Computing Equilibria with Partial
Commitment*

Vincent Conitzer

Duke University, Durham, NC, USA

Abstract. In security games, the solution concept commonly used is
that of a Stackelberg equilibrium where the defender gets to commit to
a mixed strategy. The motivation for this is that the attacker can re-
peatedly observe the defender’s actions and learn her distribution over
actions, before acting himself. If the actions were not observable, Nash
(or perhaps correlated) equilibrium would arguably be a more natural
solution concept. But what if some, but not all, aspects of the defender’s
actions are observable? In this paper, we introduce solution concepts
corresponding to this case, both with and without correlation. We study
their basic properties, whether these solutions can be efficiently com-
puted, and the impact of additional observability on the utility obtained.

1 Introduction

Algorithms for computing game-theoretic solutions have long been of interest,
but were for a long time not deployed in real-world applications (at least if
we do not count, e.g., computer poker programs—for an overview of those, see
Sandholm [21]—as real-world applications). This changed in 2007 with a series
of deployed applications coming out of Milind Tambe’s TEAMCORE research
group at the University of Southern California. The games in question are what
are now called security games, where a defender has to allocate limited resources
to defend certain targets or patrol a certain area, and an attacker chooses a target
to attack. The deployed applications include airport protection [20], assigning
Federal Air Marshals to flights [22], patrolling in ports [2], fare inspection in
transit systems [25], and patrolling to prevent wildlife poaching [11].

While most of the literature on computing game-theoretic solutions has fo-
cused on the computation of Nash equilibria—including the breakthrough result
that even computing a single Nash equilibrium is PPAD-complete [10,6]—in
the security games applications the focus is instead on computing an optimal
mixed strategy to commit to [8]. In this model, one player (in security games, the
defender) chooses a mixed strategy, and the other (the attacker) observes this
mixed strategy and best-responds to it. This sometimes helps, and never hurts,
the former player [23]. Intriguingly, in two-player normal-form games, such a
strategy can be computed in polynomial time via linear programming [8,23].

* T dedicate this paper to my sister Jessica, her fiancé Jeremy, and their upcoming full
commitment. I wish them a lifetime of happiness.
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Another benefit of this model is that it sidesteps issues of equilibrium selection
that the approach of computing (say) a Nash equilibrium might face.

Such technical conveniences aside, the standard motivation for assuming that
the defender in security games can commit to a mixed strategy is as follows. The
defender has to choose a course of action every day. The attacker, on the other
hand, does not, and can observe the defender’s actions over a period of time.
Thus, the defender can establish a reputation for playing any particular mixed
strategy. This can be beneficial for the defender: whereas in a simultaneous-
move model (say, using Nash equilibrium as the solution concept), she can play
only best responses to the attacker’s strategy, in the commitment model she can
commit to play something that is not a best response, which may incentivize
the attacker to play something that is better for the defender. Of course, for
this argument to work, it is crucial that the attacker observes over time which
actions the defender takes before taking any action himself. Previous work has
questioned this and considered models where there is uncertainty about whether
the attacker observes the defender’s actions at all [15,14], as well as models
where the attacker only gets a limited number of observations [19, 1].

In this paper, we consider a different setting where some defender actions
are (externally) indistinguishable from each other. This captures, for example,
the case where there are both observable and unobservable security measures,
as is often the case. Here, two courses of action are indistinguishable if and
only if they differ only in the unobservable component. It also captures the case
where a guard can be assigned to a visible location (1), or to one of two invisible
locations (2 or 3). In this case, the first action is distinguishable from the latter
two, but the latter two are indistinguishable from each other. Indistinguishability
is an equivalence relation that partitions the player’s strategy space; we call one
element of this partition a SIS (subset of indistinguishable strategies). Thus, the
defender can establish a reputation for playing a particular distribution over the
SISes. However, she cannot establish any reputation for how she plays within
each SIS, because this is not externally observable. Thus, intuitively, when the
defender plays from a particular SIS, she needs to play a strategy that, within
that SIS, is a best response; however, if there is another strategy in a different
SIS that is a better response, that is not a problem, because deviating to that
strategy would be observable.

The specific contributions of this paper are as follows. We formalize solution
concepts for these settings that generalize both Nash and correlated equilibrium,
as well as the basic Stackelberg model with (full) commitment to mixed strate-
gies. Further contributions include illustrative examples of these solutions, basic
properties of the concepts, analysis of their computational complexity, and anal-
ysis of how the row player (defender)’s utility varies as a function of the amount
of commitment power (as measured by observability).



Computing Equilibria with Partial Commitment 3
2 Definitions and Basic Properties

We are now ready to define some basic concepts. Throughout, the row player
(player 1) is the player with (some) commitment power, in the sense of being
able to build a reputation. R denotes the set of rows, C the set of columns, and
01 and o9 denote mixed strategies over these, respectively.

Definition 1. A subset of indistinguishable strategies (SIS) S is a mazimal
subset of R such that for any two rows r1,r9 € S, the column player’s observation
1s identical for r1 and ro. Let S denote the set of all SISes, constituting a partition
of R. Given a mized strategy o1 for the row player and a SIS S, let o1(S) =
> reg01(r) (where a1(r) is the probability oy puts on r).

Since our focus is on games in which one player can build up a reputation and
the other cannot, we do not consider SISes for the column player. Equivalently,
we consider all the column player’s strategies to be in the same SIS.

Definition 2. Two mized strategies 01,0} are indistinguishable to the column

player if for all S € S, 01(S) = o1 (95).

Example. Consider the following game:

A B
a | 70 | 21
b | 6,1 | 00
c | 50 | 01
d | 41 | 1,0

If the players move simultaneously, then a is a strictly dominant strategy and
we obtain (a, B) as the iterated strict dominance solution (and hence the unique
Nash equilibrium), with a utility of 2 for the row player. If the row player gets
to commit to a mixed strategy, then she could commit to play a and b with
probability 1/2 each, inducing the column player to play A,' resulting in a
utility of 6.5 for the row player. (Even committing to a pure strategy—namely,
b—would result in a utility of 6.) Now suppose S = {{a,b},{c,d}}, i.e., a and
b are indistinguishable and so are ¢ and d. In this case, playing a and b with
probability 1/2 each (or playing b with probability 1) is indistinguishable from
playing a with probability 1. Hence, it is not credible that the row player would
ever play b, given that a is a strictly dominant strategy. But can the row player
still do better than always playing a (and thereby inducing the column player
to play B)?

We will return to this example shortly, but first we need to formalize the idea
of a deviation that cannot be detected by the column player.

! As is commonly assumed in this model, ties for the column player are broken in the
row player’s favor; if not, the row player can simply commit to 1/2 — € on a and
1/2+ € onb.



4 Vincent Conitzer

Definition 3. A profile (01,02) has no undetectable beneficial deviations if (1)
for all by, us(o1,0h) < ug(o1,09), and (2) for all o} indistinguishable from o1,
ui (o, 02) < wui(oq,09).

The following simple proposition points out that this is equivalent to the
column player only putting probability on best responses, and the row player
only putting probability on rows that within their SIS are best responses.

Proposition 1. A profile (01,02) has no undetectable beneficial deviations if
and only if (1) for all ¢,¢’ € C with oa(c) > 0, uz(o1,¢) < ug(o1,¢), and (2)
for all S € S, for all r,r’ € S with o1(r) > 0, u1(r', 02) < uy(r, o2).

Example continued. In the game above, consider the profile

(((1/2)e, (1/2)d), ((1/2)A, (1/2)B))

This profile has no undetectable deviations: (1) the column player is playing a
best response, and (2) the only undetectable deviations for the row player do
not put any probability on {a, b}, and ¢ and d are both equally good responses.

Note that a profile that has no undetectable beneficial deviations may still not
be stable, in the sense that player 1 may prefer to deviate to a mixed strategy
that is in fact distinguishable from o;, and build up a reputation for playing
that strategy instead. But in a sense, these profiles are feasible solutions for
the row player: given that the row player decides to build up a reputation for
the distribution over SISes resulting from oy, the profile (o1, 032) is stable. This
is similar to the sense in which in the regular Stackelberg model, any profile
consisting of a mixed strategy for the row player and a best response for the
column player is feasible: the row player may not have had good reason to
commit to that particular mixed strategy, but given that she did, the profile is
stable. In fact, this just corresponds to the special case of our model where all
rows are distinguishable.

Proposition 2. If |S| = 1 (all rows are indistinguishable), then a profile has
no undetectable beneficial deviations if and only if it is a Nash equilibrium of
the game. If |S| = |R| (all rows are distinguishable), then a profile has no unde-
tectable beneficial deviations if and only if the column player is best-responding.

We can now define an optimal solution.

Definition 4. A profile with no undetectable beneficial deviations is a Stack-
elberg equilibrium with limited observation (SELO) if among such profiles it
mazximizes the row player’s utility.

Example continued. In the game above, consider the profile
((1/2)a, (1/2)d), ((1/2)A, (1/2)B))

This profile has no undetectable deviations: A and B are both best responses for
the column player, and the row player strictly prefers a to b and is indifferent
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between ¢ and d. It gives the row player utility 3.5. We now argue that it is in
fact a SELO. First, note that a SELO must put at least probability 1/2 on d: for,
if it did not, then, because the row player would never play b, the column player
would strictly prefer B, which would result in lower utility for the row player.
Second, the column player must play B at least half the time, because otherwise,
the row player would strictly prefer ¢ to d—but if the row player only plays a
and ¢, the column player would strictly prefer B. Under these two constraints,
the row player would be best off having as much as possible of the remaining
probabilities on a and A, and this results in the profile above.

Proposition 3. If |S| = 1 (all rows are indistinguishable), then a profile is a
SELO if and only if it is a Nash equilibrium that mazimizes the row player’s
utility among Nash equilibria. If |S| = |R| (all rows are distinguishable), then a
profile is a SELO if and only if it is a Stackelberg equilibrium (with full obser-
vation).

3 Computational Results

We now consider the complexity of computing a SELO. We immediately obtain:

Corollary 1. When |S| = 1, computing a SELO is NP-hard (and the mazimum
utility for the row player in a profile with no undetectable beneficial deviations
is inapprozimable unless P=NP).

Proof. By Propositions 2 and 3, these problems are equivalent to maximizing
the row player’s utility in a Nash equilibrium, which is known to be NP-hard
and inapproximable [13,9].

This still leaves open the question of whether the problem becomes easier if
the individual SISes have small size. Unfortunately, the next result shows that
the problem remains NP-hard and inapproximable in this case. This motivates
extending the model to one that allows correlation, as we will do in Section 4.

Theorem 1. Computing a SELO remains NP-hard even when |S| = 2 for all
S €S8 (and in fact it is NP-hard to check whether there exists a profile with no
undetectable beneficial deviations that gives the row player positive utility, even
when all payoffs are nonnegative).

Proof. We reduce from the EXACT-COVER-BY-3-SETS problem, in which we
are given a set of elements T' (|| = m, with m divisible by 3) and subsets
T; C T that each satisfy |T;| = 3, and are asked whether there exist m/3 of
these subsets that together cover all of T. For an arbitrary instance of this
problem, we construct the following game. For each T}, we add a SIS consisting
of two rows, {Tj+, T; }, as well as a column 7. For each element ¢ € T', we add
a column t. The utility functions are as follows.

— uy (T}, Tj) = m/3 for any j
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for any row r and element ¢
— ug(r,T;) =m/3 — 1 for any row r and any j
,t) =0 for any j and t € T}

First suppose the EXACT-COVER-BY-3-SETS instance has a solution. Let the
row player play uniformly over the m/3 corresponding rows T;, and the col-
umn player uniformly over the m/3 corresponding columns T;. The row player’s
expected utility for any of the rows in her support is 1; deviating to the corre-
sponding 7', would still only give her 1. The column player’s expected utility is
m/3—1 for any Tj; because the row player plays an exact cover, deviating to any
t gives him expected utility (m/3)(m/3 —1)/(m/3) = m/3 — 1. So this profile
has no undetectable beneficial deviations (in fact it is a Nash equilibrium) and
gives the row player an expected utility of 1.

Now suppose that the game has a SELO in which the row player gets pos-
itive utility, which implies that the column player puts total probability p > 0
on his T columns. It follows that for every ¢t € T', the total probability that
the row player puts on rows Tj‘”' with ¢ € T} is at least 3/m, or otherwise the
column player would strictly prefer playing ¢ to playing any 7;. However, note
that the row player can only put positive probability on rows TjJr where the
corresponding column T receives probability at least 3p/m (thereby resulting
in expected utility at least p for the row player for playing T]-Jr), because oth-
erwise the corresponding row T (which is indistinguishable) would be strictly
preferable (resulting in expected utility p). But of course there can be at most
m/3 such columns T}, and these T; must cover all the elements ¢ by what we
said before. Hence the EXACT-COVER-BY-3-SETS instance has a solution.

4 Adding Signaling

The notion of correlated equilibrium [4] results from augmenting a game with a
trusted mediator that sends correlated signals to the agents. As is well known,
without loss of generality, we can assume the signal that an agent receives is
simply the action she is to take. This is for the following reason. If a correlated
equilibrium relies on an agent randomizing among multiple actions conditional
on receiving a particular signal, then we may as well have the mediator do this
randomization on behalf of the agent before sending out the signal. It is well
known that correlated equilibria can outperform Nash equilibria from all agents’
perspectives. For example, consider Shapley’s game, which is a version of rock-
paper-scissors where choosing the same action as the other counts as a loss.

A B C
a | 00 | 10 | 01
01 | 00 | 1,0
10 | 0,1 | 00
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Whereas the only Nash equilibrium of this game is for both players to ran-
domize uniformly (resulting in 0,0 payoffs 1/3 of the time), there is a correlated
equilibrium that only results in the 1,0 and 0, 1 outcomes, each 1/6 of the time.
That is, if the mediator is set up to draw one of these six entries uniformly at
random, and then tell each agent what she is supposed to play (but not what
the other is supposed to play), then each agent has an incentive to follow the
recommendation: doing so will result in a win half the time, and it is not possible
to do better given what the agent knows.

Correlated equilibria are easier to compute than Nash equilibria: given a
game in normal form, there is a linear program formulation for computing even
optimal correlated equilibria (say, ones that maximize the row player’s utility).
The linear program presented later in Figure 1 is closely related.

Similar signaling has received attention in the Stackelberg model. One may
assume a more powerful leader in this model that can commit not only to tak-
ing actions in a particular way, but also to sending signals in a way that is
correlated with how she takes actions. (Again, the motivation for using this in
real applications might be that over time the leader develops a reputation for
sending out signals according to a particular distribution, and playing particular
distributions over actions conditional on those signals.) Because the leader can
commit to sending signals in a particular way, there is no need to introduce an
independent mediator entity in this context. As it turns out, in a two-player
normal-form game this additional power does not buy the leader anything, but
with more players it does [7]. Such signaling can also help in Bayesian games [24]
and stochastic games [18], both from the perspective of increasing the leader’s
utility and from the perspective of making the computation easier.

It is straightforward to see that signaling can be useful in our limited com-
mitment model as well. For example, if we just take Shapley’s game with |S| = 1,
then by Proposition 3 without signaling we are stuck with the Nash equilibrium,
but it seems we should be able to obtain the improved correlated equilibrium
outcome with some form of signaling. But what is the right model of signaling
here? We consider a very powerful model of signaling in this version of the pa-
per. The full version of the paper also contains a discussion of weaker signaling
models.

Definition 5. In the trusted mediator model, the row player can design an
independent trusted mediator that sends signals privately to each player according
to a pre-specified joint distribution. After the round of play has completed, the
mediator publicly reveals the signal sent to the row player.

The after-the-fact public revelation of the signal sent to the row player allows
the row player to commit to (i.e., in the long run develop a reputation for)
responding to each signal with a particular distribution of play. Specifically,
after each completed round, the column player learns the signal sent to, and the
SIS played by, the row player.? Thus, if the row player according to the signal

2 Tt is easy to get confused here—does the column player not learn more in a round
purely by virtue of his own payoff from that round? It is important to remember
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that she received was supposed to play an action from a particular SIS, then
the column player can verify that she did. However, the row player may have an
incentive to deviate within a SIS, because this is undetectable.

In the appendix of the full version of the paper, we show that under the
trusted mediator model, without loss of generality a signal consists of just an
action to play. With this in mind, we now define formally what it means for a
correlated profile to have no undetectable beneficial deviations.

Definition 6. A correlated profile o has no undetectable beneficial deviations
if (1) for all ¢,c’ € C with ) po(r,c) > 0, we have Y po(r,c)(ua(r,c) —
ua(r,c')) >0, and (2) for all S € S, for all v,7" € S with ) .~ o(r,c) >0, we
have ) .o o(r,c)(ui(r,c) —ui(r',c)) > 0.

Note that, as is well known in the formulation of correlated equilibrium,
in the first inequality, we can use o(r,c¢) rather than the more cumbersome
a(r,e)/ > mero(r”,c), which would be the conditional probability of seeing
r given a signal of ¢, because the denominator is a constant (similar for the
second inequality). As a result, the condition that »  _po(r,c) > 0 is in fact
not necessary because the inequality is vacuously true otherwise. This is what
allows the standard linear program formulation of correlated equilibrium, as well
as the linear program we present below in Figure 1.

Definition 7. A correlated profile with no undetectable beneficial deviations is
a Stackelberg equilibrium with signaling and limited observation (SESLO) if
among such profiles it mazimizes the row player’s utility.

Example. Consider the following game:

A B C D
00 | 12,0 | 01 | 0,0
0,1 0,0 | 12,0 | 0,0
120 | 0,1 0,0 | 0,0
5,0 5,0 50 | 0,1
7.0 7.0 70 | 1,1

oS

Suppose S = {{a,b,c,d},{e}}. Then the following correlated profile (in which
the signal an agent receives is which action to take) is a SESLO:

((1/9)(a, B), (1/9)(a, C), (1/9)(b, A), (1/9)(b, C), (1/9)(c, A), (1/9)(c, B),
(1/9)(e, A), (1/9)(e, B), (1/9)(e, C))

With this profile, for any signal the column player can receive, following the
signal will give him utility 1/3, and so will any deviation. For any signal the row

that we are not considering repeated play by the column player. The idea is that the
column player can observe over time the signals and how the row player acts before
the column player ever acts. For discussion of security contexts in which certain
types of players can receive messages that are inaccessible to other types, see Xu et
al. [24].
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player receives in SIS {a, b, ¢, d}, following the signal will give her 6; deviating to
a, b, or ¢ will give either 0 or 6, and deviating to d will give 5. The row player ob-
tains utility 19/3 from this profile.® In contrast, without any commitment (if |S|
had been 1), the outcome (e, D) would have been a SESLO, giving the row player
utility only 1. Also, without signaling (but still with & = {{a,b, ¢, d},{e}}), the
outcome (e, D) would have been a SELO. For consider a mixed-strategy pro-
file without any undetectable beneficial deviations, and suppose it puts positive
probability on at least one of A, B, and C. Then at least one of a, b, and ¢ must
get positive probability as well, for otherwise the column player would be better
off playing D. Because a, b, and c are all in the same SIS and perform equally
well against D, and because A, B, and C' all perform equally well against d and
e, if we condition on the players playing from a,b,c and A,B,C, the result must
be a Nash equilibrium of that 3 x 3 game, which means that all of A, B, and
C' get the same probability. But in that case, d (which is in the same SIS) is
a better response for the row player, and we have a contradiction. Hence any
SELO involves the column player always playing D and the most the row player
can obtain is 1.

We next have the following simple proposition that the ability to signal never
hurts the row player.

Proposition 4. The row player’s utility from a SESLO is always at least that
of a SELO.

Proof. We show that an uncorrelated profile (o1, 02) that has no undetectable de-
viations (in the sense of Definition 3) also has no undetectable deviations (in the
sense of Definition 6) when interpreted as a correlated profile o (with o(r,c) =
o1(r)oa(c)); the result follows. First, for all ¢,/ € C with ) _po(r,c) > 0
(which is equivalent to o2(c) > 0), we have > _po(r,c)(uz(r, c) —ua(r,c')) =
o2(¢) X rer o1 (r)(ua(r, ¢) — ua(r,c')) = oa(c)(uz(o1, c) — uz(o1,c’)) > 0 by the
best-response condition of Definition 3. Similarly, for all S € S, for all r,7’ € S
with ) .~ o(r,c) > 0 (which is equivalent to o1(r) > 0), we have

S e o O ui(r,0) — ur(r,)) = 01() X 02(0) wa(r, €) — ua () =
o1(r)(uy(r,o2) —ui(r’,02)) > 0 by the best-response-within-a-SIS condition of
Definition 3.

Proposition 5. If |S| = 1 (all rows are indistinguishable), then a profile is
a SESLO if and only if it is a correlated equilibrium that maximizes the row
player’s utility. If |S| = |R| (all rows are distinguishable), then a profile is a
SESLO if and only if it is a Stackelberg equilibrium with signaling (which can do
no better than a Stackelberg equilibrium without signaling).

5 Computational Results

It turns out that with signaling, we do not face hardness. The linear program
in Figure 1 can be used to compute a SESLO. It is a simple modification of the

3 This was verified to be optimal using the linear program in Figure 1; same for the
next case.
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standard linear program for correlated equilibrium, the differences being that
(1) for the row player, only deviations within a SIS are considered, and (2) there
is an objective of maximizing the row player’s utility. The special case where
|S] = |R| has no constraints for the row player, and that special case of the
linear program has previously been described by Conitzer and Korzhyk [7].

maximize }_ _p o ui(r,c)p(r,c)
(\V/ S e S) (V T, e S) Zcec(ul (T/7 C) - Ul(ﬁ C))p(’m C) <
(Ve del) > rer(u2(r, ) —uz(r,c))p(r,c) <
ZTER,CEC p(rc)=1
(VreR,ceC) p(r,c) >0

0
0

Fig. 1. Linear program for computing a SESLO.

Theorem 2. A SESLO can be computed in polynomial time.

6 The Value of More Commitment Power

More strategies being distinguishable corresponds to more commitment power
for the row player. As commitment power (in this particular sense) increases,
does the utility the row player can obtain always increase gradually? (Note that
it can never decrease the row player’s utility, because all it will do is remove
constraints in the optimization.) If she has close to full commitment power, does
this guarantee her most of the benefit of full commitment power? Is some non-
trivial minimal amount of commitment power necessary to obtain much benefit
from it? The next two results demonstrate that the answer to all these questions
is “no”: there can be big jumps in the utility that the row player can obtain,
both on the side close to full commitment power (Proposition 6) and on the side
close to no commitment power (Proposition 7). (For an earlier study comparing
the value of being able to commit completely to that of not being able to commit
at all, see Letchford et al. [17]; for one assessing the value of correlation without
commitment, see Ashlagi et al. [3].)

Proposition 6. For any € > 0 and any n > 1, there exists an n X (n+ 1) game
with all payoffs in [0,1] such that if |S| = |R| = n, the row player can obtain
utility 1 — e (even without signaling), but for any S with |S| < |R| = n, the row
player can obtain utility at most € (even with signaling).

Proof. Let R={1,...,n}and C ={1,...,n+1}. Let uy(4,5) = ie/n for j <mn,
and let uy(i,n +1) =1 — (n —i)e/n. Let uz(i,j) = (1 4+ 1/n)/2 for i # j and
Jj <mn,let ug(i,i) =0 (for i < n), and let ug(i,n+ 1) = 1/2 for all .

Suppose |S| = |R| = n. Then, by Proposition 3, we are in the regular Stack-
elberg model, and the row player can commit to a uniform strategy, putting
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probability 1/n on each i. As a result the expected utility for the column player
for playing some j < nis ((n — 1)/n)(1 +1/n)/2 = (n — 1)(n + 1)/(2n?) =
(n? —1)/(2n?) < 1/2, so to best-respond he needs to play n + 1, resulting in a
utility for the row player that is greater than 1 — (n — 1)e/n > 1 —e.

On the other hand, suppose that |S| < |R| = n. Hence there exists some
S € 8§ with 4,7 € S, i < i'. Note that i’ strictly dominates 7, so the row player
will never play ¢ in a SELO or even a SESLO. But then, the column player can
obtain (1+1/n)/2 > 1/2 by playing i, and hence will not play n + 1. As a result
the row player obtains at most ne/n = e.

Proposition 7. For any € > 0 and any n > 1, there exists an n X (n+ 1) game
with all payoffs in [0,1] such that for any S with |S| > 1, the row player can
obtain utility 1 — € (even without signaling), but if |S| = 1, the row player can
only obtain utility 0 (even with signaling).

Proof. Let R = {1,...,n} and C = {1,...,n + 1}. Let uy(é,j) = 1 — ¢ for
i # jand j < n, let u1(i,4) = 1 (for i < n), and let ui(éi,n + 1) = 0 for all
i. Let ua(i,j) = 1 for i # j and j < n, let ug(é,4) = 0 (for ¢ < n), and let
ug(i,n+1) = (n —1/2)/n for all 7.

Suppose |S| > 1. Then, the row player can commit to put 0 probability
on some S € S, and therefore, 0 probability on some i. Hence, this i is a best
respounse for the column player, and the row player obtains 1 —e. (The row player
may be able to do better yet, but this is a feasible solution.)

On the other hand, suppose |S| = 1. By Proposition 3, the row player can only
obtain the utility of the best Nash equilibrium of the game for her (or, in the case
with signaling, the utility of the best correlated equilibrium, by Proposition 5).
We now show that in every Nash equilibrium (or even correlated equilibrium)
of the game, the column player puts all his probability on n + 1, from which
the result follows immediately. For suppose the column player sometimes plays
some j < n. Then, for the row player to best-respond, she has to maximize
the probability of choosing the same j (conditional on the column player playing
some j < n). (Or, more precisely in the case of correlated equilibrium, conditional
on receiving any signal that leaves open the possibility that the column player
plays some j < n, the row player has to maximize the probability of picking the
same j.) She can always make this probability at least 1/n by choosing uniformly
at random. Hence, the column player’s expected utility (conditional on playing
Jj <mn)is at most (n — 1)/n. But then n + 1 is a strictly better response, so we
do not have a Nash (or correlated) equilibrium.

Of course, the above two results are extreme cases. Can we say anything about
what happens “typically”? To illustrate this, we present the results for randomly
generated games in Figure 2. For each data point, 1000 games of size m x n were
generated by choosing utilities uniformly at random. The rows were then evenly
(round-robin) spread over a given number of SISes, and the game was solved
using the GNU Linear Programming Kit (GLPK) with the linear program from
Figure 1. The leftmost points (1 SIS) correspond to no commitment power (best
correlated equilibrium), and the rightmost points (at least when the number
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of SISes is at least m) correspond to full commitment power (best Stackelberg
mixed strategy). From this experiment, we can observe that most of the value
of commitment is already obtained when moving from one SIS to two.
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Fig. 2. Utility obtained by the row player as a function of commitment power (number
of SISes), for various sizes of m X n games.

7 Conclusion

The model of the defender being able to commit to a mixed strategy has been
popular in security games, motivated by the idea that the attacker can learn
the distribution over time. This model has previously been questioned, and lim-
ited observability has previously been studied in various senses, including the
attacker obtaining only a limited number of observations [19,1] as well as the
attacker observing (perfectly) only with some probability [15, 14]. Here, we con-
sidered a different type of limited observability, where certain courses of action
are distinguishable from each other, but others are not. As a result, the row
player’s pure strategies partition into SISes, and she can commit to a distribu-
tion over SISes but not to how she plays within each SIS. We showed that it
is NP-hard to compute a Stackelberg equilibrium with limited observation in
this context, even when the SISes are small (Theorem 1). We then introduced a
modified model with signaling and showed that in it, Stackelberg equilibria can
be computed in polynomial time (Theorem 2). Finally, we showed that the cost
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of introducing a bit of additional unobservability can be large both when close to
full observability (Proposition 6) and close to no observability (Proposition 7);
however, in simulations, introducing a little bit of observability already gives
most of the value of full observability.

Future research may be devoted to the following questions. Are there algo-
rithms for computing a SELO that are efficient for special cases of the problem
or that run fast on “typical” games? Another direction for future work con-
cerns learning in games, which is a topic that has been thoroughly studied in
the simultaneous-move case (see, e.g., Fudenberg and Levine [12]), but also al-
ready to some extent in the mixed-strategy commitment case [16,5]. A model
of learning in games with partial commitment needs to generalize models for
both of these cases. Finally, can we mathematically prove what is suggested by
the experiment in Figure 2, namely that in random games most of the value of
commitment is already obtained with only two SISes?
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