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Game theory

Multiple self-interested
agents interacting in the
same environment

What is an agent to do?

What is an agent to
believe? (What are we to
believe?)




Penalty kick example

Is this a
“rational”
outcome?

If not, what
is?



Multiagent systems

Goal:
Blocked (RoomQ)

Goal:
Clean (RoomO)




Game playing




Real-world security
applications

y ‘0. : e '_. & % F %
e

g Airport security  Milind Tumbe’s TEAMCORE group (USC)

 Where should checkpoints, canine units,
etc. be deployed?

* Deployed at LAX airport and elsewhere

Federal Air Marshals
+ Which flights get a FAM? 1

« Which patrol routes should be followed?

 Deployed in Boston, New York, Los Angeles



Mechanism design
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Outline

 Introduction to game theory (from CS perspective)
* Representing games
« Standard solution concepts
* (lterated) dominance
 Minimax strategies
 Nash and correlated equilibrium
 Recent developments
« Commitment: Stackelberg mixed strategies
« Security applications
* Learning in games (time permitting)
« Simple algorithms
« Evolutionary game theory
* Learning in Stackelberg games



Representing games



Rock-paper-scissors
Column player aka.
player 2
(simultaneously)
chooses a column

= 5

Row player ‘g O, O '1, 1 15 _1

aka. player
1 chooses a

111,-1 0,0 -1, 1

A row or column is "1, 1 1, '1 O, O

called an action or /I

(pure) strategy Row player’s utility is always listed first, column player’s second

Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.



Penalty kick

(also known as: matching pennies)

D L

O

5 5
L R
0,0 -1, 1
-1,11 0,0




Security example

Terminal A Terminal B

4 B

—
action

4;on




Security game




“Chicken”

* Two players drive cars towards each other
* If one player goes straight, that player wins
* |If both go straight, they both die

not zero-sum




Modeling and representing games

THIS TALK
2.7 -1, 0
(unless
specified -7,-8| 0,0 |
otherwise)
normal-form games
L R L R
row player Ul 4 | 6 | coumnplayer U| 4 | 6
type 1 (prob. 0.5) pl 2] 4| type 1 (prob. 05)p| 4 | &
L R L R
row player Ul 2 | 4| columnplayer U| 2 | 2
type 2 (prob. 0.3)p| 4 | 2 | tvpe2 (prob. 0.5) p| 4 | 2
Bayesian games
N\ 7N\
O—CE&O—C—

&

graphical games
[Kearns, Littman, Singh UAI’01]

O—O—®

actlon-gmph games

[Leyton-Brown & Tennenholtz IJCAI’03
[Bhat & Leyton-Brown, UAI’04]

[Jiang, Leyton-Brown, Bhat GEB’11]

1 gets King

‘---
-
-
-

1

2,2

3,0

. .6
stochastic games

hature”

- -
- - -
“- “

-2

L]

1 gets Jack

11 1
extenszve-form games

Work hard early in
the course

Work hard early in

the course

Pain and
suffering

Work hard latein
the course

Meat algorithm
discovered

Pain and
suffering

Work hard late in

the course

Inherent
satisfaction

Code produced "
orks really wel

MAIDs

Inherent
satisfaction

[Koller & Milch. IJCAI’01/GEB’03]



A poker-like game

Both players put 1 chip in the pot

Player 1 gets a card (King is a winning card, Jack a
osing card)

Player 1 decides to raise (add one to the pot) or

check ‘nature”
Player 2 decides to call 1 gets King 1 gets Jack

If player 2 called, player raise / \check raise \check
1’s card determines G

- layer 2~ g "
pot winner pray

call fold call fold call fold call fold



Poker-like game in normal form

“nature”

1 gets King 1 gets Jack

¢¢¢¢¢

IC
Cr
CC

cC cf fc ff

0,0 0,0 1, -1 1, -1
5-5 (15 -15] 0,0 1, -1
-5 5 | -5,.5 1, -1 1, -1

0,0 1, -1 0,0 1, -1




Our first solution concept:
Dominance



Rock-paper-scissors — Seinfeld variant

MICKEY: All right, rock beats paper!
(Mickey smacks Kramer's hand for losing)
KRAMER: | thought paper covered rock.
MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?

MICKEY: (looks at hand) Nothing beats
rock.

= A

0,0{1,-1/1, -1

-1,1/0,0 -1, 1

-1,111,-1,0,0




Dominance

» Player i's strategy s. strictly dominates s; if
—forany s, ufs;, s;) > u(s;, s;)

s, weakly dominates s, if
—forany s, u(s, s.) 2 u(s/, s.); and
— for some s_, ui(s;, s.) > u(s;, s.)

= A

-i = “the player(s)
other than 1”

'@ 0,01,-1/1, -1

strict dominance

11,1 0,0 -1, 1

<-1,1 1,-1, 0,0




Prisoner's Dilemma
 Pair of criminals has been caught

 District attorney has evidence to convict them of a
minor crime (1 year in jail); knows that they
committed a major crime together (additional 2
years in jail) but cannot prove it

« Offers them a deal:
— If both confess to the major crime, they each get a 1 year reduction

— If only one confesses, that one ars reduction

confess don’t confess

confess _2, . O, -3
Cdon’t confess -3, 0 -1, -1




“Should | buy an SUV?”

purchasing (+gas, maintenance) COSt accident cost




1 gets King

Back to the poker-like game

“nature”

1 gets Jack

CC

| 0,0 \o,o/ 1,1 \1-1/'
rcl .5,-.5 1.8 A.5 0,0
Ccr -.5, ko) = -

S ——




Mixed strategies

* Mixed strategy for player | = probability
distribution over player I's (pure) strategies

cEg. 13 13 ap i

 Example of dominance by a mixed strategy:

1213,010,0
0,0 3,0
1,0(1,0




Checking for dominance by mixed strategies

 Linear program for checking whether strategy s.* is
strictly dominated by a mixed strategy:

e maximize ¢

* such that:
—forany s, 25 Ps Ui(S;, 84) Z U(S", s;) + €
— ZSi psi =1

 Linear program for checking whether strategy s* is
weakly dominated by a mixed strategy:

» maximize I [(Zg pg Ui(s;, S5)) - U(s, s.)]
e such that:

— for any s, zsi psi ui(Si’ S-i) 2 ui(si*’ S-i)

— 2 Ps, = 1



lterated dominance

* |terated dominance: remove (strictly/weakly)
dominated strategy, repeat

. Iterated strict dominance on Seinfeld’'s RPS:

.%

D

,

1, -1

1, -1

-1,1

0,0

-1, 1

o

-1, 1

1, -1

0,0

.g
001 -1
,-1,1 0, 0




“2/3 of the average” game

* Everyone writes down a number between 0 and 100
* Person closest to 2/3 of the average wins

« Example:
— A says 30
— B says 10
— C says 90
— Average(50, 10, 90) = 50
— 2/3 of average = 33.33
— Ais closest (|50-33.33| = 16.67), so A wins



"2/3 of the average” game solved

100 |

> dominated

(2/3)*100 }

dominated after removal of
(originally) dominated strategies

(2/3)*(2/3)*100




Iterated dominance: path (in)dependence

Iterated weak dominance is path-dependent:
sequence of eliminations may determine which

solution we get (if any)
(whether or not dominance by mixed strategies allowed)

Leads to various NP-hardness results [Gilboa, Kalai, Zemel Math of
OR '93; C. & Sandholm EC '05, AAAI'05; Brandt, Brill, Fischer, Harrenstein TOCS ’11]

(A LA
el % g gy
@M @ﬁ&% S [Tt

Iterated strict dominance is path-independent: elimination

process will always terminate at the same point
(whether or not dominance by mixed strategies allowed)




Solving two-player
zero-sum games



How to play matching pennies

Them
L R
L11,-1] -1, 1
Us
rI-1,1 1, -1

Assume opponent knows our mixed strategy
If we play L 60%, R 40%...

... opponent will play R...

... we get .6*(-1) + 47(1) =-.2

What's optimal for us? What about rock-paper-scissors?




A locally popular sport

g0 for 3 go for 2

@/ defendthe3| 0,0 | -2, 2

defend the 2|/ -3, 3| 0,0




Solving basketball

Them
3 2

310,07 -2, 2
21-3,3] 0,0

If we 50% of the time defend the 3, opponent will shoot 3
— We get .5%(-3) + .5%(0)=-1.5
Should defend the 3 more often: 60% of the time

Us

Opponent has choice between
— Go for 3: gives them .6*(0) + .4%(3) = 1.2
— Go for 2: gives them .6*(2) + .4%(0) = 1.2

We get -1.2 (the maximin value)



Let’'s change roles

Them
3 2

310,07 -2, 2
21-3,3] 0,0

Suppose we know their strategy
If 50% of the time they go for 3, then we defend 3

— We get .5%(0)+.5%(-2) = -1 von Neumann’s minimax

theorem [1928]: maximin
value = minimax value

— If we defend 3, we get .4*(0)+.6*(-2) =-1.2 (~ linear programming duality)

— If we defend 2, we get .4*(-3)+.6"(0) = -1.2

Us

Optimal for them: 40% of the time go for 3

This is the minimax value



Minimax theorem [von Neumann 1928]

* Maximin utility: max, ming_ u,(0;, s;)
(= - ming maxg_ u;(o;, s;))
» Minimax utility: min,_ maxg ui(s;, 0;)
(= - max,_ ming u,(s;, 0;))
* Minimax theorem:
max, ming . u,(;, s;) = min,_ maxg u(s;, 0.)
* Minimax theorem does not hold with pure
strategies only (example?)



Back to the poker-like game, again

‘nature”
1 gets Jack 2/3

1 gets King

« To make player 1 indifferent between bb and bs, we need:
utility for bb = 0*P(cc)+1*(1-P(cc)) = .5*P(cc)+0*(1-P(cc)) = utility for bs
That is, P(cc) = 2/3

« To make player 2 indifferent between cc and fc, we need:
utility for cc = 0*P(bb)+(-.5)*(1-P(bb)) = -1*P(bb)+0*(1-P(bb)) = utility for fc
That is, P(bb) = 1/3



A brief history of the minimax theo[Q

Ville Sl
new proof . f
related to Yl
systems of von Neumann
Borel linear explains to
some very W inequalities Dantzig about £
Special cases of Eﬂ’llle Borel (ln Borel’s StI'OIlg duahty of George
the theorem book) linear programs Dantzig
1921-1927 1928 1938 1944 1947 1951
von Neumann von Neumann & Gale-Kuhn-
complete proof Morgenstern Tucker
' Theory of Games proof of LP duality,
and Economic Dantzig
Behavior proof™ of
new proof also based equivalence to
on systems of linear Zero-sum games,
inequalities, inspired both in
by Ville’s proof Koopmans’ book
John von Oskar Activity Analysis
Neumann Morgenstern of Production and
Allocation

E.g., John von Neumann's conception of the minimax theorem : a journey through different mathematical
contexts. Kieldsen. Tinne Hoff. In: Archive for History of Exact Sciences. Vol. 56. 2001. p. 39-68.



Computing minimax strategies

. maximize v,, |IRONUISE

subject to

forall c, 2, p, Ug(r, ¢) 2 vy [Coiumn optimality
S, p,= 1 distibuonal constraint




Equilibrium notions for
general-sum games



General-sum games

* You could still play a minimax strategy in general-sum
games

— |l.e., pretend that the opponent is only trying to hurt you

 But this is not rational:
0,0 3,1

1,0 2,1

 If Column was trying to hurt Row, Column would play Left, so
Row should play Down

 In reality, Column will play Right (strictly dominant), so Row
should play Up

 Is there a better generalization of minimax strategies in zero-
sum games to general-sum games?




3. P HI*F"".--.' 3

Nash equilibrium [Nash 1950] E8e/g

'-':;I'

* A profile (= strategy for each player) so that né)
player wants to deviate

D S
D|0,0 | -1, 1
S|1,-11-b, -5

* This game has another Nash equilibrium in
mixed strategies — both play D with 80%



Nash equilibria of “chicken”...

D

S

D|0O, 0

-1, 1

s|1, -1

-9, -0

Is there a Nash equilibrium that uses mixed strategies? Say, where player 1

uses a mixed strategy?

If a mixed strategy is a best response, then all of the pure strategies that it
randomizes over must also be best responses

So we need to make player 1 indifferent between D and S

Player 1’s utility for playing D = -p®qg

Player 1’s utility for playing S = p°y - 5ps = 1- 6p°q

So we need -p°s = 1- 6p°s which means p°s= 1/5

Then, player 2 needs to be indifferent as well

Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))

— People may die! Expected utility -1/5 for each player



The presentation

game
p on (A Do not pay
ayatientionl(d) attention (NA)
Put effort into
presentation (E) 25 2 -1 y O
Do not put effort into
presentation (NE) -7 y _8 O y O

Pure-strategy Nash equilibria: (E, A), (NE, NA)

Mixed-strategy Nash equilibrium:
((4/5 E, 1/5 NE), (1/10 A, 9/10 NA))

— Utility -7/10 for presenter, O for audience



The “equilibrium selection problem”

* You are about to play a game that you have never
played before with a person that you have never met

» According to which equilibrium should you play?

 Possible answers:

— Equilibrium that maximizes the sum of utilities (social
welfare)

— Or, at least not a Pareto-dominated equilibrium

— So-called focal equilibria

* “Meet in Paris” game: You and a friend were supposed to meet in
Paris at noon on Sunday, but you forgot to discuss where and you
cannot communicate. All you care about is meeting your friend.
Where will you go?

— Equilibrium that is the convergence point of some learning
process

— An equilibrium that is easy to compute

* Equilibrium selection is a difficult problem



Computing a single Nash equilibrium

“Together with factoring, the complexity of
finding a Nash equilibrium is in my opinion
the most important concrete open question

on the boundary of P today.”

Chris;ols Papadimitriou,
r STOC 01 Tt~

~

[91] | ..

\
~
~

 PPAD-complete to compute one\l\\l“ash\e\quilibrium In a two-
player game [Daskalakis, Goldberg, Papadimitriou STOC'06
[ SIAM J. Comp. ‘09; Chen & Deng FOCS’06 / Chen, Deng,

Teng JACM'09]

* |s one Nash equilibrium all we need to know?



A useful reduction (SAT — game)

[C. & Sandholm IJCAI'03, Games and Economic Behavior ‘08]

(Earlier reduction with weaker implications: Gilboa & Zemel GEB ‘89)
Formula: (x4 or -x,) and (-x, or x,)

Soluons: | SlEKEGEN

x,=false,x,=false

Game: X, X, - X, - -X, (x4 or -x;)  (-x40r x,) -

X4 22 22 02 02 22 22 -2,-2 22 0,1
X, 22 22 22 22 0-2 02 o2 22 0,1
Xy 20 22 @BE 22 B 11 2,0 2,2 0,1
X4 20 22 22 WA 1,1 1,1 2,2 2,0 0,1
X, 22 20 @B 11 BE 22 22 -2,0 0,1
X, 22 20 11 B 22 B 2,0 2,2 0,1
(xqor-x;) | -2,-2 -2,-2 0,-2 2,-2 2,-2 0,-2 -2,-2 -2,-2 0,1
(X,0rx;) | 22 22 22 02 02 22 2,-2 22 0,1
geEms 10 10 10 10 10 10 1,0 1,0 g €

» Every satisfying assignment (if there are any) corresponds
to an equilibrium with utilities 1, 1; exactly one additional
equilibrium with utilities €, € that always exists

 Evolutionarily stable strategies Z,P-complete [c. wiNE 2013]



Some algorithm families for computing Nash
equilibria of 2-player normal-form games

.. () ® © — for both i, for any s, € S;- X, pi(8;) = 0
®D® —for both i, for any s, € X, Zp.(s,)u(s, s,) = u,
—for both i, for any s; € S;- X, Zpi(s )u(s;, s;) = u;
; - fm@on Stengel Search over supports / MIP
Lemke-Howson [J. SIAM ‘64] [Dickhaut & Kaplan, Mathematica J. ‘91]
Exponential time due to Savani & von [Porter, Nudelman, Shoham AAAI'04 / GEB'08]
Stengel [FOCS’04 / Econometrica’06] [Sandholm, Gilpin, C. AAAI0)]
] [SE] e Jd U = = =
e .7
s T 5
S B 0, 1
= o[ e J 1,0
e i g 1,0
ERIETH EEN TN i EIETILE Approximate equilibria
Special cases / subroutines [Brown '51 / C. '09 / Goldberg, Savani, Sgrensen,
[C. & Sandholm AAAI'05, AAMAS’06; Benisch, Ventre "11; Althofer ‘94, Lipton, Markakis, Mehta ‘03,
Davis, Sandholm AAAI'06 / JAIR’10: Daskalakis, Mehta, Papadimitriou ‘06, ‘07, Feder,

Kontogiannis & Spirakis APPROX’11; Adsul, Nazerzadeh, Saberi ‘07, Tsaknakis & Spirakis ‘07,
Garg, Mehta, Sohoni STOC’11; ...] Spirakis ‘08, Bosse, Byrka, Markakis ‘07, ...]



Search-based approaches (for 2 piayers)

» Suppose we know the support X. of each
player i's mixed strategy in equilibrium

— That is, which pure strategies receive positive
probability

* Then, we have a linear feasibility problem:
—for both i, forany s, € S.- X, pi(s;) =0
—for both i, for any s, € X, 2p.(s,)ui(s;, S.) = u;
—for both i, for any s, € S, - X, Zp.i(s_)u(s;, S;) < u;
* Thus, we can search over possible supports

— This is the basic idea underlying methods in
[Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEBO0S8]

 Dominated strategies can be eliminated




Solving for a Nash equilibrium
using MIP (2 players)

[Sandholm, Gilpin, C. AAAI'05]
* maximize whatever you like (e.q., social welfare)
* subject to
—for both i, for any s;, 25 ps_ Ui(s;, s;) = u
— for both i, for any s;, u; 2 U,
— for both i, for any s;, pg. = by
— for both i, for any s;, u; - ug, = M(1- bg)
—for both i, 25 pg = 1

Sj

* b, Is a binary variable indicating whether s; is
N the support, M is a large number



Lemke-Howson algorithm (1-slide sketcht)
GREEN

ReD| 1,0 | 0O, 1
BLUE (),2 1,()

layer 2’s utility as o best-response strategies
1fDun}c,:tion of 1I’s ’ player I’s utility as / ! l \

function of 2’s
Y4

mixed strategy .
/ mlxg?y redraw both
/ .
- Strategy profile = pair of points unplayed strategies

RED BLUE GREEN ‘ \

* Profile is an equilibrium iff every pure strategy is either a best response or
unplayed

* l.e. equilibrium = pair of points that includes all the colors
— ... except, pair of bottom points doesn’t count (the “artificial equilibrium”)

« Walk in some direction from the artificial equilibrium; at each step, throw out the
color used twice



Correlated equilibrium [Aumann 74]

0,0 | 0,1 | 1,0
0 1/6 1/6

1,0 | 0,0 | 0,1
1/6 0 1/6

0,1 | 1,0 | 0,0
1/6 1/6 0




Correlated equilibrium LP

maximize whatever
subject to

forallrand r, 2.p,. Ug(r, c) 2 2,p,. Ug(r, C)

forallcand c’, 2, p,, ug(r, c) 2 2, p,. Uc(r, C)

5P, = 1



Recent developments



Questions raised by security games

Equilibrium selection? D S
ﬁ S \lﬁ Dlo,0|-1,1
T\ S S|1,-1]-5-5

How should we model temporal / information

structure? | 22 | 1.0 3 b

-7/,-8| 0,0

, 011, 14

N

QO|—
-0

R

column player U
type | (prob. 0.5) 1

row player U
type 1 (prob. 0.5)

AN el ENIF S i
N e|o]wm
Alp|EF]la|ln]|r
[SHISY - N e )

column player U
type 2 (prob. 0.5) p

row player U
type 2 (prob. 0.5)p

What structure should utility functions have?

2 1T 1 1 -2 1 -1 1

Do our algorithms scale?



Observing the defender’s
. distribution in security

Terminal

BCN - T

d N
Terminal B

4 DNEEd hNNd hNEE RN KN
observe

Mo Tu We Th Fr Sa

This model is not uncontroversial... [Pita, Jain, Tambe, Ordéfiez, Kraus
AlJ’10; Korzhyk, Yin, Kiekintveld, C., Tambe JAIR11; Korzhyk, C., Parr AAMAS’11]



Commitment
(Stackelberg
strategies)



Commitment

Unique Nash

1, 1

3,0

equilibrium (iterated/
strict dominance

solution)

0,0

2, 1

« Suppose the game is played as follows:

— Player 1 commits to playing one of the rows,

von Stackelberg

— Player 2 observes the commitment and then chooses a column

* Optimal strategy for player 1: commit to Down



Commitment as an
extensive-form game

* For the case of committing to a pure strategy:

Player 1

Player 2 Player 2

Left Right Left Right

1, 1 3,0 0,0 2,1



Commitment to mixed strategies
0 |

49 11,113,0

51 10,02, 1

Sometimes also called a Stackelberg (mixed) strategy



Commitment as an
extensive-form game...

« ... for the case of committing to a mixed strategy:

Player 1
(1,0) (.5,.5) (0,1)
(=Up) (=Down)
Player 2
Left Right Left Right Left Right
1,1 3,0 9,.9 2.5,.5 0,0 2, 1

« Economist: Just an extensive-form game, nothing new here

« Computer scientist: Infinite-size game! Representation matters



Computing the optimal mixed

strategy to commit to
[C. & Sandholm EC’06, von Stengel & Zamir GEB’10]

Separate LP for every column c™

maximize 2, p, Ug(r, ¢*) [PEROW iy

subject to

forall c, X, p, ug(r, ¢*) 2 X, p, ug(r, ¢) | Column optimality
R e n—




On the game we saw before

y

maximize 1x + Qy
subject to
Ix+ 0y =20x+ 1y
X+y=1
x20

y =0

1, 1

3,0

0, 0

2, 1

maximize 3x + 2y
subject to
Ox + 1y = 1x + Oy
X+y=1
xz20

y =0



Visualization

L C R
U 0,1 1,0 | 00 0.1.0)=M
M 40 | 0,1
D 0,0 1,0

(1,0,0)=U (0,0,1)=D



Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games

0,0

-1,1

-1,1

0,0

Zero-sum ga

minimax strategies

ZETO-sum games general-suﬂ.

Nash equilibrium

ZETO-sum games general-sb

Stackelberg mixed strategies

ol




Other nice properties of
commitment to mixed strategies

No equilibrium selection problem

Leader’s payoff at least as good as
any Nash eq. or even correlated eq.

(von Stengel & Zamir [GEB ‘10]; see also C.
& Korzhyk [AAAI “11], Letchford, Korzhyk, C.

[JAAMAS'14])

More discussion: V. Conitzer. Should Stackelberg Mixed Strategies Be
Considered a Separate Solution Concept? [LOFT 2014]

0,0 -1, 1
1,-1 | -5,-5
>




Some other work on commitment In
unrestricted games

“nature”

2, 2 _1 , O 1 gets King 1 gets Jack
-7, -8 O, 0 check
normal-form games piayer 2~ TS player 2
learning to commit [Letchford, C., Munagala SAGT’09] cal = fld
correlated strategies [C. & Korzhyk AAAT’11] gy g vy g
uncertain observability [Korzhyk, C., Parr AAMAS’11] extensive-form games
L R L R [Letchford & C., EC’10]
row player Ul 4 | 6 | coumnplayer U| 4 | 6
type 1 (prob. 0.5) | 2 | 4 | type 1 (prob. 0.3) p| 4 | & 5 11110
L R L R /%7 0,1/0,0
row player Ul 2| 4| columnplayer U| 2 | 2 2.2/0, 3. 4
type 2 (prob. 0.5)p| 4 | 2 | type2 (prob. 0.5)p| 4 | 2 3 0/1 1. 31 olo. 1
commitment in Bayesian games 6 [0,1[1,0
[C. & Sandholm EC’06; Paruchuri, Pearce, Marecki, Tambe, stochastic games
Ordofiez, Kraus AAMAS’08; Letchford, C., Munagala [Letchford, MacDermed, C.,
SAGT’09; Pita, Jain, Tambe, Ordonez, Kraus AIJ’10; Jain, Parr, Isbell, AAAI’12]

Kiekintveld, Tambe AAMAS’11; ...]



Security games



Example security game
3 airport terminals to defend (A, B, C)

» Defender can place checkpoints at 2 of them

» Attacker can attack any 1 terminal
A B C
A, Bi0,-1/0,-1/-2,3
A, C10,-11-1,11 0, 0
WB.H1,1]0,-11 0,0




Security resource allocation games
[Kiekintveld, Jain, Tsai, Pita, Ordonez, Tambe AAMAS’'09]

Set of targets T

Set of security resources Q available to the defender (leader)

Set of schedules S — 2"

Resource o can be assigned to one of the schedules in A(w) C §
Attacker (follower) chooses one target to attack

Utilities: U, (¢),U (#) if the attacked target is defended,

U,(),U;(t) otherwise .
U2 USUS)<U ) s L@ e
“1 @ e n/e b
SZ l\ : W /’
°: @ sl

-
‘-———_—



Game-theoretic properties of security resource
allocation games [korzhyk, Yin, Kiekintveld, C., Tambe JAIR'11]

* For the defender:
Stackelberg strategies are
also Nash strategies

— minor assumption needed

— not true with multiple attacks

* Interchangeability property for

Nash equilibria (“solvable”)

* no equilibrium selection problem

« still true with multiple attacks

[Korzhyk, C., Parr [JCAI'11]




basic model
[Kiekintveld, Jain, Tsai, Pita, Ordonez, Tambe
AAMAS’09; Korzhyk, C., Parr, AAAI’10; Jain,
Kardes, Kiekintveld, Ordofiez, Tambe
AAAI’10; Korzhyk, C., Parr, [ICAI’11]

Techniques:
compact linear/integer programs

MaximizeUs(t' )3, e, +Us (t*(l—Z Z)  Defenderutliy

@ sit*es @ sit*es

. min
Subject to Marginal probability  gubject to

Vo: Zcm <1 of t* being defended (?)

5 ' Distributional constraints | Ny __
w.%‘,”ze‘;c,,,,,sl PN
U8 e U015 Tk )

@ SIES @ sies
~ Atacker optimaliy
<USE )Y Ye,, +UA)1-X Zcm,s)

@ st*es @ sit*es

games on graphs

(usually zero-sum)
[Halvorson, C., Parr IICAI’09; Tsai, Yin,
Kwak, Kempe, Kiekintveld, Tambe
AAAT’10; Jain, Korzhyk, Vanék, C.,
Péchoucek, Tambe AAMAS’11; Jain, C.,
Tambe AAMAS’13; Xu, Fang, Jiang, C.,
Dughmi, Tambe AAAI’14]

strategy generation

w

on(8ny )+

W2 On(3he)  U(8ey) Sho)+ es

. :n.(ah,,) =1
U2 a'h(shu) ) U(B.a,8h°)+ it
U2 a'h('shu) ) u(alushn)"' boo

Th (ahz) ; u(sla! shz)
Th (ahz) . u(s.l, 8hz)

on(3he)  6(80u, 5h)



Compact LP

« Cf. ERASER-C algorithm by Kiekintveld et al. [2009]

« Separate LP for every possible t* attacked:

@ sitres o sit*es

Maximize U;(t* )Z ch,s +Us(t*(1—z an),s) _

Subject to Marginal probability
Vo:) c,, <1 of t* being defended (?)

S <1 ' Disibutioalconstint

@ Ssites

w:Us(t)Zch,s+U2‘(t)(1—ZZCa;) -

ey

® sit*es w sit*es




Counter-example to the compact LP

* LP suggests that we can cover every
target with probability 1...

e ... butin fact we can cover at most 3
targets at a time



Birkhoff-von Neumann theorem

* Every doubly stochastic n x n matrix can be
represented as a convex combination of n x n

permutation matrices 114 5
3|.5
6| .1
11010 01110 0|01 0[1]0
=1/0|l0|1| *1|lojOo|1] *5/0|1|0]| +3|1|0]0
01110 11010 11010 0|0 1

« Decomposition can be found in polynomial time O(n%°),
and the size is O(n?) [Dulmage and Halperin, 1955]

« Can be extended to rectangular doubly substochastic
matrices



Schedules of size 1 using BvN




Algorithms & complexity

[Korzhyk, C., Parr AAAI'10]

(BvN theorem)

NP-hard
(BvN theorem) (SAT)
NP- h
- (constraint generatlon)
NP-hard
NP- h d

Also: security games on graphs
[Letchford, C. AAAI'13]



Security games with multiple attacks

[Korzhyk, Yin, Kiekintveld, C., Tambe JAIR11]

* The attacker can choose multiple targets to attack

% @

X

-
S

@
* The utilities are added over all attacked targets

» Stackelberg NP-hard; Nash polytime-solvable and
interchangeable [Korzhyk, C., Parr IJCAI*11]

« Algorithm generalizes ORIGAMI algorithm for single attack
[Kiekintveld, Jain, Tsai, Pita, Ordonez, Tambe AAMAS'09]



Actual Security Schedules: Before vs. After

Boston, Coast Guard — "PROTECT” algorithm
slide courtesy of Milind Tambe

Before PROTECT After PROTECT
\//\

N ><5
- {4’,1

- A e
Day 1 .‘- # Day3 Day4 Day5 Day6 Day?7

Dayl Day2 Day3 Day4 DayS5S Day6 Day?7

Industry port partners comment:
“The Coast Guard seems to be everywhere, all the time."



Data from LAX checkpoints
before and after "ARMOR" algorithm

140 -
(pre)4/17/06 to 7/31/07
120 -
= 1/1/08 to 12/31/08 not a controlled
experiment!
100 -
= 1/1/09 to 12/31/09
80 -
= 1/1/10 to 12/31/10
60 -
40 -
20 -
N

slide courtesy of
Milind Tambe

Firearm Violations Drug Related Offenses Miscellaneous

Total



Placing checkpoints in a city

[Tsal, Yin, Kwak, Kempe, Kiekintveld, Tambe AAAI'10; Jain, Korzhyk,
Vaneék, C., Péchoucek, Tambe AAMAS’11; Jain, C., Tambe AAMAS’13]




Learning in games



Learning In (normal-form) games

» Learn how to play a game by
— playing it many times, and
— updating your strategy based on experience
o Why?
— Some of the game’s utilities (especially the other
players’) may be unknown

— The other players may not be playing an equilibrium
strategy

— Computing an optimal strategy can be hard
— Learning is what humans typically do

* Does learning converge to equilibrium?



lterated best response

In the first round, play something arbitrary

In eac
what t

n following round, play a best response against
ne other players played in the previous round

If all players play this, it can converge (i.e., we reach
an equilibrium) or cycle
0,0 -1,11,-1 1T 00
1,110,011 00 T 1
-11 1 15 '1 Oa O a simple congestion game

rock-paper-scissors

Alternating best response: players alternatingly
change strategies: one player best-responds each
odd round, the other best-responds each even round



In each following round, play a best response against
the empirical distribution of the other players’ play

Fictitious play [Brown 1951]

In the first round, play something arbitrary

— |l.e., as if other player randomly selects from his past
actions

Again, if this converges, we have a Nash equilibrium
Can still fail to converge...

-1, -1

0,0

0,0/-1,1/1, -1
1,-110,0 -1, 1
-1,111,-11 0,0

0,0

-1, -1

rock-paper-scissors

a simple congestion game




Fictitious
play on
rock-paper-
SCISSOrS

= 5

= 100[-1.1]1, -1

. 11,-1,0,0 |-1, 1

_#1-1,1/1,-1] 0,0

““fﬁffﬁ

30% R, 50% P, 20% S

Column

INNNAN | [

30% R, 20% P, 50% S



Does the empirical distribution
of play converge to equilibrium?

o ... for iterated best response?
... forfictitious play?

3,0 1, 2
1, 2 2, 1




Fictitious play is guaranteed to

converge in...
Two-player zero-sum games [Robinson
1951]
Generic 2x2 games [Miyasawa 1961]

Games solvable by iterated strict
dominance [Nachbar 1990]

Weighted potential games [Monderer &
Shapley 1996]

Not in general [Shapley 1964]

« But, fictitious play always converges to the set of 2-

approximate equilibria [C. 2009; more detailed analysis by
Goldberg, Savani, Sarensen, Ventre 2011]



Shapley’'s game on which fictitious

play does not converge
starting with (U, C):

0,00,1]1,0
1,010,0 0, 1
0,1/1,0]0,0




“Teaching”

Suppose you are playing against a player that uses
one of these learning strategies

— Fictitious play, anything with no regret, ...

Also suppose you are very patient, i.e., you only care
about what happens in the long run

How will you (the row player) play in the following
repeated games?

— Hint: the other player will eventually best-respond to
whatever you do

4,4 | 3,5 1,0 | 3,1
5,3 0, 0 2, 1 4,0

Note relationship to optimal strategies to commit to

There is some work on learning strategies that are in
equilibrium with each other [Brafman & Tennenholtz AlJ04]




Dove

Hawk

Hawk-Dove Game

Dove

1, 1

0, 2

[Price and Smith, 1973] .

2,0

-1, -1

* Unique symmetric equilibrium:
50% Dove, 50% Hawk




Evolutionary game theory

Given: a symmetric 2-player game
Dove Hawk

Dove| 1, 1 0, 2
Hawk| 2.0 | -1, -1

Population of players; players randomly matched to play
game

Each player plays a pure strategy
p, = fraction of players playing strategy s
p = vector of all fractions p (the state)

Utility for playing s is u(s, p) = 24pU(s, s’)

Players reproduce at rate proportional to their utility;
their offspring play the same strategy

dp(t)/dt = pg(t)(u(s, p(t)) - Zepou(s’, p(t)))

— Replicator dynamic

What are the steady states?




Stability

Dove Hawk

Dove| 1, 1 0, 2
Hawk| 2 0 | -1, -1

« A steady state is stable if slightly perturbing the state
will not cause us to move far away from the state

* Proposition: every stable steady state is a Nash
equilibrium of the symmetric game

 Slightly stronger criterion: a state is asymptotically
stable if it is stable, and after slightly perturbing this
state, we will (in the limit) return to this state



Evolutionarily stable strategies
[Price and Smith, 1973]

* Now suppose players play mixed strategies

* A (single) mixed strategy o is evolutionarily stable if
the following is true:

— Suppose all players play o

— Then, whenever a very small number of invaders enters
that play a different strategy o’,

the players playing o must get strictly higher utility than
those playing o’ (i.e., 0 must be able to repel invaders)



Properties of ESS

* Proposition. A strategy o is evolutionarily
stable if and only if the following conditions both
hold:

(1) For all o', we have u(o, o) 2 u(a', o) (i.e.,
symmetric Nash equilibrium)
(2) For all o' (# o) with u(o, o) = u(o', o), we
have u(o, ¢') > u(o’, o)

* Theorem [rayior and Jonker 1978, Hofbauer et al. 1979, Zeeman 1980].

Every ESS is asymptotically stable under the
replicator dynamiC. (Converse does not hold [van Damme 1987].)



Dove

Hawk

Invasion (1/2) 11

0, 2

Hawk 2 , O

-1, -1

Given: population P, that plays o = 40% Dove,

60% Hawk

Tiny population P, that plays o' = 70% Dove, 30%

Hawk invades

u(o, 0) = .16%1 + .24*2 + .36*(-1) = .28 but

u(o', ) = .28*1 + .12*2 + 18%(-1) = .34

o’ (initially) grows in the population; invasion is

successful




Dove Hawk

Invasion (2/2) " | 1,11 0,2

Hok | D (0 | -1, -1

Now P, plays o = 50% Dove, 50% Hawk

Tiny population P, that plays o' = 70% Dove, 30%
Hawk invades

u(o, o) = u(o', o) = .5, so second-order effect:
u(o, o') =.35*1 + .35"2 + .15*(-1) = .9 but
u(o', o') = .49*1 + .21*2 + .09%*(-1) = .82

o' shrinks in the population; invasion is repelled



Rock-

poner. 80,0 1,11,

Scissors [ 1,-110,0 -1, 1

_f5-1,11,-1. 0,0

* Only one Nash equilibrium (Uniform)
* u(Uniform, Rock) = u(Rock, Rock)
* No ESS



“Safe-Left-Right”

Safe Left Right

ate 10111, 1 11, 1

“11,110,0 ] 2, 2

1,112,211 0,0

e Can 100% Safe be invaded?
e |sthere an ESS?



The ESS problem

Input: symmetric 2-player normal-form game.

Q: Does it have an evolutionarily stable strateqy?

(Hawk-Dove: yes. Rock-Paper-Scissors: no. Safe-Left-Right: no.)

Thm. ESS is NP-hard
NP [Etessamiand Lochbihler 2004]

coDP

Thm. ESS

is coDP-hard
[Nisan 2006]

Thm. ESS is in

ZZP [Etessami and
Lochbihler 2004]

hm. ESS

2,P-hard [c.
2013]

CONP 11, ESS 75 coNP-hard
[Etessami and Lochbihler 2004]




The standard 2,P-complete problem

Input: Boolean formula f over variables X, and X,

Q: Does there exist an assignment of values to X,
such that for every assignment of values to X,

fis true?



Discussion of implications

« Many of the techniques for finding (optimal) Nash
equilibria will not extend to ESS

* Evolutionary game theory gives a possible
explanation of how equilibria are reached...

... for this purpose it would be good if its solution
concepts aren't (very) hard to compute!



Learning in Stackelberg games

[Letchford, C., Munagala SAGT09]
See also here at NIPS’14: Blum, Haghtalab, Procaccia [Th54]

* Unknown follower payoffs

* Repeated play: commit to mixed strategy,
see follower’s (myopic) response

L R
u 1,? 3,7
D 2,7 4,7




Learning in Stackelberg games...
[Letchford, C., Munagala SAGT09]

C  (0,1,0) Theorem. Finding the

\ optimal mixed strategy to
commit to requires

R
\ . / O(Fk log(k) + dLk?)
\ . samples
° o — F depends on the size of the
° smallest region
° — L depends on desired precision
— ks # of follower actions
(1,0,0) (00,1 = o

— dis # of leader actions



Three main techniques in
the learning algorithm

* Find one point in each region (using
random sampling)
* Find a point on an unknown hyperplane

« Starting from a point on an unknown
hyperplane, determine the hyperplane
completely



Finding a point on an unknown
hyperplane

Step 1. Sample 1n the overlapping region

Intermediate state
Step 2. Connect the new point to the point

in the region that doesn’t match

Step 3. Binary search along this line

Region: R



Determining the hyperplane

Step 1. Sample a regular d-simplex
Intermediate state centered at the point

Step 2. Connect d lines between points on

opposing sides

Step 3. Binary search along these lines

Step 4. Determine hyperplane (and update
the region estimates with this information)



In summary: CS pushing at some of the
boundaries of game theory

learning 1n games

game theory behavioral
(humans

playing
games)
/ CS work 1n game theory

computation

representation

conceptual
(e.g., equilibrium selection)



Backup slides



Computational complexity theory

NP

problems for which “yes” answers
can be efficiently verified

P

problems that can be
efficiently solved

(incl. linear programming

[Khachiyan 1979])

NP-hard

problems at least as hard
as anything in NP

(This picture assumes P # NP)

* |s P =NP? [Cook 1971, Karp 1972, Levin 1973, ...]



Two computational questions for
iterated dominance

1. Can a given strategy be eliminated using iterated
dominance?

2. |s there some path of elimination by iterated

dominance such that only one strategy per player
remains?

For strict dominance (with or without dominance by
mixed strategies), both can be solved in polynomial
time due to path-independence:

— Check if any strategy is dominated, remove it, repeat

For weak dominance, both questions are NP-hard
(even when all utilities are 0 or 1), with or without
dominance by mixed strategies [C., Sandholm 05]

— Weaker version proved by [Gilboa, Kalai, Zemel 93]



Matching pennies with a sensitive target

Them
L R

L{1,-1 -1, 1
R|-2,2| 1, -1

« If we play 50% L, 50% R, opponent will attack L
— We get .5%(1) + .5%(-2) =-.5
 What if we play 55% L, 45% R?

Us

« Opponent has choice between

— L: gives them .55%(-1) + .45%(2) = .35
— R: gives them .55*(1) + .45*(-1) = .1
« Weget-.35>-5



Matching pennies with a sensitive target

Them
L R

L{1,-1 -1, 1
R|-2,2| 1, -1

Us

« What if we play 60% L, 40% R?

* Opponent has choice between

— L: gives them .6*(-1) + .4*(2) = .2
— R: gives them .6*(1) + .4*(-1) = .2

 We get -.2 either way

* This is the maximin strategy

— Maximizes our minimum utility



Let’'s change roles

Them
L R

L(1,-1 -1, 1
RI|-2,2| 1, -1

Suppose we know their strategy

Us

If they play 50% L, 50% R, von Neumann’s minimax
theorem [1927]: maximin
value = minimax value

If they play 40% L, 60% R, (~LP duality)
— If we play L, we get .4*(1)+.6*(-1) = -.2
— If we play R, we get .4*(-2)+.6*(1) = -.2

— We play L, we get .5*(1)+.5%(-1) =0

This is the minimax strategy



Practice games

20, -20

0,0

0,0

10, -10

20, -20

0,0

10, -10

0,0

10, -10

8, -8




Correlated equilibrium as Bayes-Nash equilibrium

0,=

0,=1 0,=2 0,=3
M 0,1 | 1,0 |[ 00 M 1,0 |[ 0,0 [ 0,1 \L
10| 00 | 0,1 |[ 1,0 00| o1 [[1,0] 00 | o1
0,1 | 1,0 | 0,0 [[o1] 1,0 00 |[0o1] 10] o0
0 1/6 1/6
0,0 | 0,1 | 1,0 1,0 [[ o0 01 [ 1,0
1.0 | 0,0 | 0,1 0,1 || 1,0 ] 00 [ 01
0,1 | 1,0 | 0,0 | 0,0 [[01] 1,0 o0
1/6 0 1/6
0,0 ] 0,1 | 1,0 |[[oo] o1 1,0][oo0] o1] 1,0
1,0 000 | 0,1 |[ 1,0 0,0 [ 0,1 |[1,0] 00 | o1
T‘ 1,0 | 0,0 || 0,1 m 0,0 [{ 01 ] 1,0 Io,_o
1/6 1/6 0



Stackelberg mixed strategies deserve

recognition as a separate solution concept!
* Seeing it only as a solution of a modified
(extensive-form) game makes it hard to
see...
— when it coincides with other solution concepts
— how utilities compare to other solution concepts

— how to compute solutions

« Does not mean it's not also useful to think of
It as a backward induction solution

« Similar story for correlated equilibrium



Committing to a correlated
strateqgy (c. s korznyk anar11)

1,11 3,0
2

4

0.0 2 1

g 3




LP for optimal correlated
strategy to commit to

maximize zr,c pr,c UC(I’, C) _

subject to

forallcand c’, 2, p,. ug(r,c)2 2, p,; Ug(r, C)

* Column incentive constraint
210 Pro = 1 [[disiibutional onsiraint



Equivalence to Stackelberg

Proposition 1. There
exi1sts an optimal
correlated strategy to
commit to in which the
follower always gets the
same recommendation.

L

| I

4
U
M
D

C

R

é

E




3-player example

Leader

2 Utilities 1

s &; 4
589

N a5

Wptimal correlated
strategy to commit to:

50%

Different from Stackelberg / CE

50%




The Polynomial Hierarchy
3F L ={xin {0,1}* | (3 w in {0,1}sP(x)) (x,w) in L }
ve L ={xin {0,1}* | (v w in {0,1}**()) (x,w) in L}

3P C={3rP L | pis a polynomial

and L in C}
vP C={VvrPL|pis apolynomial
and L in C}
,,=N,=P
i =37 MF

n,,F=vPZP

)1

T‘I
el )

NP = £F

AP
"'J"'."'[]

*\/1

/N

N/
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N/
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The ESS-RESTRICTED-
SUPPORT problem

Input: symmetric 2-player normal-form
game, subset T of the strategies S

Q: Does the game have an evolutionarily

Stable strategy whose support is restricted to
(a subset of) T?



MINMAX-CLIQUE

proved I,P(=coZ,F)-complete by Ko and Lin [1995]
Input: graph G = (V, E), sets | and J, partition of V into

subsets V; (foriin I and j in J), number k

Q: Is it the case that for every function t: | — J, U; V,

has a pllque of size k? Thank you, compendium
"""""" J={1,2 } . by Schaefer and Umans!
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Unrestricted support?

» Just duplicate all the strategies outside T...

* (Appendix: result still holds in games in which
every pure strategy is the unique best
response to some mixed strategy)



Bound on number of samples

Theorem. Finding all of the hyperplanes necessary to
compute the optimal mixed strategy to commit to
requires O(Fk log(k) + dLk?) samples

— F depends on the size of the smallest region
— L depends on desired precision
— k is the number of follower actions

— d is the number of leader actions



