Strategy-Proof Contract Auctions and the Role of Ties™

Mathijs M. de Weerdt?, Paul Harrenstein®, Vincent Conitzer®

¢ Delft University of Technology, Delft, The Netherlands
b University of Ozford, Ozford, UK
¢Duke University, Durham, USA

Abstract

A contract auction establishes a contract between a center and one of the bidders. As
contracts may describe many terms, preferences over contracts typically display indiffer-
ences. The Qualitative Vickrey Auction (QVA) selects the best contract for the winner
that is at least as good for the center as any of the contracts offered by the non-winning
players. When each bidder can always offer a contract with higher utility for the center
at an arbitrarily small loss of her own utility, the QVA is the only mechanism that is
individually rational, strategy-proof, selects stable outcomes, and is Pareto-efficient. For
general continuous utility functions, a variant of the QVA involving fixed tie-breaking is
strategy-proof and also selects stable outcomes. However, there is no mechanism in this
setting that in addition also selects Pareto-efficient outcomes.
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1. Introduction

In a standard auction, bidders compete only on the price they pay (or are paid, in
the case of a reverse auction). However, in many situations, bidders also compete on
other additional attributes, which could be laid down in a contract. In some settings, the
bidders may not even compete on price at all, for instance, if the price is fixed in advance.
In a contract auction one out of many possible contracts is selected between one player,
which we call the center, and one winner out of a set of other players, called the bidders.
A contract describes all terms of the arrangement between the center and the winner,
such as the quality of service, deadlines, reputation, shipping, and payment method, but
none of these are obligatory elements. For example, the center may be a company putting
out a request for proposals, a governmental organization with a fixed budget acquiring
a service from one of the available public transport companies, a hospital hiring one out

*This paper gives a characterization of the mechanism presented at the 10th ACM Conference on
Electronic Commerce in 2009 [10], and specifically analyzes the role of ties.
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of many applying doctors, or a home owner requesting a construction bid for a house
extension.

In such a contract auction setting we are interested in defining a mechanism that
selects an outcome that is stable, that is, a contract such that the center cannot get a
better deal with another bidder, nor a better deal with the winner without reducing the
winner’s utility. In particular, we would like to provide bidders with a strategy for this
mechanism that is dominant (that is, the best the bidder can do irrespective of the other
bidders) such that stable outcomes are guaranteed. When the contract consists just of
a price for a certain item or service, in the Vickrey or sealed-bid second-price auction
truthful bidding is a dominant strategy—and thus the Vickrey auction is strategy-proof—
and selects the highest bidder as a winner [20]. In this paper we show how to generalize
the Vickrey auction to the contract auction setting.

When the set of possible contracts is finite and the preferences of all players over
possible contracts do not allow for indifferences, that is, are a linear order, we say the
preferences are strict. Under this strict preference assumption, a contract auction can
be seen as a special case of matching with contracts [13] where on one side there is
only one player. This illustrates the powerful generality of the matching-with-contracts
framework. However, these assumptions of finiteness and strictness of preferences are
restrictive and they severely limit application of the framework. For example, the regular
Vickrey auction is not a special case, because the possible payments constitute an infinite
outcome space. Also, when there are two or more dimensions to a contract—such as both
a payment and a delivery date—one would naturally expect indifferences in the center’s
preferences, if a lower value in the one dimension can be offset by a higher value in the
other one. Rather, the center’s preferences in such a situation are often lucidly modeled
by indifference curves, where the center is indifferent across all the points that lie on
the curve. Below we give an example of an application domain that illustrates such a
possibly infinite domain of contracts, and preferences that are not strict.

Ezxample 1. Deloxdu University has received a donation to build a new building to house a
new center focusing on the intersection of computer science and economics. The donation
specifies a fixed budget and requires that the university solicit bids from different firms for
the construction of the building, according to an open and clearly specified process. Many
attributes of the building, such as the numbers of offices and classrooms, are specified
by the university. This leaves only two attributes for bidders to compete on: the energy
usage 1(> 0) of the building and the amount of time p(> 0) before the relevant people can
move into the building. The firms cannot compete on price because the donation specifies
a hard budget for the building that cannot be reallocated. After ample deliberation in
committees, the university decides that its utility function is ug(n,u) = .9*(1 — n),
reflecting a discount factor of .9 and a long-run utility of occupying the building of 1 — 7.
This utility function is communicated to the firms the university solicits bids from.
Two firms enter the competition. Firm 1 specializes in energy efficient building, but
tends to be slow. Its utility function for winning a contract w = (n, ) is ui(n, u) =
1 —10p2n~t, which takes into account the resulting revenue for the firm. This reflects
that taking either p or 7 down to zero will take the cost to infinity and p more quickly
so. Firm 2 specializes in speedy construction, but tends to produce energy inefficient
buildings. Its utility function for winning a contract is uz(n, ) = 1 — u~tn~2. This
reflects that, again, taking either p or n down to zero will take the cost to infinity and,
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Figure 1: The situation described in Example 1. The solid curves are indifference curves for the center,
the dashed curves are indifference curves for Firm 1, and the dotted curve is an indifference curve for
Firm 2.

in this case, 7 more quickly so.

Naturally, the university would welcome it if each firm were to put forward a proposal
that maximizes the university’s utility under the constraint that the firm does not have
negative utility. Some calculation shows that for Firm 1, the corresponding bid would be
w=6.33,n = .250, resulting in uy = .385 and u; = 0. 3D0For Firm 2, the corresponding
bid would be p = 4.36,n7 = .479, resulting in uy = .329 and us = 0. The reader is referred
to Figure 1 for a graphical representation of the situation. 3D0.9Firm 1 has the more
desirable proposal: while it will take longer for the building to be ready to occupy, the
gains in energy efficiency more than make up for it.

Clearly, however, asking each firm to put forward the best possible proposal that still
gives it nonnegative utility and then requiring the winning proposal to be implemented, is
not strategy-proof. In the above example, Firm 1 ends up with a utility of 0. Having won
by a comfortable margin, it could submit a weaker proposal instead, increasing either p
or n or both, and still win, thereby obtaining positive utility. This is not surprising,
because the above mechanism is a type of first-price auction. Can we create something
closer to a Vickrey auction? A first idea might be to only require Firm 1 to implement the
second-best proposal, the one submitted by Firm 2. This will not do: it turns out that
implementing Firm 2’s proposal would actually result in a utility of —.0981 for Firm 1.
1This should not be surprising, because Firm 2’s proposal caters to Firm 2’s strength
(speed), not to Firm 1’s (energy efficiency). The right approach is to allow the winning
firm to choose any contract that is at least as good for the university as the second-best
proposal. That is, Firm 1 can choose any contract that gives the university a utility
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of at least .329. The contract that maximizes Firm 1’s utility under this constraint is
u="7.42,n = .281, for a utility of u; = .353 (and ug = .329). 3ENote that Firm 1 has
slightly increased both p and 7 relative to its original proposal. This is the outcome of
the first mechanism that we describe in this paper. Figure 1 shows the bids, the final
outcome, and the relevant indifference curves for both the university and the firms.

The main idea underlying the last auction in the example above—having the highest
bidder win a contract she can select from a set of contracts determined by the high-
est bid among the other bidders—forms the basis of the Qualitative Vickrey Auction
(QVA), as introduced in previous work [10, 11]. A proposal by Goel et al. [9] relies on a
similar conception. The possibility of indifferences in the center’s preferences, however,
introduces a number of issues, especially with respect to strategy-proofness and Pareto
optimality. The auction in Example 1 worked properly because the utility functions had
the property that a winning firm can always increase the university’s utility by sacrificing
an arbitrarily small amount of its own utility. This is because the university’s utility has
no local maximum when g > 0,7 > 0, and firms’ utility functions are continuous. If this
assumption does not hold, it turns out that one has to be more careful in designing the
auction, especially regarding how to break ties. This phenomenon can be illustrated if
we slightly adapt Example 1.

Ezample 1 (continued). The university has discovered an additional option, namely,
to renovate an existing building instead. As the firms discover, there are fundamental
limitations on what can be achieved with this existing building: for this building, we must
have p > 4 (because people are currently occupying it) and n > .2 (due to limitations
of existing systems in the building). If indeed p = 4 and n = .2, this results in a utility
of .525 to the university. Let us suppose that this renovation job is much easier for the
firms than new construction and, hence, each of them would obtain a utility of .5 for
doing it and achieving p = 4 and n = .2. The option of creating a new building still
exists. However, in terms of ug, the renovation option (that is, where y =4 and n = .2)
dominates any new building that the two firms can propose at nonnegative utility to
themselves. Therefore, the renovation option is the best proposal that each firm can
put forward. Which firm will get the contract? It should be noted that each firm has a
strictly positive utility for getting it and this is where we need to be more cautious in
designing the mechanism. In particular, if the tie is broken against a firm with positive
probability, then if we are not sufficiently careful, this firm may engage in the following
manipulation: put forward a proposal for a new building with, say, p = 3 and n = .1.
This proposal is more attractive for the university. While implementing it would give
the firm negative utility, if the firm is only required to implement something as good as
the next best proposal, then the firm could in fact just implement the renovation option.
It would increase its utility by this manipulation because originally it did not (always)
win the renovation contract.

Our contributions concern two related contract auction mechanisms. First, we define
the concept of weakly transferable utility, describing that for any bidder it is always
possible to bid slightly higher at an arbitrarily small loss of utility. We show that under
this condition the QVA is strategy-proof for the bidders and selects stable and Pareto
efficient outcomes. Moreover, we find that all mechanisms that are strategy-proof for the
bidders and select stable outcomes are equivalent to the QVA. We also show that the
condition of weakly transferable utility is necessary for strategy-proofness. Second, for
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general situations with continuous utility functions but without a condition on weakly
transferable utility, we define the QVA™, where tie-breaking is fixed and the winner may
select from the closure of all outcomes that would have made her a winner. We show
that the QVA™ is strategy-proof for the bidders and moreover selects stable outcomes.
Furthermore, we find that there is no mechanism with these properties that is also Pareto
efficient.

The setup of this paper is as follows. First we introduce notation and definitions
in Section 2. Then, in Section 3 we introduce a condition called weakly transferable
utility and characterize the QVA in settings in which this condition holds. Relaxing this
condition, we introduce and analyze the QVA™ in Section 4, followed by a discussion of
related work in Section 5, and conclusions and future work in Section 6.

2. Preliminaries

Players and outcomes. In a contract auction we consider a finite set of players denoted
by {0,1,...,n} with typical elements 7, j. Player 0 is called the center and the players
in the set N = {1,2,...,n} the bidders. The outcome of a contract auction is a contract
between the center and one of the bidders, whom we call the winner. Let C; be a set
of contracts bidder ¢ can offer. We have Q; = C; x {i} denote the set of (possible)
outcomes w; in which ¢ wins the auction. Thus, Q; N Q; = (), whenever ¢ # j. The
total set of outcomes is given by 2 = Q; U---U,. We assume each §2; to constitute a
topological space. Moreover, for every €, C €2;, denote by cl(€;) the closure of Qf, that
is, the smallest closed superset of 2.

Preferences. We assume that the preferences of the center 0 over ) are given by a
utility function ug: 2 — R such that the restriction of ug to each ; is a continuous
function. Similarly, the preferences of each player i over (2 are represented by a wutility
function u;: Q@ — R such that the restriction of w; to 2; is a continuous function and
ui(w) = 0 for every w € 2\ Q;.1 Thus, bidder 7 is indifferent between any two outcomes
in which she is not the winner (a no-externalities assumption). A wutility profile is a vector
u = (ug,u1,...,u,) of utility functions, one for each player.

For player ¢ and a set of outcomes ' C Q we write opt, (') to denote the set of
optimal outcomes for i in ', that is,

opt; () = argmax u;(w)
we)

={we Q1 uy(w) >y () for all v’ € Q'}.

Given a utility profile, we say an outcome w is acceptable for a bidder 7 if w is not worse
for 4 than losing the auction, that is, if u;(w) > 0, and unacceptable otherwise. Formally,
given a utility profile u, the acceptable outcomes for a bidder ¢ in §2; are defined by

Qf (u) = {w € Q; : u;(w) > 0}.

1The assumption of continuous utility functions is void on a discrete outcome space, since every
function on a discrete space is continuous.
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Throughout the paper, we assume the bidders’ preferences to be satisfiable in the sense
that for each bidder the set of acceptable outcomes is non-empty. Moreover, to guarantee
the existence of maximal outcomes in certain subsets of outcomes, we make a weak
compactness assumption and require that every sequence of acceptable outcomes in £2;
for a bidder ¢ with increasing utility for the center or with increasing utility for ¢ must
have a limit point within the acceptable outcomes.

Given a utility profile u = (ug,u1, ..., u,), there is a number of sets of outcomes that
play an important role in the mechanisms considered in this paper. A key concept is that
of the set of outcomes for a bidder that maximize the center’s utility under the constraint
of being acceptable to that bidder. Thus, we define the set of highest acceptable bids as
follows:

Q;(u) = opty(QF ().

We observe that for all bidders i we have ug(w;) = ug(w!) for all w;,w! € Q;(u). Because
bidders’ preferences are satisfiable by assumption, by the weak compactness condition
Q; (u) is non-empty for all utility profiles u. As an auxiliary notion we define the set N* (u)
of potential winners given a utility profile u. A bidder 7 is a potential winner if she has
an acceptable bid that is ranked at least as high by the center as any other acceptable
bid by any other bidder. Accordingly, we define

N*(u) = {i € N : up(w;) > up(w;) for all bidders j # i, w; € Q;(u), and w; € Q;(u)}.

We observe that the set N*(u) of potential winners is non-empty for every utility profile u,
again by virtue of the weak compactness condition. To illustrate the above concepts, we
include the following example.

Ezxample 2. Consider the setting in which, apart from the center 0, there are two bidders, 4
and j. Let Q; = Rx{i} and Q; = Rx{j}. Moreover, let the utility profile u = (uq, u;, u;)
be such that for all x € R and k € {i,j},

up(w, k) = o — 1

1 Ty
ui(x,k):{g s if k=1,

0 otherwise,
(2, k) 4—x ifk=j,
uj(z, k) =
/ 0 otherwise.

The situation is also depicted in Figure 2. Then,

Qf (u) = {(z,4) : 2 < 9} and Qj‘(u):{(m,j) cx < A4}
Moreover, Q;(u) = {(9,7)} and Q;(u) = {(4,)}. As 9 > 4, also up((9,1)) > uo((4,])).
Hence, N*(u) = {i}.

Ties and tie-breaking. We will generally use the word ties to refer to indifferences in the
center’s preferences, that is, outcomes w and w’ are said to be tied if ug(w) = wug(w’).
The reasons for this are twofold. Firstly, we wish to avoid confusion with indifferences
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Q; (w)

Figure 2: Example illustrating the notations. Here w; = (9,1) and @; = (4, j) and, thus, Q;(u) = {(9,4)}
and Q;(u) = {(4,7)}. The outcome in the darker gray area are unacceptable for bidder i. The outcomes
that lie either in the lighter or the darker gray area are unacceptable to bidder j.

in the bidders’ preferences. Secondly, the center is not a strategic player in this context;
its preferences serve only to define the mechanism. Specifically, its preferences define
an objective function that the mechanism seeks to maximize, and if multiple outcomes
achieve the maximum objective value, the mechanism must specify how to break this
tie. Therefore, the center will not make any decisions once the mechanism is defined, so
that at that point it is no longer strictly necessary to think of ug as reflecting preferences
(and, a fortiori, indifferences).

In its most general form, by a winner determination (including tie-breaking) rule we
understand a function ¢ that associates each utility profile u with a bidder ¢(u). Numerous
restrictions on tie-breaking rules are of course possible. In this paper, we assume that
tie-breaking rules break ties among the highest bidders, that is, for all utility profiles u
we have t(u) € N*(u).

Mechanisms. By a social choice function or a direct mechanism we understand a func-
tion f that maps each utility profile u = (ug,u1,...,u,) to an outcome f(u) in Q. A
social choice function f is individually rational if for all utility profiles u and all bid-
ders 4, f(u) is acceptable, that is, u;(f(u)) > 0. Moreover, f is strategy-proof if for all
bidders 7 > 0 (note that the center is not treated as a strategic agent) and all utility
profiles u and v/,

U7(f(’ll,)) Z ui(f(“‘Oa Upy ooy Ui—1, u;vui+17 B ’U,n)).

We then also say that u; is a dominant strategy for each bidder i. By an indirect
(revelation) mechanism we understand a game form G = ({1,...,n}, Ay,..., A, h),
where A; is a set of actions for bidder ¢ and h: Ay x---x A, — Q is an outcome function.
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(Again, the center is not treated as a strategic bidder.) Given a utility profile u =
(u1,...,un), an action a; for bidder ¢ in an indirect mechanism G is said to be dominant
if for all actions by, ...,b, it is the case that

ul(h(bl7 s ;bi—lvaiabi+17 H abn)) Z ul(h(b17 e 7bi—1abiabi+17 H abn))

In a slightly informal fashion, we say that an indirect mechanism is strategy-proof if an
appropriate concept of straightforward strategies can be defined such that straightforward
strategies are both dominant and guaranteed to exist.

An outcome w is said to be Pareto efficient if there is no other outcome w’ such that
u;(w’) > wi(w) for all players ¢ € {0,1,,...,n} and u;j(w’) > u;(w) for at least one player
j €{0,1,,...,n}. A mechanism f is said to be Pareto efficient if it generally yields
Pareto efficient outcomes, that is, if f(u) is Pareto efficient for all utility profiles w.

Finally, we say an outcome w is (strongly) stable if it is acceptable to the winner and
there is no bidder 7 and no outcome w’ € §; such that both

(i) uo(w') > uo(w), and
(i) wi(w') = ui(w),

that is, if the outcome is acceptable to the winner, and the center cannot get a better deal
with another bidder, nor a better deal with the winner without reducing the winner’s
utility. From the acceptability of stable outcomes, it follows directly that any mechanism
that always selects stable outcomes is individually rational for the bidders.

The above definition of stability in contract auctions relates to the notion of a
(strongly) stable matching M, which is a matching in which there is no couple (i, )
such that j strictly prefers ¢ to his/her partner in M, and ¢ either strictly prefers j to
her/his partner in M or is indifferent between them [15, 17]. In our definition we fix the
matching to a single contract and one of the partners to the center, and we extend the
definition with the possibility to select such a contract between the center and a bidder
from a set of possibilities over which both have a preference order. As in matching theory,
it is possible to define a weaker notion of stability where the inequalities are all strict.
Naturally, the positive results in this paper all hold for this weaker notion as well.

The reader is referred to Table 1 for a summary overview of the notations used in
this paper.

3. Contract Auctions with Weakly Transferable Utility

We first consider a specific generalization of the Vickrey auction, called the Qualitative
Vickrey Auction. We show when it is strategy-proof and selects stable outcomes. Then we
give a characterization of the complete set of social choice functions with these properties.

3.1. A Strategy-Proof Contract Auction

The Qualitative Vickrey Auction (QVA) is an indirect mechanism in which each
bidder ¢ with utility function u; submits a sealed bid w; € €); to the center and was
proposed by Harrenstein et al. [10]. For each bidder ¢ and each profile & = (¥, ...,&,)
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symbol meaning definition

0 center page 5

1,...,n bidders page 5

w; outcome where 7 wins page 5

Q; set of outcomes with i as winner page 5

Q set of outcomes QI U---UQ,

u;: @ — R player i’s utility function page 5

opt, (Q) outcomes in €’ optimal for i argmax,,c o ui(w)
QF (w) outcomes acceptable to i {w € Qi ui(w) > 0}
Qi (u) highest acceptable bids of 4 opty (2 (u))
N™(u) potential winners page 6

t(u) winner-determination (incl. tie-breaking) rule page 7

t(®) winner-determination (incl. tie-breaking) order page 18

f social choice function page 7

Qi (@) potentially winning outcomes for ¢ (QVA-i) page 9

Q; (u) potentially winning outcomes for ¢ (QVA-d) page 13

Qi (&, 1) potentially winning outcomes for i (indirect QVA')  page 18

Qi (u,t) potentially winning outcomes for 4 (direct QVA™) page 17

Table 1: Overview of notations

of bids define Q2 (@) as the set of outcomes in §; that yield the center at least the utility
of any other bid w; submitted by some bidder j distinct from ¢, that is,

Q:(LD) = {wi e, UQ((.UZ‘) > Uo(@)j) for all] 7é 7,}

These outcomes we refer to as the potentially winning outcomes for i in the QVA.
The QVA then consists of the following steps.

(1) First, the utility function ug of the center is announced to all bidders.
(2) Then, each bidder ¢ submits a sealed bid &; € §2; to the center.

(3) The bidder i* who submitted the bid with the highest utility for the center is declared
the winner of the auction, that is, i* is selected from argmax;ecn uo(@;). Ties are
broken arbitrarily.

(4) Finally, the winner ¢* may choose from among her outcomes in Q;« any outcome that
yields the center a utility that is at least as high as the center’s utility for the next-
highest bid, that is, ¢* may choose from Q7 (&1,...,&,). The outcome she chooses
is the outcome of the auction.

The QVA is guaranteed to yield an outcome. There being only a finite number of
bidders, bids with a highest utility for the center always exist and a winner i* can be
selected. Moreover, bidder *’s initial offer &;« is witness to the fact that Q% (@y,...,0n)
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is non-empty. Furthermore, if the winner’s bid @;~ is acceptable to her, then it is also
witness to the fact that an acceptable outcome of the QVA exists.

The intuition why the classical Vickrey or second-price auction [20] is strategy-proof—
that is, bidding truthfully is a dominant strategy—is that a bidder’s monetary bid only
determines whether she turns out to be the winner, but not what price she has to pay if
she does. The situation is similar in the qualitative Vickrey auction. Again, a bidder’s
bid determines whether she emerges as the winner, but the set of alternatives from among
which she may choose is decided by the second-highest bid.

A strategy for a bidder i in the QVA specifies the bid w; € ; to make, along with a
contingency plan prescribing which outcome to choose from among the outcomes in 2;
that have at least as high a utility for the center as the second-highest offer submitted,
in case ¢ happens to win the auction. Of course, bidder ¢’s strategy may depend on her
utility function wu;.

We call a strategy for i straightforward if it satisfies the following properties:

(i) the bid i submits is an outcome w; with the highest utility for the center among
those that are acceptable to 4, that is, @; € Q;(u),

(#9) in case i wins the auction, she selects one of the outcomes w} in €; she values most
among those that have a center’s utility at least as high as the second-highest bid
submitted, that is,

wi € opt,; (QF (&1, ..., @),

where, for bidders j distinct from ¢, @w; denotes the actual bid submitted. If there
are multiple such outcomes in this set, equally valued by ¢*, she selects one with
the highest utility for the center.

Ezample 2 (continued). Consider the situation depicted in Figure 2. If both bidders play
straightforward strategies, bidder 4 bids outcome @; = (9,4) and bidder j outcome w; =
(4,7). Moreover, bidder i then emerges as the winner and she will subsequently choose
an outcome from opt,({(z,7) : & > 4}), that is, outcome (4,). This yields a utility of 12
to ¢ and a utility of 1 to the center.

We say that the auction is strategy-proof if such straightforward strategies exist and
all straightforward strategies are dominant strategies.

The QVA may not be strategy-proof when a bidder has a strictly positive utility
for her highest acceptable bid. In case she is one of the potential winners, but the tie
is broken against her, she may submit a bid that is more preferred by the center, but
unacceptable to her. In this way she will win the auction, but still be able to choose her
original bid. However, under a mild condition we call weakly transferable utility we can
generalize the Vickrey auction in a particularly natural way.

We say that a domain with a utility profile u = (ug, u1, - . ., up,) has weakly transferable
utility if for every bidder i, every outcome w € €;, and every € > 0, there is an w’ € Q;
such that both

(i) uo(w') > uo(w), and

(11) w;(W') > ui(w) — e
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Intuitively, this condition says that, given an outcome w; € €);, bidder ¢ can always
please the center slightly more with another outcome in €2; at an arbitrarily small loss of
utility to herself. This condition generalizes the common concept of transferable utility
as well as that of the more general quasi-transferable utility, which occurs in domains
where there is “a good which is divisible, always desirable and a substitute for any other
good” [3, page 237]. With the condition of weakly transferable utility we include other
circumstances, in which one player can accommodate another, such as finishing a project
a bit earlier. Note that with weakly transferable utility we introduce an even weaker
variant, where this transfer only has to to be possible from the bidders to the center.

For utility not to be weakly transferable, there must be an outcome which, intuitively,
is locally optimal for both the center as well as the bidder. Then, there is no way the
bidder can concede so as to increase the center’s utility. An example of this phenomenon
can be found in Figure 4 below.

The following lemma, which is crucial for the proofs of Theorem 1 and Theorem 2,
says that under weakly transferable utility, the highest bid which is acceptable to a bidder
has 0 utility for her.

Lemma 1. If utility is weakly transferable, then u;(w;) = 0 for every highest acceptable
bid w; € Ql(u)

Proof. Assume wu;(w;) # 0. As w; is acceptable, then u;(w;) > 0. Then, let € = u;(w;).
Since utility is weakly transferable, we may conclude that there exists an w; with u;(w}) >
u;(w;) —e =0 and ug(w;) > ug(w;). Then w} is acceptable for ¢, contradicting that w; is
a highest acceptable bid, that is, that w; € Q;(u). O

We are now in a position to prove Theorem 1, our first main result.

Theorem 1. If utility is weakly transferable, then the Qualitative Vickrey Auction is
strategy-proof and selects stable and Pareto efficient outcomes.

Proof. Tt suffices to show that for every bidder i a straightforward strategy as defined
above exists and that these straightforward strategies never result in negative utility
for 7, are dominant, and result in stable and Pareto efficient outcomes. To this end, let
u = (ug,u1,...,u,) be an arbitrary utility profile.

To show the existence of a straightforward strategy for each bidder, we first note
that Q;(u) is nonempty by the weak compactness condition, so the bidder is in fact able
to bid according to a straightforward strategy. Next, let &; denote the bid submitted
by bidder j in the second stage of the auction. We argue that opt,({w; € Q; : up(w;) >
uo(@;) for all j # i}) is non-empty if ¢ emerges as the winner in the third stage of the
auction. So assume that wo(@;) > up(w;) for all bidders j distinct from 4 (and that i
wins the tie if there is one). It follows that there exists an infinite sequence (possibly
with repetitions) of outcomes w; € €; such that ug(w;) > uo(@;) for all j # 4, and in
which bidder i’s utility is nondecreasing and converges either to infinity or to the least
upper bound on utilities that bidder 7 can obtain in this set. By the weak compactness
assumption, this sequence must have a limit point w{®. By continuity of the center’s
utility function on €2;, we have ug(w®) > ug(w;) for all j # i. By the continuity of
the bidder’s utility function on €2;, outcome w?® must achieve the least upper bound on
utilities that bidder ¢ can obtain in Qf (@, ...,y ), that is, w® € opt,; (A (01, ..., 0n)).
This establishes the existence of straightforward strategies.
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For strategy-proofness, we show that every straightforward strategy is also dominant.
We first observe that by changing her bid, a bidder i can only affect whether she wins or
loses, but cannot improve her utility when she wins, because if she wins, a straightforward
strategy already selects an optimal outcome for her from a set she cannot change. Suppose
that a bidder ¢ would win with her straightforward bid; by individual rationality, she gets
utility at least 0, so she has no incentive to change her bid to lose, which would give her
utility 0.

Now suppose that a bidder ¢ would lose with her straightforward bid. We distinguish
two cases.

If bidder ¢ lost because her highest acceptable bid has a strictly lower utility to the
center than the bid of another bidder, then, if she changed her bid to win, she would
have to choose an outcome at least as desirable to the center as that other bid, which
must be unacceptable to her and, hence, result in negative utility. So, she would prefer
to lose.

If bidder 7 lost a tie with her highest acceptable bid w;, there is another bidder j # 4
with wo(w;) = uo(w;). If she changes her bid to win, then, after winning, she has to
choose an outcome at least as desirable to the center as wj, or, equivalently, at least as
desirable to the center as w;. Hence, she must choose one of her highest acceptable bids
(or an unacceptable bid, but that would be worse). By Lemma 1, however, this will yield
her utility 0 and she will not be better off. We may conclude that the mechanism is
strategy-proof.

To prove that the mechanism chooses stable outcomes, we first show that no straight-
forward strategy ever results in negative utility to the winner. When using a straightfor-
ward strategy, a bidder i will only bid acceptable outcomes in Q; (u), that is, &; € Qf (u).
If the bidder wins, then she can at the very least choose the outcome that she bid, that
is, w;, which must give her nonnegative utility. If bidder i loses the auction her utility
will be 0 and thus be nonnegative as well. Then observe that it is not possible to make
the center better off with the same bidder without making that bidder worse off, because
among the outcomes that give the bidder maximal utility, ties are broken in favor of the
center (in step (i¢) of the straightforward strategy). Moreover, the outcomes from which
this selection is made are all at least as good for the center as any acceptable outcome
for any other bidder. Hence, no acceptable outcome for any other bidder would make
the center better off.

To further conclude that any outcome w chosen by the mechanism is also Pareto
efficient, we show, in addition to stability, that no outcome w’ exists that gives one
bidder ¢ a strictly higher utility without reducing the center’s utility. In case there is just
one potential winner ¢, outcome w is already selected to be optimal for i, and since i is
a strict winner, all acceptable bids by all other bidders are strictly worse for the center
than w. In case of a tie among multiple bidders, for any one of these bidders we would
have to choose one of her highest acceptable outcomes to keep the center from being
worse off. By Lemma 1, however, such an outcome would yield the bidder utility 0. [

3.2. Characterizing the Qualitative Vickrey Auction

We now set out to prove that the Qualitative Vickrey Auction is, in an important
sense, the unique mechanism satisfying the desirable properties it has according to The-
orem 1 in this context. To do so, we first appeal to the revelation principle and convert
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the QVA to a direct-revelation mechanism. When it is helpful to distinguish, we refer to
the indirect version described above as QVA-i, and the direct version that we are about
to describe as QVA-d. In fact, there are really multiple versions of QVA-d, depending on
the tie-breaking rule and the concept of straightforward strategy chosen for the QVA-i.
tie-breaking rule chosen and, in the second place, because the version of QVA-d that
results from applying the revelation principle depends on the precise dominant-strategies
solution (that is, which straightforward strategies are used) of the QVA-i mechanism
from which we start. We therefore define a class of QVA-d mechanisms.

To this end, we have to adapt the concept of potentially winning outcomes given
utility profiles rather than bidding profiles. Given a utility profile v = (ug, u1,...,un),
let the set of potentially winning outcomes QF (u) for a bidder contain all outcomes in €;
with a utility for the center that is as least as high as the highest acceptable outcome of
any other bidder, that is,

Q5 (u) = {w;i € Qs : ug(ws) > ug(wj) for all bidders j # i and all wj € Q;(u)}.

In the setting of Example 2, we would thus have Q(u) = {(z,4) : z > 4} and Q}(u) =
{(z,7) : © > 9} (also see Figure 2).

We say that a social choice function f is a QVA-d mechanism if for all utility pro-
files w = (uo, u1,...,u,) the outcome f(u) is always for a potential winner i € N*(u)
and among the best optimal potentially winning outcomes for i from the ones that are
optimal for the center, that is, if

flu)ye |J optolopt; (€2} (w))).

1EN*(u)

Via the revelation principle, QVA-d mechanisms correspond exactly to combinations of a
QVA-i mechanism together with a profile of straightforward strategies for it. From this,
we obtain the following corollary.

Corollary 1. If utility is weakly transferable, then every QVA-d mechanism is strategy-
proof, and selects stable and Pareto efficient outcomes.

We now set out to prove that every direct-revelation mechanism with the desired
properties—even without requiring Pareto efficiency—must be a QVA-d mechanism.
First, we show that given a utility profile u, for any social choice function that chooses
stable outcomes, these outcomes must be for a potential winner ¢ € N*(u), and accept-
able (thus in Q; (u)) as well as potentially winning (in Q7 (u), that is, with a utility for
the center at least as high as the highest acceptable outcome of any other bidder).

Lemma 2. If a social choice function f chooses stable outcomes, then for every utility
profile u, f(u) € QF (u) N Q(u) for some bidder i € N*(u).

Proof. Consider an arbitrary utility profile u = (ug,u1,...,u,) along with an arbitrary
highest acceptable bid w; € ;(u) for the winner 7. As f(u) is acceptable for i—and thus
immediately f(u) € Q; (u) by virtue of stability (which implies individual rationality)—,
we have ug(w;) > wuo(f(u)). Also, consider an arbitrary bidder j distinct from ¢ and
an arbitrary highest acceptable bid w; € Q;(u). Then, by satisfiability of preferences,
uj(wj) > 0 =u;(f(u)). As f chooses stable outcomes, it follows that uo(f(u)) > uo(w;).
Hence, ug(w;) > uo(f(u)) > uo(w;) and we may conclude that both f(u) € Qf(u) and
i € N*(u). O
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We now present our characterization result.

Theorem 2. Given a utility profile u and a social choice function f, if utility is weakly
transferable, and f is strategy-proof for the bidders and chooses stable outcomes, then f
is a QVA-d mechanism.

Proof. By Lemma 2, we know that f(u) € QF (u) N Qf(u) for some bidder i € N*(u).
We first show that f(u) € opt,; (€ (u)) for the winner ¢ € N*(u) both with and without
a tie, and then conclude by showing that f(u) € opty(opt;(©2(u)) and, thus, that f is a
QVA-d mechanism.

In the case where there is a tie, that is, [N*(u)| > 1, we show that f(u) € opt,; (2 (u))
by proving that opt; (! (u)) = Q; (u) N QF(u) and then applying Lemma 2 again. First,
observe that for the winner i € N*(u) it holds that its potentially winning outcomes
are acceptable, and thus opt; (2 (u)) C QF (u) N QF(u). Moreover, QF (u) N QF(u) C
opt, (2} (u)), because the only outcomes in Q; (u) NQ} (u) are the highest acceptable bids
for 4, that is, the bids in €;(u), for which, by Lemma 1, we know i has utility 0. Hence,
opt; (2 (u)) = QF (u) N Q(u), and thus with Lemma 2 we have f(u) € opt; (0} (u)).

In the case where there is no tie, we show by contradiction that the outcome should
be optimal for ¢ among the potentially winning outcomes, that is, f(u) € opt,(Q}(u)),
because otherwise ¢ can report an alternative utility function 4; such that w;(f(@)) >
u;(f(u)) (also see Figure 3). Suppose that f(u) € opt, (27 (u)). Let w} be any outcome in
opt; (2% (u)). Informally, we define a (shifted) utility function @; below that renders f(u)
unacceptable for ¢. This only leaves acceptable outcomes for ¢ with a higher utility for ¢
than f(u). We then use weakly transferable utility to show that there exists an acceptable
outcome w’ ‘in between’ w; and f(u) that is strictly better for the center than wy. This
leaves ¢ as the only potential winner.

Formally, let § be the difference between i’s utility for w} and f(u), that is, § =
ui(wf)—u;(f(u)) > 0. We now define a utility function 4; that is similar to u;, but shifted
downward by u;(f(u))+ € for some 0 < € < ¢ such that f(u) becomes unacceptable, that
is, for all w; € Q;,

i (wi) = ui(w;) — ui(f(u)) —e.

Let @ = (ug,u1,...,0;,-..,u,). Then, because utility is weakly transferable,? there is an
outcome w) € Q; such that ug(w]) > ug(w}) and u;(w})) > u;(w}) — €, where € < § —e.
This outcome w;, is still acceptable for bidder 7 under utility function 4;, because

G (w)) = s (w)) —u (f(uw)) — €
> ui(wy) — € —ui(f(u) —e
=6—¢ —¢

> 0.

Moreover, since w; € Q7 (u), we know that for all bidders j # i and all w; € Q;(u)
it holds that up(w)) > ug(w;). Since Q;(1) = Q;(u) and up(w]) > up(w}), we then

conclude that for all bidders j # i and all w; € ;(@) it holds that ug(w]) > ug(w;) and
thus N*(a) = {i}, that is, ¢ is also the only potential winner with @. So f(4) € QF(4)

2Continuity of utility functions is insufficient, because ug could have a (local) maximum at wr.
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Figure 3: Illustrating the argument in the proof of Theorem 2, showing that, if we assume f(u) # w}, we
arrive at a contradiction. The gray zones on the right represent the unacceptable outcomes for bidder
under u; and 4;. The outcomes in the gray area on the left bidder ¢ cannot choose, because they yield
a lower payoff to the center than the maximal highest acceptable bids of the other bidders. If bidder 4
would receive u;(f(u)), she could increase her utility by misrepresenting her true preferences u; by ;.
Then, outcome f(u) would no longer be acceptable (light gray zone). Moreover, there would still be an
outcome w; that is acceptable under @; and for which uo(w}) > uo(w;). Thus, by bidding w}, bidder 4
would still win. Bidder ¢ would then receive an outcome that is acceptable for her under 4; (in the white
area) and which yields ¢ a strictly higher utility under u; than f(u).

and since f(u) is stable with respect to @ (and thus individually rational), @;(f(#)) > 0
and thus

ui(f(a))

a;(f(@)) +wi(f(u)) +e
ui(f(w)) + e

This contradicts f being strategy-proof and it follows that f(u) € opt; (2 (u)).

Finally, we show that f(u) € opty(opt, (25 (u)). For a contradiction assume that there
is an outcome w; € opt,;(QF(u)) such that ug(w;) > ue(f(u)). Since both f(u) and w;
are taken from opt, (€2} (u)) they have equal utility for 4. This, however, contradicts f(u)
being stable. O

v

8.8. Necessity of weakly transferable utility

In this section, we show why weakly transferable utility is necessary for the strategy-
proofness of the QVA. The intuition is as follows. Without weakly transferable utility,
Lemma 1 no longer holds and a bidder can have positive utility for her highest acceptable
bid. Consider a bidder who has positive utility for her highest acceptable bid, is one of
the potential winners, but has the tie is broken against her. This bidder has now an
incentive to bid another, unacceptable, outcome that is preferred by the center to her
highest acceptable bid: the bidder will then win and still be able to choose her original
bid after all. The next proposition makes this precise. (The proof uses the language of
the indirect mechanism, but this is immaterial.)
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Figure 4: The setting used in the proof of Proposition 1, illustrating that the QVA is not strategy-proof
if utility is not weakly transferable. Moreover, in the proof of Proposition 2 this example is used to show
that there is no mechanism that is strategy-proof, and also chooses outcomes that are stable and Pareto
efficient. Again, the gray zone indicates the unacceptable outcomes to the bidders.

Proposition 1. In the absence of weakly transferable utility, the QVA is not strategy-
proof in general.

Proof. Consider a setting with two bidders, 1 and 2. Let ; = Rx {1} and 5 = Rx {2}.
Suppose the center’s utility function is such that for both bidders ¢ and all (z,7) € €,

uo((z,4)) = 1 — 2% + 3.
Moreover, let for both bidders ¢ the utility function u; be such that for all (x,7) € Q;,
wi((x,4)) =1 — 222

See Figure 4 for an illustration of these utility functions. The highest acceptable bid for
both bidders i is (0,4), which, if realized, would give the center utility 1 and bidder ¢
utility 1. (The only bids that the center would prefer to these are bids of at least (1,1),
but, if realized, such bids result in negative utility to bidder i.) Outcome (0,¢) bears
witness to the fact that in this situation utility is not weakly transferable, since it is
impossible to improve the center’s utility by reducing the bidder’s utility only marginally,
that is, there exists an € > 0 (in this case any € with 0 < ¢ < 2) for which there is not
an outcome w; with ug(w;) > ue((0,7)) and wu;(w;) > u;((0,7)) — €. Suppose, without
loss of generality, that if both bidders bid straightforwardly, the tie is broken in favor
of bidder 1. Then, bidder 2 would be better off bidding an outcome of (say) (2,2): this
will cause bidder 2 to win, and then bidder 2 can choose outcome (0, 2) after all, because
this is at least as good for the center as bidder 1’s bid. Consequently, the QVA is not
strategy-proof in this context. O

It turns out that we can, in fact, obtain a version of the QVA that is strategy-proof
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even without requiring weakly transferable utility, but we need to be considerably more
careful about tie-breaking.

4. Ties and Strategy-proofness in General Settings

The Qualitative Vickrey Auction in Section 3 generalizes the classical Vickrey auction
under weakly transferable utility. Example 1, however, illustrated the complexity of the
issues that result when dealing with indifferences if this condition does not hold.

In this section, we present a class of mechanisms related to the QVA, which are
likewise strategy-proof and choose stable outcomes even in settings where the condition
of weakly transferable utility is violated. We find, however, that these properties can
be achieved only if the tie-breaking rule is made known in advance. Moreover, we show
that it is impossible to guarantee Pareto-efficiency in all situations. Intuitively, in the
QVA-i, the winner may choose from among all outcomes that are at least as good for
the center as all other bids. In the mechanisms in this section, the winner can instead
choose any outcome that, if she had bid that outcome, would have won her the auction,
taking into account the tie-breaking rule at hand. Accordingly, we (re)define for a utility
profile u = (ug, Un, - . ., uy), bidder i, and winner determination (including tie-breaking)
rule ¢, the set of such potentially winning outcomes Qf (u,t) as

Q(u,t) = {w € Q') : v = (ug,uz, ..., Ui—1, U, Uig1, ..., uy) for some u} and t(u') = i}.

In the QVA, the outcome is selected from the set of potentially winning outcomes. In
particular, to ensure strategy-proofness, the outcome should be among the potentially
winning outcomes with the highest utility for the winner. There is, however, a small
technical point to observe in the definition of the class of mechanisms in this section.
The set of potentially winning outcomes Q2 (u,t) is not guaranteed to include its limit
points and, therefore, may not include an outcome that maximizes the utility of the
winner. This is illustrated by the following example.

Ezample 3. Consider a setting with two bidders, 1 and 2, wherein Q; = [0,1] x {1} and
Qo =[0,1] x {2}. Assume further that for all (x,%), (y,7) € Q, uo(z,7) < uo(y, ) if and
only if < y. The utilities of bidders ¢ are such that for all (z,4) € Q,

) 1l—2 ifi=1, . 1—-2x ifi=2,
ul(xa 7’) = . and Ug(ﬂ?, 7’) = .
0 otherwise, 0 otherwise.

Furthermore, let ¢ break all ties in favor of bidder 2. Assume that both bidders adhere
to their straightforward strategies and bid (1,1) and (4,2), respectively. Then, bidder 1
wins the auction. Still, Qf (u,t) = (3,1] x {1} is an open set without an optimal outcome
for bidder 1. In particular, she cannot choose (%, 1) because she would have lost the tie
against bidder 2 with this bid.

It turns out that this problem can be overcome by simply allowing the winner to
choose the limit points of QF(u,t) as well. We are now in a position to introduce a
new class of direct mechanisms closely related but in essential details different from the
QVA-d mechanisms. We define for each utility profile u = (ug,u1,...,u,) and each
winner determination (including tie-breaking) rule ¢,

Qqua+ (u, 1) = opto(0pty(y) (I, (1, 1))))-
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We say that a social choice function f is a direct QVA™ mechanism if
(i) f(u) € Qqva+(u,t) for all utility profiles u, and

(ii) t(u) breaks ties according to a fixed order over the outcomes in € such that for all
bidders i, t(u) = ¢ implies i € N*(u).

The variant we consider in the remainder of this section, which we refer to as QVA™,
is an indirect version of a direct QVA' mechanism. By a winner determination (in-
cluding tie-breaking) order we understand a function ¢ that associates with each bidding
profile @ = (&1,...,&,) a bidder ¢ whose bid &; is ranked highest among @s,...,o,
in a fixed strict (i.e., linear) order over all outcomes in 2. We generally assume that
t(w) € argmax;en uo(@;). To avoid cluttered terminology, in the remainder we will also
refer to a winner determination (including tie-breaking) order simply as a tie-breaking
order.

First, we (re)define the set QF (@, t) of potentially winning outcomes for bidder i given
center’s utility function ug, bid profile & = (&1, ...,&y, ), and tie-breaking order ¢, as

Qf(@,t) = {wi ISVE t(@l,...,(Iji,17wi,tz}i+17...,c:)n) = Z}

Observe that generally w; € QF(®,t) implies that ug(w;) > ug(w;) for all bidders j
distinct from 4. The indirect mechanism is then formulated as follows. The parts where
the mechanism differs from the QVA are italicized.

(1) First, the utility function ug of the center is announced to all bidders together with
a fized tie-breaking order t over the outcomes.

(2) Then, each bidder ¢ submits a sealed bid @; € §2; to the center.

(3) A bidder ¢* who submitted the bid with the highest utility for the center is declared
the winner of the auction, that is, i* is selected from argmax;en uo(@;). Ties are
broken according to the tie-breaking order t.

(4) Finally, the winner i* may choose any outcome from the closure of the set of out-
comes in 2~ that, given the bids of the other bidders, would have made her the
winner of the auction, taking into account the tie-breaking order t, that is, from
cl(Qf (@1, ..., @n,t)). The outcome she chooses is the outcome of the auction.

The winner’s initial offer is witness to the fact that such an outcome always exists.
Moreover, if her bid was acceptable to her, then it is witness to the fact that an acceptable
such outcome exists.

In this auction a strategy for a bidder i specifies a bid w; € €; along with a contingency
plan prescribing which outcome to choose from cl(QF (w1, ..., &n,t)) for all possible bids
w1, ...,Wn of the other bidders in case i happens to win the auction. Of course, bidder i’s
choices can depend on her utility function w;. We call a strategy for i straightforward if
it satisfies the following properties:

(i) the bid i submits is an outcome w; with the highest center’s utility among those
that are acceptable to 4, that is, w; € Q;(u); if this leaves multiple outcomes in
Q;(u) to choose from, i chooses one that is highest in the center’s tie-breaking
order,
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Figure 5: The QVA-i is not strategy-proof in case there is a tie at w; where i loses the tie-breaking,
because @; is a manipulation where i may still select @; as a final outcome. The QVAT, however, is
strategy-proof, because a winner may only select among outcomes that are potentially winning (or that
are limit points of sequences of potentially winning outcomes).

(49) in case ¢ wins the auction, she selects one of the outcomes in cl(Q} (@1, ..., 0n, 1))
she values most. If there are multiple such outcomes (equally valued by ), she
selects one with the highest utility for the center.

The following two examples illustrate differences between the QVA and QVA™ in settings
where weakly transferable utility does not hold.

Ezxample 4. Consider the situation illustrated in Figure 5. There, the condition of
weakly transferable utility is violated, as there is no outcome in €2; with a higher utility
than ug(w;) for the center for which #’s utility is less than € less than 4’s utility for @;.
First consider the QVA-i in this setting. Outcome w; would be bidder i’s straightforward
bid. Suppose that this bid ties with another bidder’s bid w; and that ¢ loses the tie.
Consequently she would receive utility 0. However, i could manipulate by bidding the
non-straightforward bid w; instead and win the auction. Moreover, as the center still has
the same utility for t; as the second-highest bid w;, bidder 7 can now choose &; and gain
positive utility. Thus, in this setting the QVA is not strategy-proof.

Now consider the QVA™ and suppose that i submits the straightforward but tying
and losing bid w;. Any effort to manipulate, however, now fails. For instance, by non-
straightforwardly bidding w; instead, bidder ¢ would emerge as winner. Yet, the set
cl(QF (&1, ..., @n, t)) only contains outcomes that give her negative utility. In particular,
it does not contain w;. Observe that @; is not in Qf(wq,...,o0n,t), because bidding @;
makes her lose the auction, and neither is it in the latter’s closure, even if w;, which has
the same utility for the center, is.

Ezxample 5. Another illustrative example involves a discrete domain of outcomes with
two bidders, 1 and 2, with Q = {H, L} x {1} and Qo = {H, L} x {2}. Note that any
function on this domain is continuous. Assume that, for all 4,5 € {1,2}, the center
strictly prefers (H,i) to (L,7) and is indifferent otherwise, whereas for either bidder ¢,
outcome (L, ) has strictly positive utility and (H, ) is unacceptable. In the QVA, (L, )
is the only straightforward bid for either bidder i. Suppose, without loss of generality,
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that the resulting tie is broken in favor of bidder 1. Then, bidder 2 has an incentive
to non-straightforwardly bid (H,2), win the auction, and choose (L, 2), which means an
increase in her utility. On the other hand, in the QVA™ the only straightforward bid for
either bidder i is (L, 7). Again suppose bidder 1 to win the tie-break and to choose (L, ),
which is the best ¢ can possibly expect. Now, bidder 2 loses the auction and consequently
receives utility 0. However, bidding (H,2) makes her win the auction but also forces her
to choose (H,2), which yields her a negative utility.

Theorem 3. The QVA™ is strategy-proof for the bidders, and selects stable outcomes.

Proof. Consider an arbitrary utility profile v = (ug,u1,...,uy) and let ¢t be a winner
determination (including tie-breaking) order.
For strategy-proofness, consider arbitrary bids @y, ...,&,, one for each bidder. Ob-

serve that, as in the case of the QVA, for the QVA™ by changing her bid, a bidder i can
only influence whether she wins or loses, but not the set of outcomes from which she may
choose if she happens to win. By individual rationality, the winning bidder receives at
least utility zero. Hence, by submitting a losing bid, she cannot be better off. Moreover,
the straightforward strategy chooses an outcome optimally for the winner, so there is
also no incentive to change her strategy in a way that would still make her win.

Now consider the case in which a bidder ¢ plays a straightforward strategy, bids w;
accordingly, but loses the auction. Obviously, submitting another losing bid will not
increase her utility. It suffices to show that u;(w;) < 0 for all w; € cl(QF (W1, ...,0n,1)).

First, let us assume that there is some bidder j whose bid @; involves an out-
come with a strictly higher utility for the center than @;. In that case, all bids w]
that would have won bidder i the auction would have negative utility for her, that
is, for all w; € Qf (dn,...,0n,t) we have u;(w;) < 0. Hence, by continuity, for all
wi € cl(QF (D1, .., Wn,t)), ui(w) <0 and i is not better off submitting a winning bid.

Second, assume that ¢ loses the auction while submitting a straightforward but tying
bid @;. Because a straightforward strategy requires w; to be chosen for maximal tie-
breaking success, submitting any other tying bid would not render ¢ the winner of the
auction. Rather, to win ¢ has to submit a bid w} with strictly higher utility for the center
than her original bid, that is, such that ug(w}) > uo(@;). Now again we may conclude that
ui(w;) < 0 for all w; € QF (@, ...,0n,t) and u;(w;) < 0 for all w; € cl(QF (D1, ...,0n,t))
by continuity. We conclude that the mechanism is strategy-proof.

Finally, we prove that the QVA™ chooses stable outcomes. First, to prove individual
rationality, observe that if a bidder loses the auction, her utility is 0, whereas if she
wins the auction, the outcome she bid is among the ones she can also choose from.
When using a straightforward strategy, this outcome would already yield her a non-
negative utility, and the strategy will always select an outcome for which her utility
is at least as high. Let now ¢* be the winner of the auction. We observe that all
outcomes wi € Q% ({1, ..., Wn, t) result in at least as high a utility for the center as any
acceptable bid of any other bidder. By continuity of the center’s utility function, this
also holds for every outcome w;« € cl(Q% (&1, ...,&n,t)). Hence, no acceptable outcome
for any other bidder would make the center better off. It remains to be shown that it
is impossible to make the center better off with the winner ¢* without making ¢* worse
off. Suppose w? is an outcome that makes the center better off. By the above, the
center prefers w) to any acceptable bid of any other bidder. Hence, w! was available
to i* to select after winning. Straightforward strategies, however, prescribe bidders to
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choose from among the outcomes that yield ¢* maximal utility one that also yields the
highest utility to the center. Since i* in fact chose an outcome that is worse for the center
than w?, it follows that choosing w? would have made i* worse off. O

However, in some situations where there is a tie among bidders who have a positive
utility for winning the tie, the QVA™ is not Pareto efficient. This follows immediately
from our next result, which is that in some such settings there is no mechanism that is
strategy-proof and also chooses outcomes that are stable and Pareto efficient.

Proposition 2. There exists a setting (where utility is not weakly transferable) with two
bidders, 1 and 2, with Q1 = Rx {1}, Qs = Rx {2} and a particular center utility function
for which there is no mechanism that strategy-proof, and also chooses outcomes that are
both stable and Pareto efficient.

Proof. We prove this is impossible in a restricted setting with a specific center utility
function and two bidders. The bidders’ outcome sets and the center’s utility function are
just as in Proposition 1 and Figure 4, that is, Q; = R x {i} for both bidders 7 and for all
(.’E, Z) € Qy,

uop((w,4)) =1 — 2 + 2°.

For the sake of contradiction, assume that the mechanism satisfies all three properties:
strategy-proofness, choosing stable outcomes, and Pareto efficiency. Consider again the
utility profile where for both bidders i the utility function is such that for all (z,4) € €,

ui((z,1)) = 1 — 222,

1
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would otherwise not be individually rational. Hence, the best possible outcomes for
the center are (0,1) and (0,2), both with utility 1. Furthermore, the mechanism must
select one of these outcomes. Otherwise, it would be possible to make the center happier
with the other bidder (whom this would also make happier). Without loss of generality,
suppose that bidder 1 wins in this situation and the mechanism chooses (0, 1). We note
that bidder 1 obtains positive utility, whereas bidder 2 has utility 0.

Define for each § > 0 a modified utility function u$ in which bidder 2’s utility has
been shifted up by 0, that is, let for all § > 0 and all (z,2) € Qo,

By stability, the mechanism cannot choose an outcome (x,4) with x > since this

ud((z,2)) =1 — 222 4 46.

We derive a contradiction by showing that the mechanism is not strategy-proof, as bid-
der 2 can increase her utility by reporting u$ for some § > 1 instead of truthfully report-
ing us.

Under u$, outcomes (x,2) with z > 1 are acceptable for bidder 2. These outcomes are
preferable to the center to outcome (0,1). Therefore, by the stable outcomes property,
for the profile (ug,u1,u3), bidder 2 must win. Moreover, again by the stable outcomes
property, the mechanism must provide an outcome that gives the center utility at least 1.

In fact, by strategy-proofness, we see that bidder 2 must win with an outcome that
gives the center utility exactly 1. To arrive at a contradiction, let ws be the outcome that
results when bidder 2 reports uj. This yields the center a utility greater than 1. Then,
bidder 2 could report ug/ for a ¢’ with 1 < ¢’ < §, so that ws becomes unacceptable.
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Since ¢’ > 1, however, bidder 2 must still win, so bidder 2 would get an outcome giving
her higher utility than ws. This contradicts strategy-proofness, and thus bidder 2 must
win with an outcome that gives the center utility exactly 1.

There are only two such outcomes, namely, (0, 2), and (1,2). Outcome (1, 2) yields the
center utility 1 and, under u3, bidder 2 utility § — 1. As such, however, outcome (1,2) is
not Pareto efficient: outcome (0, 2) also gives the center utility 1 but bidder 2 utility 1+
§ (under u3). Therefore, for profile (ug,ui,u3), the mechanism chooses (0,2). This,
however, gives bidder 2 utility 1 under us, rather than utility 0, which she would have
received, had she truthfully reported us. It follows that the mechanism is not strategy-
proof, a contradiction. O

5. Related work

In this section, we relate the results in this article to work by others, as well as to
the earlier versions of our own work. We initially described the idea of applying the
principle of the Vickrey auction to a more general setting without explicit payments in
[11, 16]. In [11, 10], we described the QVA in the contract auction setting with finitely
many outcomes when the center has no ties among outcomes. In [10], we also considered
a continuous setting for the QVA with ties for the center. There we needed the center’s
utility function to be equipeaked, a weaker condition than weakly transferable utility
which required all local optima, or peaks, in the center’s utility function to yield the
same utility to the center. Both of these settings are special cases of the setting with
general utility functions (Section 4). This contrasts with the results in the current paper,
where we show that (i) under the marginally stronger condition of weakly transferable
utility we can give a full characterization of the QVA with arbitrary tie-breaking, and
(#t) with general continuous utility functions (that is, without weakly transferable utility),
the QVA is strategy-proof when the winner chooses from the closure of strictly better
(incl. tie-breaking) bids, instead of from outcomes that are at least as good for the center
as the other bids.

This also illustrates the main differences from a paper using the QVA for sponsored
search [9]. There, under the condition of consistent valuations, which is implied by our
weakly transferable utility condition, it is also shown that the QVA is strategy-proof.
That paper additionally shows how this mechanism can be applied to sponsored search.
Besides the consistency condition, there are no restrictions on what a contract constitutes,
and this generality is used to model contracts with a cost per impression in addition to
a cost per click. The utility functions of the publisher (center) and the advertisers then
can be expressed given their estimates of the click-through rate. Working in this model,
the authors derive the Impression-Plus-Click Auction and show that it is strategy-proof.

Another application of the QVA can be seen in a mechanism for selecting one out of
several providers in e-commerce [4], taking into account privacy aspects of a transaction,
such as birth date, gender, address, credit card information, email addresses, etc. The
main difference is that in the model used, preferences are partial orders over subsets
of the privacy aspects. This domain is a good example of a discrete space, so if such
preferences can be translated to a utility function, that function will be continuous and
the results on QVA™ apply immediately. However, it would be interesting to see whether
QVAT™ can be changed to deal with any partially ordered preference function.
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Also related is the work on many-to-one matching with contracts [13, 12]. Specifically,
if we restrict that setting to a single hospital (the center) and an auction mechanism
resulting in exactly one contract (between a doctor and a hospital), we obtain a setting
that corresponds closely to ours, albeit one with only finitely many possible contracts
and strict preferences (no ties) for all agents (including the center)—precisely the types
of restrictions that we try to avoid here.

There is some work on indifferences in matching without contracts [1, 8]. Erdil and
Ergin [8] show that when ties are allowed (on the side of the hospitals) in one-to-many
matching (without contracts), there does not exist a truth-telling dominant strategy,
even though a truth-telling Bayesian-Nash equilibrium does.

The paper by Alkan and Gale [2] considers the setting of one-to-one matching with
continuous utility functions. In their work they restrict the outcome set to outcomes
with nonnegative utility and that are not Pareto-dominated for the two parties involved,
that is, the outcomes for all players can be represented by the graph of a continuous,
nonnegative decreasing function in the first quadrant. Note that this implies the condition
that utility is weakly transferable. For matching under these conditions, they show that
the (strong) core is non-empty and has a strong connectedness property (that is, for any
two points in the core there is a monotone path between them where every coordinate
along the path either increases, decreases, or remains constant). Dominant strategies for
the players are not discussed by Alkan and Gale [2].

Moving back from matching to auctions, in extant work on auctions, payments are
almost invariably seen as a special attribute for which the preferences of the center and
the bidders are related: a lower price for the bidder means a worse outcome for the
center. In our framework, a payment can be part of the specification of an outcome
(although we do not require the existence of payments at all). Weakly transferable
utility is an immediate generalization of the above property of payments, and as such,
our characterization includes not only the traditional Vickrey auction (in which payments
are in fact the only parameter of the outcomes), but also multi-attribute auctions. For
example, Che analyzed situations where a bid consists of a price and a quality attribute,
and proposed first-price and second-price sealed-bid auction mechanisms [5]. His work
was extended by David et al. for situations where the good is described by two attributes
and a price [6]. They analyzed the first-price sealed-bid and English auction, and derived
strategies for bids in a Bayesian-Nash equilibrium. In addition, they studied a setting
where the center can also strategize, and they showed when and how much the center
can profit from lying about its valuations of the different attributes.

Parkes and Kalagnanam [18] concentrated on iterative multi-attribute reverse English
auctions [18]. In their work, prices of attribute-value combinations (a full specification
of the good) are initially set high, and bidders submit bids on some attribute-value
combinations to lower the prices. The auction finishes when there are no more bids. Such
auctions allow the bidders to have any (non-linear) cost structure, and the authors claim
that myopic best-response bidding results in an ex-post Nash equilibrium for bidders,
and that the auction then yields an efficient outcome. All of the above multi-attribute
auctions try to capture the value of non-price-related attributes in auction mechanisms.
While they share motivation with our work, those models require the availability of
payments to transfer utility. Our work, on the other hand, allows for, but does not
require, such payments.
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6. Conclusions and future work

In this paper, we considered contract auctions in two different settings. In the first
setting, we made an assumption that utility is weakly transferable. This assumption,
which still allows the Vickrey auction as a special case, allowed us to dispense with con-
ditions on tie-breaking. Moreover, we were able to prove a characterization showing that
the family of QVA mechanisms consists exactly of the mechanisms satisfying strategy-
proofness and stability (and they also satisfy Pareto efficiency). In the second setting, we
no longer made any assumption about transferable utility at all. Here, we showed how
the desirable properties (other than Pareto efficiency) can still be obtained with careful
tie-breaking as long as utility functions are continuous, which includes utility functions
on discrete spaces.

Still, a number of interesting questions have been left unanswered. First, it would be
desirable to have a characterization result in the second setting as well, perhaps showing
that in this general setting the QVA™ is the only mechanism satisfying certain desirable
properties. We expect that the tie-breaking rule used would play an important role in
such a characterization.

Additionally, it would be desirable to generalize the results for contract auctions
presented here to matching with contracts and continuous utility functions, perhaps
combining our results with the work by Alkan and Gale [2].

It would also be desirable to study the relation to known impossibility results in
matching theory with respect to individual rationality, Pareto-efficiency, and the core [19].

Another avenue for further work is to generalize to combinatorial auctions (package
auctions), and to see how this relates to the work by Day and Milgrom [7], which is quite
pessimistic about the Vickrey auction in that context. Another possible direction is to
analyze the QVA when preferences are partially ordered but not necessarily complete.

Finally, it would be desirable to further study potential computational and communi-
cation problems, which will undoubtedly arise when using this type of auction in a variety
of realistic applications. For example, as often in public procurement, for the QVA-i the
utility function of the center should be known by all bidders, giving rise to the question
of how to communicate these preferences efficiently, but also whether it is possible to
create a similar mechanism in case the center is not able to communicate, or even know,
its own preferences beforehand in every single detail. Relaxing this requirement may give
rise to different kinds of indirect implementations of the QVA, for example, ones more
similar to multi-bilateral negotiation, such as in [14].

We believe that techniques that successfully address these issues could be effectively
used in many real-world settings, ranging from the assignment of programming and
development tasks in open-source projects, sponsored search [9], incentivizing privacy in
e-commerce [4], to allocating an infrastructural project with a fixed budget to one of a
number of competing construction companies.
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