥ 0 denote the weights. Then, we construct an-

other set of weights for these edges, denoted by e′′1 ≥ . . . ≥
e′′m(m+1)/2 ≥ 0, such that for any j ≤ m(m + 1)/2, if

ej − ej+1 > u + 1, then e′′j − e′′j+1 = u + 1; otherwise,

e′′j − e′′j+1 = ej − ej+1 (and e′′m(m+1)/2+1 = 0). Let M ′′
P

denote the graph with the weights e′′1 , . . . , e′′m(m+1)/2. �

Proposition 5 There exists a constant q > 0 such that
for any Condorcet consistent voting rule r, Cm,k,u(r)
is Ω(m2 log(min(⌊k log m/(qm)⌋ − 1, u))), Cm,k,?(r) is

Ω(m2 log(⌊k/(qm)⌋ − 2)),3 and Cm,?,u(r) is Ω(m2 log u).

The following two theorems follow directly from Proposi-
tions 4 and 5.
Theorem 4 (Condorcet-consistent OPE-based rules) Let
r be a Condorcet-consistent OPE-based rule (e.g., maximin
or ranked pairs). There exists a constant q > 0 such that the
following holds.
• Cm,k,?(r) is Ω(m2 log(⌊k/qm⌋−2)) and is O(m2 log k);
• Cm,?,u(r) is Ω(m2 log u) and is O(m2 log(um));
• Cm,k,u(r) is Ω(m2 log(min(⌊k log m/(qm)⌋ − 1, u)))
and is O(m2 log(min(k, um))).

Theorem 5 (Condorcet consistent UMG-based rules)
Let r be a Condorcet-consistent UMG-based rule (e.g.,
Copeland or a voting tree). There exists a constant q > 0
such that the following holds.
• Cm,k,?(r) is Ω(m2 log(⌊k/qm⌋−2)) and is O(m2 log k);
• Cm,?,u(r) is Θ(m2 log u);
• Cm,k,u(r) is Ω(m2 log(min(⌊k log m/(qm)⌋ − 1, u)))
and is O(m2 log(min(k, u))).

3It was claimed that Cm,k,?(r) = Ω(m2 log k) in (Chevaleyre
et al. 2009). However, there was a small bug in their proof. Our
proof uses a theorem by Erdös and Moser (1964).

Voting rule Cm,k,? Cm,?,u Cm,k,u

l-approval
(l ≤ m/2)

(Theorem 1)
Θ

`

m log(1 + kl/m)
+kl log(1 + m/kl)

´ Θ(m log u)
Θ

`

min(m log(1 + kl/m)
+kl log(1 + m/kl), m log u)

´

l-approval
(l > m/2)

(Theorem 1)
Θ

`

m log(1 + kl′/m)
+kl′ log(1 + m/kl′)

´

Ω
`

m log(ul′/m)
´

O(m log u)

Ω
`

m log(ul′/m)
´

, and

O
`

min(m log(1 + kl′/m)
+kl′ log(1 + m/kl′), m log u)

´

Borda (Theorem 2) Θ
`

m log(km)
´

4 Θ
`

m log(um)
´

Θ
`

m log min(km, um)
´

Bucklin
(min(u, k) ≥ m ≥ 12)

(Theorem 3) Θ(m2 log k) Θ(m2 log u) Θ
`

m2 log(min(k, u))
´

Plurality with runoff

(k = Ω(m1+ǫ))
(Theorem 6) Θ(m2 log k) Θ(m2 log u) Θ

`

m2 log(min(k, u))
´

WMG-based rules
(incl. UMG/OPE-based rules)

(Proposition 4) O(m2 log k) 4 O((m!)u log m) 4 O
`

min(m2 log k, mu log u)
´

OPE-based rules
(incl. maximin and ranked pairs)

(Proposition 4) O(m2 log k) 4 O
`

m2 log(um)
´

O
`

m2 log(min(k, um))
´

UMG-based rules
(incl. Copeland and voting trees)

(Proposition 4) O(m2 log k) 4 O(m2 log u) O
`

m2 log(min(k, u))
´

Condorcet consistent rules
(incl. Copeland, maximin,
ranked pairs, voting trees)

(Proposition 5) Ω
`

m2 log(⌊k/(qm)⌋ − 2)
´

Ω(m2 log u)
Ω

`

m2 log(min(u,
⌊k log m/(qm)⌋ − 1))

´

Table 1: Compilation complexity of common voting rules.

Theorem 6 (Plurality with runoff) For any ǫ > 0,
any k = Ω(m1+ǫ), and any u ∈ N, Cm,k,?(Pluo)
is Θ(m2 log k), Cm,?,u(Pluo) is Θ(m2 log u), and

Cm,k,u(Pluo) is Θ(m2 log(min(k, u))).

Proof sketch. For any k-profile P , let fPluo
m,k,?(P) =

(fPlu
m,k,?(P), fUMG

m,k,?(P)) (Chevaleyre et al. 2009); for any

profile P , we let fPluo
m,?,u(P) = (fPlu

m,?,u(P), fUMG
m,?,u(P)). �

Remark. For any compilation function f in this section and
any profile P in the domain of f , computing f(P) only takes
polynomial time.

Conclusion and future work

In this paper, we studied three types of compilation com-
plexity, denoted by Cm,k,?, Cm,?,u, and Cm,k,u. We first
discussed the relations among them and showed that for any
anonymous voting rule r that satisfies h-canceling-out, the
limit of Cm,k,u(r) when u (resp., k) goes to infinity can
be used to compute an upper bound for Cm,k,?(r) (resp.,
Cm,?,u(r)). We then conducted case studies of the three
types of compilation complexity for common voting rules.
The results are summarized in Table 1. We note that the
bounds for l-approval (l ≤ m/2), Borda, and Bucklin are
asymptotically tight. For the others, when k and u are both
sufficiently large (both are m1+ǫ for some ǫ > 0), the bounds
are asymptotically tight. The upper bounds correspond to
easy-to-compute compilation functions that can be used to
compile the results of subelectorates, and the lower bounds
show that we cannot do (much) better. Generally, the lower
bounds are more difficult to prove.

Future research can take a number of directions. A natu-
ral direction is to investigate the compilation complexity of
other rules, such as STV. Another direction is to consider sit-
uations where the votes come in one at a time and we need
to maintain the compilation of the votes that have been cast
so far, throughout the election. It is not difficult to see that

4Proved in (Chevaleyre et al. 2009).

the compilation functions in this paper can easily be updated
as more votes come in. A larger direction is to more deeply
understand the connections between compilation complexity
and other concepts in computational social choice. For ex-
ample, compilation complexity has similarities to communi-
cation complexity, as discussed in (Chevaleyre et al. 2009).
Also, there is a relationship to the interpretation of voting
rules as generalized scoring rules (GSRs) (Xia and Conitzer
2008b): we can always compile a voting rule by keeping
track of the current GSR scores, resulting in an upper bound
that depends on the number of scores in the GSR.

References
Betzler, N.; Hemmann, S.; and Niedermeier, R. 2009. A multi-
variate complexity analysis of determining possible winners given
incomplete votes. In IJCAI, 53–58.

Chevaleyre, Y.; Lang, J.; Maudet, N.; and Ravilly-Abadie, G.
2009. Compiling the votes of a subelectorate. In IJCAI, 97–102.

Conitzer, V., and Sandholm, T. 2002. Vote elicitation: Complexity
and strategy-proofness. In AAAI, 392–397.

Conitzer, V., and Sandholm, T. 2005. Communication complexity
of common voting rules. In EC, 78–87.

Erdös, P., and Moser, L. 1964. On the representation of directed
graphs as unions of orderings. Math. Inst. Hung. Acad. Sci. 9:125–
132.

Konczak, K., and Lang, J. 2005. Voting procedures with incom-
plete preferences. In Multidisciplinary Workshop on Advances in
Preference Handling.

Pini, M. S.; Rossi, F.; Venable, K. B.; and Walsh, T. 2007. In-
completeness and incomparability in preference aggregation. In
IJCAI, 1464–1469.

Walsh, T. 2008. Complexity of terminating preference elicitation.
In AAMAS, 967–974.

Xia, L., and Conitzer, V. 2008a. Determining possible and neces-
sary winners under common voting rules given partial orders. In
AAAI, 196–201.

Xia, L., and Conitzer, V. 2008b. Generalized scoring rules and the
frequency of coalitional manipulability. In EC, 109–118.

Xia, L., and Conitzer, V. 2010. Stackelberg Voting Games: Com-
putational Aspects and Paradoxes. In AAAI.

