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Abstract. Firms have ever-increasing amounts of information about possible
customers available to them; furthermore, they are increasingly able to push of-
fers to them rather than having to passively wait for a consumer to initiate con-
tact. This opens up enormous new opportunities for intelligent marketing. In this
paper, we consider the limit case in which the firm can predict consumers’ pref-
erences and relationships to each other perfectly, and has perfect control over
when it makes offers to consumers. We focus on how to optimally introduce a
new product into a social network of agents, when that product has significant
externalities. We propose a general model to capture this problem, and prove that
there is no polynomial-time approximation unless P=NP. However, in the special
case where agents’ relationships are symmetric and externalities are positive, we
show that the problem can be solved in polynomial time.

1 Introduction

Often the utility that a person derives from a technology depends on whether her neigh-
bors are using the same technology. Examples include various kinds of office software
(calendar management, word processing, spreadsheets), mobile phones, etc. In such a
context, the technology-provider may need to charge early adopters lower prices (or
even give them compensations). Moreover, as firms obtain increasing amounts of data
on consumers, they are able to individualize offers to them, in terms of both the timing
of the offer and price quoted. This results in a challenging optimization problem for the
provider: choose intelligently to which agents to make offers, and in which order.

We assume that a new provider is introducing a single new technology. There may
be competing technologies in the market, but in any case the existing situation is static.
This rules out possibilities such as existing providers modifying their own prices or
otherwise acting in response to the new provider’s actions. We also assume that the
agents are myopically rational: when made an offer, an agent decides on the offer based
on the technologies currently used by her neighbors. The agent does not attempt to
predict whether her neighbors will later switch technologies themselves. Finally, we
restrict ourselves to situations where the new provider can perfectly predict how much
an agent is be willing to pay.
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We show that the general problem is hard to approximate unless P = NP (Section 3).
However, in an interesting special case where the agents have symmetric utilities and
positive externalities, the problem can be formulated as an integer program whose con-
straint matrix is totally unimodular. Hence, we get a polynomial time algorithm (Sec-
tion 4).

Previous Work. There is an extensive literature on marketing policies over a social
network [7]. The generic setting is as follows. Initially, the firm convinces a certain
subset of agents to use the new technology and those agents, in turn, influence their
neighbors. The process continues, and more agents adopt the new technology due to
a cascading effect. A standard objective [11] is to select an initial subset of at most k
agents so as to maximize the influence, which is defined as the total number of agents
who adopt the new technology at the end of the cascading process.

In contrast to the influence maximization, we optimize the profit over a social net-
work [3, 9]. The two papers [10, 4] are particularly relevant to our setting. They consider
a Bayesian model. Here, an agent’s valuation for the new technology is private knowl-
edge, but it is drawn from a publicly known distribution. This distribution depends on
the subset of her neighbors who have already switched to the new technology. The new
firm visits the agents one by one, and while visiting an agent, it offers her the new
technology at some price. The agents behave myopically, and the objective is to maxi-
mize the expected sum of total payments collected from all the agents. The authors give
simple influence and exploit policies that are constant factor approximations to optimal
profit: In the first stage, a select subset of agents gets the new technology for free. In the
next stage, the remaining agents are visited in a sequence chosen uniformly at random,
and each of those agents is offered the new technology at the myopically optimal price.
Our work is different from these results in three crucial aspects: 1) Unlike these previ-
ous papers, we consider a perfect-information (non-Bayesian) setting. 2) In our model,
the firm incurs a nonnegative cost for producing each unit of the product, and the ob-
jective is to maximize the total payments made by the agents minus the total production
cost. Hence, marketing policies that make offers to a large subset of agents at low prices
can be extremely suboptimal. 3) We allow the agents to have positive utilities for being
in the initial state, which captures settings where an existing technology is already in
use, and our firm wants to enter the market and compete with an incumbent.

2 The Problem: OPTIMAL-OFFER-SEQUENCE

Consider a simple undirected graph G = (V,E). Every node i ∈ V denotes an agent,
and there is an edge {i, j} ∈ E iff i 6= j and i and j are neighbors. Initially, every agent
i ∈ V is in stateA. A new firm (say B) now wants to enter the market, and its objective
is to maximize profit by exploiting the network structure. If some agent i ∈ V decides
to be a customer of firm B, then we say that agent i switches (or converts) to state B.

The vector S captures the states of all the agents at any particular instant. Compo-
nent i ∈ V of vector S is denoted by Si, and the notation S−i denotes all the compo-
nents except component i. Specifically, we set Si = A (resp. Si = B) iff agent i is in
state A (resp. state B). Let Ui(S) be the utility of agent i ∈ V . It is a function of the



state vector, and can be expressed as the sum of two terms:

Ui(S) = Ini(Si) + Γi(Si,S−i) (1)

In the above equation, the term Ini(Si) denotes the intrinsic utility agent i ∈ V
derives from being in state Si; whereas her extrinsic utility is captured by the term
Γi(Si,S−i) and it is determined in the following manner. Let Φt,t′(i, j) be the (non-
negative) utility agent i derives from her friend j, when i is in state t ∈ {A,B} and j is
in state t′ ∈ {A,B}. In general, these utilities may be asymmetric, that is, we may have
Φt,t′(i, j) 6= Φt′,t(j, i). For all t, t′ ∈ {A,B} and i, j ∈ V , we set Φt,t′(i, j) = 0 if the
agents i, j are not friends with each other. Now:

Γi(Si,S−i) =
∑
j∈V

ΦSi,Sj
(i, j) (2)

Initially, every agent is in state A. Next, firm B selects a subset V ∗ ⊆ V , and
computes a ranking π : V ∗ → {1, . . . , |V ∗|} of the agents in V ∗. The rank of agent
i ∈ V ∗ is given by π(i). Firm B now visits the agents in V ∗ in increasing order of their
ranks. While visiting an agent i, firm B offers her the new technology at a price pi.

Without any loss of generality, we can assume that every agent i ∈ V ∗ accepts her
offer.1 Let S be the state vector just before firm B makes an offer to agent i. Agent
i behaves myopically and utilities are quasilinear. Hence, if she is to switch her state,
then we must have: Ini(B) + Γi(B,S−i) − pi ≥ Ini(A) + Γi(A,S−i). Since firm B
wants to maximize its profit, it sets pi to the highest possible value. Thus, we have:

pi = Ini(B) + Γi(B,S−i)− Ini(A)− Γi(A,S−i) (3)

The price pi can be negative, which implies a subsidy. The idea is that firm B may
have to subsidize some agents in the beginning, when few agents are in state B and
they may incur a loss for switching to the new technology. As more and more agents
convert to state B, the firm will be able to exploit the resulting positive externalities and
generate a large profit, due to the customers who switch in later stages. Firm B also
incurs a manufacturing cost of c per unit of the product. We want to maximize its net
profit, given by the expression

∑
i∈V ∗(pi − c). Throughout the rest of the paper, we

refer to this optimization problem as OPTIMAL-OFFER-SEQUENCE.

Lemma 1. Let PROFIT(j) be the profit from agent j. For all i ∈ V ∗, let π−(i) be the
set of agents switching to state B before agent i, i.e., π−(i) = {j ∈ V ∗ : π(j) < π(i)}.

PROFIT(i) =



0, if i ∈ V \ V ∗.

(
Ini(B)− Ini(A)− c

)
+

∑
j∈π−(i)

(
ΦB,B(i, j)− ΦA,B(i, j)

)
+

∑
j∈V \π−(i)

(
ΦB,A(i, j)− ΦA,A(i, j)

)
,

if i ∈ V ∗.

The total profit of firm B is given by:
∑
i∈V PROFIT(i) =

∑
i∈V ∗ PROFIT(i).

1 Otherwise, we could delete agent i from the set V ∗.



Proof. Fix any agent i ∈ V ∗. Note that PROFIT(i) = pi − c. Let S be the state vector
just before i switches to state B. By Equation 3, PROFIT(i) is equal to:

Ini(B)− Ini(A)− c+ Γi(B,S−i)− Γi(A,S−i) (4)

Expanding the right hand side of Equation 2, we can show:

Γi(B,S−i) =
∑

j∈π−(i)

ΦB,B(i, j) +
∑

j∈V \π−(i)

ΦB,A(i, j)

Γi(A,S−i) =
∑

j∈π−(i)

ΦA,B(i, j) +
∑

j∈V \π−(i)

ΦA,A(i, j)

Finally, we substitute the above expressions back in Eq. 4. ut

3 A Hardness Result

In this section, we show that (see Lemma 3) it is NP-hard to decide whether firm B
can make positive profit, by a reduction from the Maximum Arc Set on Tournaments
(MAST) problem. This rules out the existence of any polynomial-time approximation
algorithm for OPTIMAL-OFFER-SEQUENCE, unless P = NP (see Theorem 1).

Let G = (V, E) be a directed tournament graph; that is, for any two distinct nodes
i, j ∈ V , we have |E ∩{(i, j), (j, i)}| = 1. Let π : V → {1, . . . , |V|} be a ranking of the
set of nodes V , where π(i) denotes the rank of node i ∈ V , and π(i) 6= π(j) if i 6= j.
We say that an edge (i, j) ∈ E is a forward edge (resp. backward edge) w.r.t. ranking π
if π(i) < π(j) (resp. π(i) > π(j)).

Maximum Acyclic Subgraph on Tournaments (MAST): An instance F of the prob-
lem consists of an ordered pair (G, θ), where θ ≥ 1 is a positive integer, and G = (V, E)
is a directed tournament graph. The objective is to decide if there exists a ranking of V
where the number of backward edges is at least θ. This problem is NP-hard [6, 2, 5, 1].

The Reduction. Given an instance F of the MAST problem (G = (V, E), θ), we con-
struct the following instance IF of OPTIMAL-OFFER-SEQUENCE. It is easy to see that
the reduction can be implemented in polynomial time.

– G = (V,E) is a complete undirected graph, defined on the same node set as that of
G; that is, V = V and E = {{i, j} : i, j ∈ V, i 6= j}.

– For all i, j ∈ V : if (i, j) ∈ E then ΦB,B(i, j) = 1, else ΦB,B(i, j) = 0.
– For all i, j ∈ V : we have ΦA,B(i, j) = ΦB,A(i, j) = ΦA,A(i, j) = 0.
– For all i ∈ V : we set Ini(A) = Ini(B) = 0.
– The cost per unit c is set in such a way that

−c× |V |+ θ = 1 (5)

According to the above reduction, the profit (Lemma 1) from the instance IF equals:

PROFIT = −c|V ∗|+
∑
i∈V ∗

∑
j∈π−(i)

ΦB,B(i, j) (6)



Let G[V ∗] = (V ∗, E∗) be the subgraph of G induced by the node set V ∗ ⊆ V , so that:

E∗ = {(i, j) ∈ E : i, j ∈ V ∗, i 6= j} (7)

Let E∗π be the set of backward edges in G[V ∗] w.r.t. π. Since ΦB,B(i, j) = 1 when
(i, j) ∈ E , and ΦB,B(i, j) = 0 when (i, j) /∈ E , Equation 6 implies that

PROFIT = −c|V ∗|+
∑
i∈V ∗

∑
j∈π−(i)

ΦB,B(i, j) = −c|V ∗|+ |E∗π| (8)

Lemma 2. In the instance IF of OPTIMAL-OFFER-SEQUENCE, the profit-maximizing
solution either converts all the agents to state B, or it does not convert any agent to
state B; that is, it sets either V ∗ = ∅ or V ∗ = V .

Proof. In the profit-maximizing solution, suppose that the agents in V ∗ switch to state
B according to the ranking π : V ∗ → {1, . . . , |V ∗|}. For the sake of contradiction,
suppose that the lemma is false, and the profit-maximizing solution sets ∅ ⊂ V ∗ ⊂
V . Since the profit is nonnegative, Equation 8 implies that −c|V ∗| + |E∗π| ≥ 0, or
equivalently, c ≤ |E∗π|/|V ∗|. Since |E∗π| ≤

(|V ∗|
2

)
, we derive c < |V ∗|/2.

Fix any k ∈ V \ V ∗. Let δ+(k, V ∗) (resp. δ−(k, V ∗)) be the number of outgoing
(resp. incoming) edges of k whose other endpoints lie in V ∗. Since the graph G is a
tournament, either δ−(k, V ∗) ≥ |V ∗|/2 or δ+(k, V ∗) ≥ |V ∗|/2.

Case 1. δ−(k, V ∗) ≥ |V ∗|/2.
In this case, we construct a new solution that converts all the nodes in V ∗ ∪{k} to state
B in the following order: First, it converts node k. Next, it converts the nodes in V ∗

according to ranking π. Let the new profit be P′. Clearly, we have:

P′ = −c(|V ∗|+ 1) + δ−(k, V ∗) + |E∗π| > −c|V ∗|+ |E∗π|

The inequality holds since c < |V ∗|/2 and δ−(k, V ∗) ≥ |V ∗|/2. Thus, the new profit
is strictly greater than the maximum profit, which is a contradiction.

Case 2. δ+(k, V ∗) ≥ |V ∗|/2.
In this case, we construct another solution that converts all the nodes in V ∗ ∪ {k} to
state B in the following order: First, it converts the nodes in V ∗ according to ranking
π. Next, it converts node k. Applying an argument similar to Case 1, we show that the
new profit is strictly greater than the maximum profit, which is a contradiction. ut

Lemma 3. FirmB can get positive profit from the instance IF of the OPTIMAL-OFFER-
SEQUENCE problem if and only if the instanceF of the MAST problem admits a ranking
where the number of backward edges is at least θ.

Proof. Suppose that the optimal solution to the instance IF converts the agents in V ∗ ⊆
V to state B according to the ranking π. Lemma 2 implies that it is possible to get
positive profit from the instance IF iff V ∗ = V , and in that case, applying Equation 8:

PROFIT = −c|V |+ |E∗π| = 1− θ + |E∗π| > 0.

The second equality holds because of Equation 5. Since θ is an integer, 1−θ+ |E∗π| > 0
iff |E∗π| ≥ θ. Since π is also a ranking for the MAST instance F , the lemma follows.



Lemma 3 implies Theorem 1.

Theorem 1. The OPTIMAL-OFFER-SEQUENCE problem does not admit any polynomial-
time approximation algorithm, unless P = NP .

Next, we describe a family of instances that admit a 2-approximation in poly-time.
Theorem 2 follows from a result by Guruswami et al. [8].

Theorem 2. Consider a family of instances of the OPTIMAL-OFFER-SEQUENCE prob-
lem where c = 0, Ini(A) = Ini(B) = 0 for all i ∈ V , and ΦA,B(i, j) = ΦB,A(i, j) =
ΦA,A(i, j) = 0 and ΦB,B(i, j) ≥ 0 for all i, j ∈ V . Under such settings, there exists
a poly-time 2 approximation algorithm for the OPTIMAL-OFFER-SEQUENCE problem,
and it is Unique Games hard to get better than 2 approximation.

4 Symmetric Utility Functions: Polynomial Time Algorithm

In this section, for all {i, j} ∈ E, we require thatΦA,A(i, j) = ΦA,A(j, i),ΦB,B(i, j) =
ΦB,B(j, i), and ΦA,B(i, j) = ΦB,A(j, i) = 0. Such utility functions are symmetric, and
we write ΦA,A({i, j}) and ΦB,B({i, j}) instead of ΦA,A(i, j) and ΦB,B(i, j). Under
symmetric utilities, the problem can be solved in polynomial time (see Theorem 3).

Lemma 4. If the utility functions are symmetric, then the profit of firm B is given by:∑
i∈V ∗

(
Ini(B)− Ini(A)− c

)
+

∑
{i,j}⊆V ∗

ΦB,B({i, j})−
∑

{i,j}∩V ∗ 6=∅

ΦA,A({i, j})

Proof. Since the utility functions are symmetric, we have:∑
i∈V ∗

∑
j∈π−(i)

(
ΦB,B(i, j)− ΦA,B(i, j)

)
=

∑
{i,j}⊆V ∗

ΦB,B({i, j}) (9)

∑
i∈V ∗

∑
j∈V \π−(i)

(
ΦB,A(i, j)− ΦA,A(i, j)

)
= −

∑
{i,j}∩V ∗ 6=∅

ΦA,A({i, j}) (10)

The lemma follows from Equations 9, 10 and Lemma 1. ut

Lemma 4 implies that the profit of firm B, under symmetric utility functions, is
uniquely determined by the set of agents who switch to state B, and is independent
of the order in which those agents are offered the new technology. We now give an
integer programming formulation (IP-1) for our problem. Note that in IP-1, the variables
γ{i,j}, λ{i,j} are defined over unordered pairs of nodes {i, j} ∈ E.

IP-1

Max.
∑
i∈V

(
Ini(B)− Ini(A)− c

)
xi +

∑
{i,j}

(
ΦBB({i, j})γ{i,j} − ΦAA({i, j})λ{i,j}

)



s.t. γ{i,j} − xi ≤ 0 ∀i ∈ V, {i, j} ∈ E (11)
xi − λ{i,j} ≤ 0 ∀i ∈ V, {i, j} ∈ E (12)

xi ∈ {0, 1} ∀i ∈ V (13)
γ{i,j}, λ{i,j} ∈ {0, 1} ∀{i, j} ∈ E (14)

Lemma 5. The constraints of IP-1 ensure that in an optimal solution:

– The variable xi = 1 iff node i ∈ V switches to state B, that is, when i ∈ V ∗.
– The variable γ{i,j} = 1 iff both the endpoints of edge {i, j} switch to state B.
– The variable λ{i,j} = 1 iff at least one endpoint of edge {i, j} switches to state B.

Hence, Lemma 4 implies that IP-1 gives an integer programming formulation of the
OPTIMAL-OFFER-SEQUENCE problem in the special case of symmetric utilities.

Proof. We show that the interpretation of γ{i,j} is consistent with the interpretation
of xi. Each γ{i,j} has a nonnegative coefficient in the objective. Hence, in an optimal
solution, γ{i,j} is set to the largest possible value. Constraint 11 establishes an upper
bound of min(xi, xj) on the variable γ{i,j}. It follows that γ{i,j} = 1 iff xi = xj = 1.

Each λ{i,j} has a nonpositive coefficient in the objective. Thus, in an optimal solu-
tion, λ{i,j} is set to the smallest possible value. Constraint 12 establishes a lower bound
of max(xi, xj) on the variable γ{i,j}. Hence, λ{i,j} is set to 0 iff xi = xj = 0. ut
Theorem 3. The constraint matrix of IP-1 is totally unimodular. Hence, we can find an
optimal solution of IP-1 in polynomial time. Thus, the OPTIMAL-OFFER-SEQUENCE
problem can be solved efficiently when the utility functions are symmetric.
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