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False-Name-Proof Voting with Costs over Two Alternatives

Liad Wagman · Vincent Conitzer

Abstract In open, anonymous settings such as the Internet, agents can participate in a mech-

anism multiple times under different identities. A mechanism is false-name-proof if no agent

ever benefits from participating more than once. Unfortunately, the design of false-name-proof

mechanisms has been hindered by a variety of negative results. In this paper, we show how

some of these negative results can be circumvented by making the realistic assumption that

obtaining additional identities comes at a (potentially small) cost. We consider arbitrary such

costs and apply our results within the context of a voting model with two alternatives.
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1 Introduction

In settings with multiple self-interested agents, the agents often need to make a joint decision

even though they have different preferences over the possible outcomes. Mechanism design

provides techniques for reaching a “desirable” outcome in spite of self-interested behavior.

Usually, the focus is on direct-revelation mechanisms, where agents report their preferences

directly to the mechanism, and a decision is made based on these reported preferences. One

issue is that agents may have an incentive to misrepresent their preferences. A direct-revelation

mechanism is strategy-proof if no agent ever has an incentive to misreport. A key result known

as the revelation principle (Gibbard, 1973; Green and Laffont, 1977; Myerson, 1979, 1981)

shows that there is no loss in restricting attention to strategy-proof mechanisms: roughly, for
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any mechanism (direct revelation or not) which leads to desirable outcomes under dominant

strategies, there is a strategy-proof mechanism that leads to equally desirable outcomes.

In a general social choice setting, there is a (usually finite) set of alternatives, and agents

report ordinal preferences over these alternatives. For this general setting, some negative re-

sults are known: for example, the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterth-

waite, 1975) states that if there are at least three alternatives and preferences are unrestricted,

then there exists no deterministic mechanism that is nondictatorial (not always selecting the

most-preferred alternative of a fixed voter), onto (for every alternative, there are some votes

that make that alternative win), and strategy-proof. Gibbard (1977) defines a decision scheme

to be a function whose domain is the set of preference profiles and whose range is the set

of probability distributions over the alternatives. He showed that a strategy-proof decision

scheme must be a convex combination of duple (assigning positive probabilities to at most

two alternatives that are independent of the profile of preferences) and unilateral (taking only

the preferences of a single voter into account) decision schemes. The negative conclusion of

the Gibbard-Satterthwaite theorem is reinforced by Gibbard (1977, 1978): if a mechanism is

strategy-proof and Pareto dominated alternatives are never selected, then the scheme must be

a random dictatorship.

However, traditional mechanism design assumes that the mechanism can identify every

agent. This assumption is not warranted in open, anonymous environments such as the In-

ternet, where it is easy to participate in the mechanism under multiple identifiers (e.g., e-mail

addresses). For instance, in the election for “The Official New 7 Wonders of the World,”1 which

took place on July 7, 2007, voters could vote by phone, by sending a text message, or on the

dedicated election website. Voters could submit multiple votes online using multiple email

addresses.

Technological advances over the past two decades have led to the proliferation of con-

sumer review platforms, where users can vote and rate various services and products. These

include reviews for hotels (e.g., Hotels.com, Orbitz.com, Priceline.com, Hotwire.com), cruise

ships (e.g., Cruisecritic.com, Expedia.com), airlines (e.g., Airlinequality.com), various prod-

ucts (e.g., Amazon.com), experiences and services (e.g., Yelp.com), sellers (e.g., eBay.com),

and answers (e.g., Quora.com). On all of these platforms, users may be able to submit (with

some effort) multiple reviews. For sellers, boosting the ratings of their own products and tar-

nishing those of their competitors can provide strong incentives for doing so (Dellarocas,

2006). The recent surge in Question and Answers (Q&A) platforms (including Quora, Ama-

zon’s Askville, StackOverFlow, Yedda, Wondir, Yahoo! Answers, among others) has high-

lighted this issue. To increase direct traffic (as well indirect traffic from improving rankings

in search-engine results), website operators would submit answers to questions that relate to

their businesses, and subsequently vote in favor of their answers, multiple times. In response,

Quora, for instance, has altered its rules of conduct to explicitly forbid its users from voting

multiple times in favor of an answer.2

1 See http://www.vote7.com/n7w/world.
2 See, for instance, http://techcrunch.com/2011/01/09/quora-4/ and http://goo.gl/7JWyXE.
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Recent works have shown that reviews on sites such as Yelp.com and Amazon.com sub-

stitute for more traditional forms of competition and interact with firms’ profits (Chevalier

and Mayzlin, 2006; Luca, 2011; Anderson and Simester, 2013). It has been suggested that

manipulations of reviews are distorting (Byers et al., 2012) and inefficient (Dellarocas, 2006;

Dellarocas and Wood, 2008), both because they entail noisier information and because of the

wasteful effort put into the manipulation itself (a phenomenon referred to as a “rat race” among

sellers — a situation along the lines of a prisoner’s dilemma game). The rating mechanisms

used on review platforms, as well as recent attempts to improve them (e.g., Dai et al., 2012), do

not fully account for users’ ability to participate multiple times. Amazon.com and Yelp.com

currently attempt to tackle the problem of multiple and fake participations by creating a rep-

utation system, where reviews by users whose past contributions were deemed valuable by

other users receive more weight (e.g., their submissions are listed in the first few reviews).

However, multiple participations can occur under such systems as well (for instance, by vot-

ing with additional identifiers to increase one’s own reputation). Some recent works (Resnick

and Sami, 2007, 2008a,b) have proposed to limit the influence of manipulating reviewers in

rating mechanisms by tossing away some of the reviews, at the cost of losing some truthful

reviews. Our work offers an alternative approach where votes are not thrown away; instead,

our method seeks to replicate the majority outcome as closely as possible, while limiting the

influence of any one vote to ensure that in equilibrium no fake identifiers are used. Our study

of false-name-proof mechanisms also allows one to trade off the costs and benefits of verifying

users.3

While it is true that individual elections and ratings on platforms such as the above are not

as important as large political elections, if one considers all of the different products, services,

articles, videos, award nominees, etc., for which users vote and rate on the Internet, their

combined worth is significant (e.g., as measured by a percentage of the combined worth of

Internet companies that fundamentally rely on such votes).

If the mechanism is such that there is never an incentive for an agent to participate mul-

tiple times, the mechanism is said to be false-name-proof (Yokoo et al., 2001; Yokoo, 2003;

Yokoo et al., 2004; Iwasaki et al., 2010).4 Again, the restriction to false-name-proof mecha-

nisms is justified by a revelation principle (Yokoo et al., 2004). Unfortunately, the false-name-

proofness constraint severely limits the possibilities for mechanism design, as illustrated by

a variety of negative results. In combinatorial auctions, no false-name-proof mechanism allo-

cates resources efficiently (Yokoo et al., 2004); later results show that false-name-proofness

is impossible even under a weaker maximality constraint (Rastegari et al., 2007) and give

bounds on efficiency (Iwasaki et al., 2010). In general voting settings, the situation is even

more severe: unless there is unanimity among the voters on some pair of alternatives, any

3 Conitzer et al. (2010) explicitly model optional costly verification of selected users in the context of social

networks.
4 As is the case for strategy-proofness, false-name-proofness is a dominant-strategies criterion, that is, using only

one identifier should be optimal regardless of one’s preferences and regardless of what the other agents do. A (weaker)

Bayesian definition can also be given, but the dominant-strategies version is the one we study in this paper. For an

overview of false-name-proofness, see Conitzer and Yokoo (2010).
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false-name-proof mechanism (that also satisfies some other minor conditions) must choose

the winner uniformly at random (Conitzer, 2008). Moulin (2009) studies the related problem

of routing-proofness in networks, where each agent seeks to connect a pair of vertices, and

an agent can potentially lower her cost by pretending to be multiple agents, whose requested

paths will result in a connection between the agent’s true vertices. A general approach to re-

moving the incentive for agents to use false names is to perform some limited verification

of agents’ identities (Conitzer, 2007; Conitzer et al., 2010); of course, this results in reduced

anonymity.

In this paper, we show how some of the negative results can be circumvented. In particular,

we show that under the assumption that obtaining additional identifiers comes at a (possibly

small) nonnegative cost, much more positive results can be obtained. In this setting, a mech-

anism is false-name-proof if no agent has an incentive to use more than one identifier, when

these costs are taken into account.

We make the following contributions. We consider identifier-independent settings, where

the set of possible outcomes is finite and does not depend on which agents are present; voting

settings are an example. We show that in such settings, using a costly identifier cannot be a

dominant strategy. Based on this, we show a revelation principle for such settings, i.e., for

mechanisms in which each type has a dominant strategy of identity creation and reporting,

there exists an equivalent mechanism with a dominant strategy of declaring only one identifier

with one’s true type. We then study voting settings with two alternatives, under both a convex

cost structure and an arbitrary cost structure for additional votes. We propose a false-name-

proof mechanism and show that it is optimal from certain perspectives.

The paper proceeds as follows. We start with some results on identifier-independent set-

tings in Section 2. We begin to apply these results in a voting model in Section 3. We then

study the voting model with non-decreasing marginal costs in Section 4, and generalize our

results to arbitrary costs in Section 5. Section 6 concludes.

2 Identifier-independent settings

When extending the theory of mechanism design to highly anonymous settings, one issue

about which we need to be careful is the following. In a standard mechanism design setting,

the set of agents is assumed known, and because of that, the space of possible outcomes is

known. For example, in a single-item auction with two bidders, either bidder 1 wins the item,

bidder 2 wins it, or nobody wins it—and the bidders pay/receive some money. However, if we

do not know the bidders up front, then, in some sense, we do not know the possible outcomes

up front.

In some settings, however, this is not an issue: for example, in a voting setting, we do

know the set of available alternatives up front. We say that a setting is identifier indepen-

dent if the set of possible outcomes O does not depend on the agents/identifiers present. In

an identifier-independent setting, agents never pay or receive money, and never contribute or

receive resources. This rules out auctions, exchanges, and even bartering settings. (The mech-

anism may, however, decide to build some public resource based on the reports.) That is, there
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is a one-way interaction between an agent and the mechanism: the agent reports preferences

and then effectively disappears before any decision is made. Voting settings are perhaps the

main example of identifier-independent settings, though agents can also report utilities and

other information. Variants of voting settings such as rating mechanisms, surveys, etc. are

identifier independent.

A highly anonymous, identifier-independent mechanism design setting can be described

as follows. Every agent has a type θ ∈Θ that describes her preferences (and any other private

information). There is a commonly known valuation function v : Θ ×O→ R, where v(θ ,o)

gives the valuation that an agent with type θ obtains from outcome o. An agent i then partic-

ipates in the mechanism under a collection of identifiers ψ1
i ,ψ

2
i , . . . ,ψ

ni
i , and takes an action

a
ψ

j
i
∈ A for each of these identifiers in the mechanism. (Here, A is defined by the mechanism.)

In a direct-revelation mechanism, identifiers report types directly, that is, A = Θ . We as-

sume that the names of the identifiers do not matter. Then, an agent’s overall action is given

by a multiset of reported types {θ̂ 1
i , . . . , θ̂

ni
i }. If θ is the multiset of all reported types, the

mechanism is defined by a function f (θ) which returns the chosen outcome in O. We assume

f is defined for every number of reported types, that is, f is open.

A direct-revelation mechanism is strategy-proof if for any multiset of types θ−i (reported

by the other agents), for any θi, θ̂i ∈Θ , it is the case that v(θi, f (θi,θ−i)) ≥ v(θi, f (θ̂i,θ−i)).

In other words, among strategies that use only one identifier, reporting one’s true preferences

is a dominant strategy. In a strategy-proof mechanism, an agent may still have an incentive to

use more than one identifier. However, the agent has no incentive to misreport her preferences

under any of these identifiers (this is true if the setting is identifier independent—this is not

true for, say, combinatorial auctions):

Lemma 1 In an identifier-independent setting, if f is a strategy-proof mechanism, then any

strategy in which i reports false preferences (i.e., different from θi) under at least one of her

identifiers is dominated by a strategy where i reports her true preferences (i.e., i reports = θi)

under each of her identifiers.

Proof Suppose i misreports her preferences for identifier j, that is, θ̂
j

i 6= θi. Let θ̂
− j
i be agent

i’s other reports, and let θ−i j = θ−i∪θ
− j
i be the set of all reports other than θ̂

j
i . By strategy-

proofness, v(θi, f (θi,θ−i j))≥ v(θi, f (θ̂ j
i ,θ−i j)), that is, i is better off changing θ̂

j
i to θi. After

repeated applications of these comparisons, we end up with a strategy where every one of i’s

identifiers reports θi.

Lemma 1 thus extends the concept of strategy-proofness to an agent’s additional identi-

fiers. Another consideration is that an agent can also change the number of identifiers she

uses. In this case, we need to consider the cost of identifiers. In general, the cost of using two

identifiers is not necessarily equal to two times the cost of using one identifier. For example,

an agent may already have one e-mail address, so using one identifier is free; but she may not

have a second one, so that she would spend some effort (incur some cost) setting up another

account. Based on this reasoning, the following simple cost model might be used: the first

identifier is free, and every additional one has a fixed marginal cost k. While reasonable, this
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model is still restrictive: the user may not have an existing account, the user may get better at

setting up accounts with practice (resulting in decreasing marginal costs), etc. (We will return

to this specific cost function, which can be written as c(ni) = k · (ni−1) for ni ≥ 1, at a later

point. We shall refer to it as the linear cost function.)

Hence, let us consider an arbitrary nondecreasing cost function c : N→ R, where c(n) is

the total cost of using n accounts (c(0) = 0). We assume that agent i’s utility is separable and

is given by v(θi,o)− c(ni). Then c(t)− c(t−1) for t > 0 gives the marginal cost for an agent

to participate for the tth time.5

Now that we have described how utilities depend on the number of identifiers used, we

can define voluntary participation and false-name-proofness.

Definition 1 (Voluntary participation) A mechanism satisfies voluntary participation if it is

always a best response to use at least one identifier, i.e., if for any θ−i, for any θi, we have

v(θi, f (θi,θ−i))− c(1)≥ v(θi, f (θ−i)).

Definition 2 (False-name-proofness) A direct mechanism satisfies false-name-proofness (in

dominant strategies) if it is never a best response to use more than one identifier, i.e., if

for any θ−i, for any θi and {θ̂ 1
i , . . . , θ̂

ni
i } (for ni ≥ 0), we have v(θi, f (θi,θ−i))− c(1) ≥

v(θi, f ({θ̂ 1
i , . . . , θ̂

ni
i },θ−i))− c(ni).

We note that under this definition, false-name-proofness implies both strategy-proofness and

voluntary participation.

Proposition 1 Consider an identifier-independent setting where for every type θi, there is a

finite least upper bound Uθi = supo∈O v(θi,o) < ∞ on the utility that type can achieve. Then,

for any mechanism f (that is open, i.e., defined for any number of reported types), it is never

a dominant strategy for an agent to submit a costly vote (use ni such that c(ni)> 0).

Proof For any mechanism f , let O f be the outcomes in the range of f . We let U f
θi
= supo∈O f

v(θi,o)≤Uθi <∞ (the highest utility the agent can hope for, given the mechanism f ). Suppose

in a dominant strategy, type θi uses some ni with c(ni)> 0. We know there exists some θ such

that v(θi, f (θ))≥U f
θi
− c(ni)/2. However, we then have v(θi, f (θ))− c(0)≥U f

θi
− c(ni)/2 >

v(θi, f ({θ̂ 1
i , . . . , θ̂

ni
i },θ))− c(ni); that is, the agent is better off not participating if the other

agents report θ — a contradiction.

Proposition 1 immediately leads to the following corollary.

Corollary 1 Under the conditions of Proposition 1, if c(1) > 0, then no mechanism satisfies

voluntary participation.

Hence, from here on, we assume c(1) = 0. The intuitive interpretation of this assumption

is that all agents already own an identifier (e.g., an account), so their first participation is

costless.6

5 This notation suggests that all agents have the same cost function and that there is no uncertainty about this cost

function. However, these assumptions are not necessary: all of our analysis goes through if c(t) is the greatest lower

bound on all realizable total costs for obtaining t identifiers.
6 As is common in the literature, voluntary participation fails in our model if there is a positive cost for the first

identifier. However, voting more than once would still be a dominated strategy. That is, given that an agent is going



False-Name-Proof Voting with Costs over Two Alternatives 7

We now give a revelation principle for false-name-proofness with costs: under certain

conditions, if, in an environment where false-name manipulations with costs are possible, a

mapping from type vectors to outcomes (a social choice function) can be obtained as the result

of all agents playing dominant strategies in a mechanism (i.e., the mapping is implementable

in dominant strategies), then the same mapping can be achieved by a false-name-proof mech-

anism. We observe that the “traditional” revelation principle only ensures that under f , an

agent has a dominant strategy in the model where each agent can report only once. But this

does not guarantee that this strategy remains dominant when we extend the game with addi-

tional (false-name reporting) strategies.

Theorem 1 Consider an identifier-independent setting where for every type θi, there is a finite

least upper bound Uθi = supo∈O v(θi,o) < ∞ on the utility that type can achieve. If c(1) = 0

and c(2) > 0, then if a social choice function is implementable in dominant strategies by a

mechanism g in an environment where false-name manipulations with costs are possible, then

it is also implementable by a false-name-proof (direct) mechanism f .

Proof In the dominant strategies under g, no agent uses more than one identifier, based on

Proposition 1 and c(2)> 0. We can apply the “traditional” revelation principle to g to obtain a

direct-revelation mechanism f that is strategy-proof and satisfies voluntary participation. Sup-

pose, under f , there is some situation where agent i benefits from using more than one iden-

tifier. In other words, for some θi,θ−i,{θ̂ 1
i , . . . , θ̂

ni
i } with ni > 1, we have v(θi, f (θi,θ−i)) <

v(θi, f ({θ̂ 1
i , . . . , θ̂

ni
i },θ−i))−c(ni). Let s(θ) return the dominant strategy for type θ under the

original mechanism g (this dominant strategy always involves using 0 or 1 identifiers). We

have g(s(θi),s(θ−i)) = f (θi,θ−i) and g({s(θ̂ 1
i ), . . . ,s(θ̂

ni
i )},s(θ−i)) = f ({θ̂ 1

i , . . . , θ̂
ni
i },θ−i).

Let n′i be the total number of identifiers used by the strategies {s(θ̂ 1
i ), . . . ,s(θ̂

ni
i )}; we have n′i≤

ni. But then, v(θi,g(s(θi),s(θ−i))) = v(θi, f (θi,θ−i)) < v(θi, f ({θ̂ 1
i , . . . , θ̂

ni
i },θ−i))− c(ni) ≤

v(θi,g({s(θ̂ 1
i ), . . . ,s(θ̂

ni
i )},s(θ−i)))− c(n′i), contradicting that s(θi) is dominant for θi.

The intuition for Theorem 1 is the following. If there is a beneficial false-name manip-

ulation under f , that same false-name manipulation can be performed under g as well using

equally many or fewer identifiers. This is because the dominant strategies under g always use

at most one identifier. This contradicts the assumption that s is a dominant strategy under g,

proving the result.

3 Voting over two alternatives

In this section, we consider a special case of identifier-independent settings: voting over two

alternatives, A and B. We assume that each agent strictly prefers one of the alternatives; which

to participate, the dominant strategy would still be to vote only once. One may also say that if the cost of the first

identifier is only ε , then behaving truthfully is ε-dominant. We do imagine settings where casting the first vote is

relatively easy (e.g., when the agent comes upon the election, the agent is already logged into her existing account). It

is also quite possible for the cost of the first identifier to be negative, i.e., getting the first account is actually enjoyable.

For example, an agent could get a coupon after voting (ideally, a coupon of which it is useless to have more than one

copy). Even if there is some effort cost to voting, this may be exceeded by the worth of the coupon, in which case all

of our results go through.
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alternative is preferred is private information to the agent. We normalize each agent’s utility

so that the agent receives utility 1 if its favorite alternative is selected, and 0 otherwise. This

is without loss of generality given our assumption of separable utility. Votes can be cast either

for A or for B. We observe that given these preferences, the majority rule gives the first-best

mechanism, that is, it would maximize social welfare if false-name voting were not a concern.

Hence, we aim to get as close as possible to the majority rule, under the constraint of false-

name-proofness.

The space of outcomes O is the set of distributions over {A,B} (we allow for randomized

mechanisms). Because of Theorem 1, assuming 0 = c(1) < c(2), we can restrict attention to

false-name-proof mechanisms. Hence, each agent votes either for A or for B. Let xA (xB) be

the number of votes for A (B); we call a vector (xA,xB) a profile. Let PA(xA,xB) (PB(xA,xB)) be

the probability that A (B) wins given (xA,xB). We require PA(x,y) = PB(y,x), that is, the rule is

neutral. (This also allows us to focus on A without loss of generality.)

The following lemma characterizes false-name-proofness in this setting.

Lemma 2 Given c(1) = 0, a (neutral) rule satisfies false-name proofness if and only if for all

xA,xB ≥ 0,

1. PA(xA + 1,xB)−PA(xA,xB) ≥ 0, i.e., voting for an alternative cannot diminish its proba-

bility of being selected, and

2. PA(xA,xB)≤mint∈{1,...,xA−1}PA(xA− t,xB)+ c(t +1), that is, the expected benefit of using

additional identifiers to cast more votes in favor of an alternative does not exceed the cost

of doing so.7

Such a rule also satisfies voluntary participation and strategy-proofness. We note that we do

not need the analogous conditions for B because we require neutrality.

Proof For the “only if” direction: By voluntary participation (ni = 0 in Definition 2), we have

PA(xA + 1,xB) ≥ PA(xA,xB), or equivalently PA(xA + 1,xB)−PA(xA,xB) ≥ 0. By false-name-

proofness, for any t ∈{1, . . . ,xA−1}, we have PA(xA−t,xB)≥PA(xA,xB)−c(t+1) (otherwise,

if the true profile is (xA− t,xB), one of the voters who prefers A would be better off casting

a total of t + 1 votes for A)—but this is equivalent to PA(xA,xB) ≤ mint∈{1,...,xA−1}PA(xA−
t,xB)+ c(t +1). So the conditions are satisfied.

For the “if” direction: Voluntary participation (ni = 0) follows from PA(xA + 1,xB)−
PA(xA,xB)≥ 0 (equivalently, PA(xA +1,xB)≥ PA(xA,xB)). Strategy-proofness (ni = 1) follows

from two applications of voluntary participation: PA(xA+1,xB)≥ PA(xA,xB)≥ PA(xA,xB+1).

The only manipulation left to consider is an agent who uses multiple identifiers. By Lemma 1,

we can assume without loss of generality that this agent votes for A with every identifier. As-

sume that the agent uses t +1 identifiers (that is, t additional ones). If this results in the profile

(xA,xB), she receives a total utility of PA(xA,xB)− c(t + 1). If she had voted only once, she

would have had a utility of PA(xA− t,xB). But the latter must be at least as large as the for-

mer, because PA(xA,xB) ≤ mint∈{1,...,xA−1}PA(xA− t,xB)+ c(t + 1). It follows that the rule is

false-name-proof.
7 Since agents’ utilities are normalized to 1 for their preferred outcome and 0 for the other outcome, the units in

this inequality are consistent.
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If c(n) = 0 for all n ≥ 0, then the optimal (in a sense to be made precise later) neu-

tral false-name-proof rule that satisfies voluntary participation is the following “unanimity”

rule (Conitzer, 2008):

– If one alternative gets all the votes, select it.

– Otherwise, select an alternative uniformly at random.

The disadvantage of this rule is clear: even if one alternative receives 100 votes and the other

alternative receives 1 vote, then a coin is flipped to determine the winner. That is, the rule is

not very responsive to votes. In some sense, the “most” responsive rule is the majority rule,

which chooses the alternative that receives more votes (and flips a coin if there is a tie), thereby

maximizing the sum of the utilities.8 However, the majority rule is not false-name-proof. As

we will see shortly, when additional identifiers come at a positive cost, there are false-name-

proof rules that are more responsive (more like majority) than the unanimity rule above. Our

objective is to maximize responsiveness under the constraint of false-name-proofness, i.e., to

get as close as possible to majority.

One may wonder how we should compare two rules if one is more responsive for some

profiles, and the other is more responsive for other profiles. When the cost function for addi-

tional identifiers is weakly convex, this turns out not to matter, because we will find a rule that

is strongly optimal, that is, most responsive for all profiles. However, for other cost functions,

this turns out to be an issue that we will have to address.

3.1 Rule FNP2

We now define a false-name-proof rule that, in a sense that will be made precise below, comes

as close to the majority rule as possible. One simple intuition for the rule is the following:

taking false-name-proofness as a constraint, the rule maximizes the (probabilistic) impact of

each additional vote in favor of the majority winner. The “majority winner” here refers to

the winner that the majority rule would have produced if every agent voted exactly once. Of

course, if we actually used the majority rule, agents would likely use false names.

Definition 3 (FNP2) Rule FNP2 sets PA(x,0) = 1−PA(0,x) = 1 for all x > 0; PA(x,x) = .5

for all x≥ 0; for 0 < xB < xA, PA(xA,xB) is recursively defined by:

PA(xA,xB) = min
t∈{1,...,xA−1}

{PA(xA− t,xB)+ c(t +1),1}

and PA(xA,xB) = 1−PA(xB,xA) for 0 < xA < xB.

Definition 3 utilizes the fact that under a neutral rule, it is sufficient to characterize PA(xA,xB)

for all xA ≥ xB. This is because given any xA < xB, PA(xA,xB) = PB(xB,xA) = 1−PA(xB,xA).

8 One can argue about the precise definition of responsiveness. For example, the rule that chooses A if the to-

tal number of votes is odd and B otherwise is more “responsive” in the sense that each additional vote changes the

outcome. However, such rules violate neutrality and voluntary participation. For our purposes, a rule is most respon-

sive if, given some constraints (neutrality, false-name-proofness), it comes as close as possible to the outcome of the

majority rule.
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Equivalently, and perhaps more intuitively, rule FNP2 can also be described by the fol-

lowing iterative procedure:

Procedure 1 (FNP2)

1. Set PA(xA,0) = 1−PA(0,xB) = 1 for all xA,xB > 0, and PA(x,x) = .5 for all x≥ 0.

2. Initialize i := 1. Repeat:

– For all xA > i,

(a) Set PA(xA, i) = mint∈{1,...,xA−1}{PA(xA− t,xB)+ c(t +1),1}
(b) Set PA(i,xA) = 1−PA(xA, i)

– i := i+1

Figure 1 provides a sketch of the iterative process described in Procedure 1. We illustrate

FNP2 with the following example.

Example 1 Suppose that c(1) = 0, c(2) = .25, c(3) = .3, and c(i)− c(i− 1) ≥ .25 for all

i > 3. Consider the following table, which gives the probability that A wins under FNP2 for

the profiles (xA,xB), xA,xB ≤ 5:

5 0 0 .15 .2 .45 .5

4 0 0 .2 .25 .5 .55

3 0 .2 .45 .5 .75 .8

2 0 .25 .5 .55 .8 .85

1 0 .5 .75 .8 1 1

0 .5 1 1 1 1 1

xB/xA 0 1 2 3 4 5

Moving along a fixed row (or fixed column), the differences alternate between .25 and .05,

until 1 (or 0) is reached.

Fig. 1: Sketch of the iterative process in Procedure 1, which describes FNP2.
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Let c′′(·)≥ 0 denote a nondecreasing marginal cost of submitting additional votes (obtain-

ing additional identifiers), so that c(t + 1)− c(t) ≥ c(t)− c(t− 1) for all t > 1. Similarly, let

c′′(·) ≤ 0 denote a nonincreasing marginal cost of additional votes, so that c(t + 1)− c(t) ≤
c(t)− c(t−1) for all t > 1. We note the case t = 1 is excluded, so that it is still possible that

c(2)− c(1) > c(1)− c(0) even if c′′(·) ≤ 0 (i.e., the first, genuine vote is treated specially,

allowing for the situation where agents have “pre-existing accounts”). In fact, this is usually

the case because c(1) = c(0) = 0. The linear cost model, in which c(t +1) = k · t for t ≥ 0 and

k > 0 (so that k = c(2)), is a special case of both c′′(·)≥ 0 and c′′(·)≤ 0.

Under these conditions, FNP2 can be characterized in a simpler way. Cases (i) and (iii) of

the following proposition give the characterizations (Case (ii) is an intermediate result which

describes the behavior of FNP2 in general as long as probabilities of 1 and 0 are not reached

at profiles with xA,xB > 0).

Proposition 2 FNP2 satisfies:

(i) If c′′(·)≥ 0, the rule FNP2 is primarily defined by the cost of a single additional identifier.

In particular, for xA ≥ xB,

PA(xA,xB) = min{0.5+ c(2)(xA− xB),1}

(ii) Let π(·) be defined (recursively) as follows: π(1) = 0 and π(x) = mint∈{1,...,x−1}

{π(x− t)+ c(t +1)} for x > 1. If PA(xA,1)< 1, then PA(xA,xB) = .5+π(xA)−π(xB), that is,

the expected benefit to additional votes in favor of an alternative is bounded by the lowest cost

of casting them.

(iii) If PA(xA,1) < 1 and c′′(·) < 0, then the rule is bounded by the possibility of one agent

casting all of the votes in favor of an alternative. In particular,

PA(xA,xB) = .5+ c(xA)− c(xB)

The proof of Proposition 2 is given in the appendix.

Substituting for c(·) with the linear cost function in Definition 3, FNP2 for the linear cost

model can be reduced to PA(x+ t,x) = min{1,1/2+ tk} for t ≥ 0, x > 0, and k > 0 (where

PB(xA,xB) follows by neutrality, PA(x,0) = 1 for x > 0, and PA(0,0) = .5).

Lemma 3 FNP2 satisfies voluntary participation and strategy-proofness.

Lemma 4 FNP2 is false-name-proof.

The proofs of Lemmas 3 and 4 are relegated to the appendix. To give some intuition for

Lemma 3: voluntary participation is equivalent to monotonicity here (it never hurts an alterna-

tive to receive another vote), and monotonicity implies strategy-proofness. If xA > xB, then the

probability that A wins when we move from (xA,xB) to (xA +1,xB) is nondecreasing because

of the recursive formula in the definition of FNP2 (combined with the fact that the cost func-

tion is nondecreasing). The cases where xA = xB and where xA < xB are less straightforward.

To give some intuition for Lemma 4: by Lemma 1 and by Lemma 3, we can assume without

loss of generality that the false-name manipulator only casts votes for her preferred alternative

(say, A). If the manipulator’s votes result in a profile where xA > xB, this is not beneficial to the
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manipulator because of the recursive formula in the definition of FNP2: the cost of submitting

these additional votes is at least as large their expected benefit. The cases where xA = xB and

where xA < xB are less straightforward.

4 Convex Costs

In this section, we consider the more restrictive case where costs are weakly convex. Such

settings make sense when the opportunity cost associated with the effort of obtaining an addi-

tional identifier is increasing.9 We also note that the linear cost model satisfies c′′(·)≥ 0.

It turns out that for the case of a non-decreasing marginal cost function of additional votes,

c′′(·)≥ 0, where PA(xA,xB) = min{0.5+ c(2)(xA− xB),1}, FNP2 is strongly optimal:

Definition 4 (Strong optimality) A neutral false-name-proof voting rule P is strongly optimal

if it is closest to the majority rule, that is, if for any other neutral false-name-proof voting rule

P̃, for any profile (xA,xB) where xA ≥ xB, we have PA(xA,xB)≥ P̃A(xA,xB).

In other words, when c′′(·) ≥ 0, the probability that the alternative with more votes (the ma-

jority winner) wins is at least as high under FNP2 as under any other false-name-proof rule

that satisfies neutrality. We note that a strongly optimal rule is unique by definition.

Theorem 2 When the marginal cost of additional votes is non-decreasing (c′′(·)≥ 0), FNP2

is the (unique) strongly optimal false-name-proof voting rule with 2 alternatives that satisfies

neutrality.

Proof To prove that FNP2 is strongly optimal, it needs to be shown that for any other false-

name-proof neutral rule P̃, for any profile (xA,xB) with xA≥ xB, PA(xA,xB)≥ P̃A(xA,xB), where

P is FNP2. (We recall that the analogous statement when xB≥ xA follows by neutrality.) When

c′′(·) ≥ 0, FNP2 is given by PA(xA,xB) = min{0.5+ c(2)(xA− xB),1}. Neutrality requires

that for any x ≥ 0, P̃A(x,x) = 1/2. Next, for any x > 0, false-name proofness requires that

P̃A(x+1,x)− P̃A(x,x)≤ c(2), so that P̃A(x+1,x)≤ 1/2+c(2). Similarly, P̃A(x+2,x)− P̃A(x+

1,x) ≤ c(2), so that P̃A(x+2,x) ≤ P̃A(x+1,x)+ c(2) ≤ 1/2+2c(2). Continuing in the same

manner, for any t > 0, P̃A(x+ t,x) ≤ 1/2+ tc(2) must hold. Also, naturally, P̃A(x+ t,x) ≤ 1.

So P̃A(x+ t,x) ≤ min{1,1/2+ tc(2)}. But PA(x+ t,x) = min{1,1/2+ tc(2)}. Finally, since

under FNP2, PA(xA,0) = 1 for xA > 0, clearly PA(xA,0) ≥ P̃A(xA,0) holds for all xA > 0. It

follows that FNP2 is strongly optimal.

5 Arbitrary Costs

We now turn our attention to the more general case where the cost of additional identifiers

can be arbitrary. Unfortunately, FNP2 is not strongly optimal for general cost functions. The

following example illustrates this.
9 For instance, suppose that obtaining additional identifiers comes at the cost of other activities. If the time value

of other activities is concave (i.e., exhibits decreasing marginal value), and if the marginal effort spent to get another

identifier is roughly constant, then the opportunity cost per identifier is increasing (as it comes at the cost of ever more

valuable alternative activities).
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Example 2 As in Example 1, suppose that c(1) = 0, c(2) = .25, c(3) = .3, and c(i)−c(i−1)≥
.25 for all i > 3. Consider an alternative rule to FNP2 over the profiles (xA,xB), xA,xB ≤ 5:

5 0 0 0 .2 .25 .5

4 0 .2 .2 .45 .5 .75

3 0 .25 .25 .5 .55 .8

2 0 .5 .5 .75 .8 1

1 0 .5 .5 .75 .8 1

0 .5 1 1 1 1 1

xB/xA 0 1 2 3 4 5

As can be seen, the above rule gives a higher probability of A winning at profile (3,2) than

FNP2 for the same cost specification. On the other hand, FNP2 gives a higher probability of

A winning at (2,1) (which is a “smaller” profile).

The above example suggests that FNP2 performs well on small profiles. As we show

below, this characterizes FNP2 more generally: if we consider it more important to be close

to majority on small profiles than on large profiles (for example, because large profiles are less

probable), then FNP2 is optimal.

We first define a partial order on profiles to make the notion of “smaller” precise.

Definition 5 A profile (xA,xB) is said to be smaller than another profile (x′A,x
′
B) if max{xA,xB}

≤max{x′A,x′B}, min{xA,xB} ≤min{x′A,x′B}, and at least one of these inequalities is strict. We

denote this relationship by (xA,xB)< (x′A,x
′
B).

We now define the idea of “being close to majority on small profiles” more precisely.

Definition 6 A false-name-proof neutral rule P is said to be Most Responsive on Small Profiles

(MRSP) if, given any other false-name-proof neutral rule P̃ and any profile (x′A,x
′
B) with x′A >

x′B such that P̃A(x′A,x
′
B) > PA(x′A,x

′
B), there exists a profile (xA,xB) < (x′A,x

′
B) with xA > xB

where PA(xA,xB)> P̃A(xA,xB).

Proposition 3 If an MRSP rule exists, it is unique.

Proof Suppose there exist two different MRSP rules, P and P̃. Let (x′A,x
′
B) be a profile such

that PA(x′A,x
′
B) 6= P̃A(x′A,x

′
B) and such that there is no smaller profile with this property. Without

loss of generality, suppose x′A > x′B (x′A = x′B is not possible because the rules are neutral) and

PA(x′A,x
′
B)< P̃A(x′A,x

′
B). By P’s MRSP property, there exists a profile (xA,xB)< (x′A,x

′
B) such

that PA(xA,xB) > P̃A(xA,xB), contradicting the premise that (x′A,x
′
B) is a minimal profile on

which the rules differ.

We are now ready to prove that FNP2 is the MRSP rule.

Theorem 3 FNP2 is the (unique) MRSP rule.

Proof Consider any false-name-proof neutral rule different from FNP2, denoted by P̃, and a

profile (xA,xB) with xA > xB > 0 at which P̃A(xA,xB) > PA(xA,xB). Without loss of general-

ity, suppose this profile is minimal, that is, there is no smaller profile with this property. By
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the false-name-proofness of P̃, for any t ∈ {1, . . . ,xA− 1}, we must have that P̃A(xA,xB) ≤
P̃A(xA− t,xB)+ c(t +1). Because PA(xA,xB) = mint∈{1,...,xA−1}{PA(xA− t,xB)+ c(t +1)} and

P̃A(xA,xB)> PA(xA,xB), it follows that for some t ∈ {1, . . . ,xA−1}, P̃A(xA− t,xB)> PA(xA−
t,xB). If xA− t > xB, this contradicts the minimality of the profile (xA,xB). If xA− t = xB, this

contradicts the neutrality of the rules. Finally, if xA− t < xB, we note that P̃A(xA− t,xB) >

PA(xA − t,xB) is equivalent to 1− P̃A(xB,xA − t) > 1− PA(xB,xA − t), or PA(xB,xA − t) >

P̃A(xB,xA− t). The profile (xB,xA− t) is smaller than (xA,xB), and xB > xA− t, so we have

found a smaller profile on which P is more responsive. Hence, FNP2 is the MRSP rule.

6 Conclusions and future work

In open, anonymous settings such as the Internet, an agent can participate in a mechanism more

than once without being detected. A mechanism is false-name-proof if no agent ever benefits

from participating more than once. In this paper, we considered what happens when there is

a cost to participating multiple times. Specifically, we showed that in identifier-independent

settings, where the set of possible outcomes is finite and does not depend on which agents

are present (such as voting settings), using a costly identifier cannot be a dominant strategy.

Based on this, we characterized a revelation principle for such settings. We then studied voting

settings with two alternatives and proposed a false-name-proof mechanism that is optimal

(where the precise sense of optimality depends on the cost model used).

Future work can take on a number of directions. An immediate direction is to consider

weaker (e.g., Bayes-Nash equilibrium) notions of false-name-proofness. Another direction is

to generalize our analysis in the domains we studied. This would include studying false-name-

proofness with costs in voting settings with more than 2 alternatives.10 Yet another direction

is to extend our analysis to group false-name-proof mechanisms with costs, where agents may

share the cost of additional identifiers with other agents (e.g., in a social network).11
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Hervé Moulin. Pricing traffic in a spanning network. In Proceedings of the ACM Conference

on Electronic Commerce (EC), pages 21–30, Stanford, CA, 2009.

Roger Myerson. Incentive compatibility and the bargaining problem. Econometrica,

41(1):61–73, 1979.

Roger Myerson. Optimal auction design. Mathematics of Operations Research, 6:58–73,

1981.

Baharak Rastegari, Anne Condon, and Kevin Leyton-Brown. Revenue monotonicity in com-

binatorial auctions. In Proceedings of the National Conference on Artificial Intelligence

(AAAI), pages 122–127, Vancouver, BC, Canada, 2007.

Paul Resnick and Rahul Sami. The influence limiter: provably manipulation-resistant recom-

mender systems. In RecSys 07: Proceedings of the 2007 ACM conference on Recommender

systems, pages 25–32, 2007.



16 Liad Wagman, Vincent Conitzer

Paul Resnick and Rahul Sami. The information cost of manipulation-resistance in recom-

mender systems. In RecSys 08: Proceedings of the 2008 ACM conference on Recommender

systems, pages 147–154, 2008.

Paul Resnick and Rahul Sami. Manipulation-resistant recommender systems through influ-

ence limits. SIGecom Exchanges, 7(3):1–4, 2008.

Mark Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-

dence theorems for voting procedures and social welfare functions. Journal of Economic

Theory, 10:187–217, 1975.

Liad Wagman and Vincent Conitzer. Optimal false-name-proof voting rules with costly voting.

In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 190–195,

Chicago, IL, USA, 2008.

Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. Robust combinatorial auction protocol

against false-name bids. Artificial Intelligence, 130(2):167–181, 2001.

Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. The effect of false-name bids in

combinatorial auctions: New fraud in Internet auctions. Games and Economic Behavior,

46(1):174–188, 2004.

Makoto Yokoo. The characterization of strategy/false-name proof combinatorial auction pro-

tocols: Price-oriented, rationing-free protocol. In Proceedings of the Eighteenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 733–742, Acapulco, Mex-

ico, 2003.

7 Appendix

A Omitted Proofs

LEMMA 3. FNP2 satisfies voluntary participation and strategy-proofness.

Proof It suffices to show that PA(xA,xB) is weakly increasing in xA. From Definition 3 and

the fact that c(·) is nondecreasing, it immediately follows that for any 0 ≤ xB < xA, PA(xA +

1,xB)≥ PA(xA,xB), because PA(xA,xB) = mint∈{1,...,xA−1}{PA(xA− t,xB)+ c(t +1),1}=
mint ′∈{2,...,xA}{PA(xA + 1− t ′,xB) + c(t ′),1} = mint ′∈{2,...,xA}{PA(xA,xB) + c(1),PA(xA + 1−
t ′,xB)+ c(t ′),1}= mint ′∈{1,...,xA}{PA(xA +1− t ′,xB)+ c(t ′),1} ≤
mint ′∈{1,...,xA}{PA(xA +1− t ′,xB)+ c(t ′+1),1}= PA(xA +1,xB).

There are two cases left to prove: (i) for x > 1, PA(x+1,x)−PA(x,x)≥ 0 (monotonicity at

(x,x) profiles; this is not immediately clear from Definition 3 because PA(x,x) = .5 is assigned

separately from the recursion) ; and (ii) for xA < xB, PA(xA + 1,xB)−PA(xA,xB) ≥ 0 (mono-

tonicity at profiles where xA < xB). Actually, for this second case, we will prove the equivalent

statement: for xB < xA, PB(xA,xB +1)−PB(xA,xB) = PA(xA,xB)−PA(xA,xB +1)≥ 0.

(i) Consider profile (x + 1,x). By Definition 3, PA(x + 1,x) = mint∈{1,...,x}{PA(x + 1−
t,x) + c(t + 1),1}. In addition, for all t ∈ {1, . . . ,x}, PA(x+ 1− t,x) = 1−PA(x,x+ 1− t),

and PA(x,x+1− t) = mink∈{1,...,x}{PA(x− k,x+1− t)+ c(k+1),1}. Thus, PA(x,x+1− t)≤
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PA(x+ 1− t,x+ 1− t)+ c(t) = .5+ c(t). But then PA(x+ 1− t,x) = 1−PA(x,x+ 1− t) ≥
1− (PA(x+ 1− t,x+ 1− t) + c(t)) = .5− c(t). Therefore, PA(x+ 1,x) ≥ mint∈{1,...,x}{.5−
c(t)+ c(t +1),1} ≥ .5 = PA(x,x). Hence, for all x > 1, PA(x+1,x)−PA(x,x)≥ 0.

(ii) We prove this part by induction. First, PA(2,2) = 0.5 ≤ PA(2,1) = min{.5+ c(2),1}.
This is the base step. Now, hypothesize that for some k > 1, PA(xA,xB)≥ PA(xA,xB +1) for all

xB < xA < k. By symmetry, this induction hypothesis implies that PA(xB +1,xA)≥ PA(xB,xA)

for all xB < xA < k (i.e., voluntary participation holds with respect to alternative B in a square

of size k−1 and a southwest vertex at (1,1) in a 2-dimensional grid with A on the horizontal

axis and B on the vertical axis).

Consider profile (k,xB) where xB < k (i.e., extending the square diagonal by one grid

point). If k = xB + 1, PA(k,xB + 1) = .5 ≤ PA(k,k− 1) = PA(k,xB) follows directly from part

(i). Suppose then without loss of generality that xB+1 < k. From Definition 3, PA(k,xB+1) =

mint∈{1,...,k−1}{PA(k− t,xB +1)+ c(t +1),1} and PA(k,xB) = mint∈{1,...,k−1}{PA(k− t,xB)+

c(t +1),1}. By the induction hypothesis, for all t ∈ {1, . . . ,k−1}, PA(k− t,xB +1)≤ PA(k−
t,xB). Thus, PA(k− t,xB +1)+ c(t +1)≤ PA(k− t,xB)+ c(t +1). But then

min
t∈{1,...,k−1}

{PA(k− t,xB +1)+ c(t +1)} ≤

min
t∈{1,...,k−1}

{PA(k− t,xB)+ c(t +1)}

It follows that PA(k,xB + 1) ≤ PA(k,xB), which completes the induction. Consequently, for

xB < xA, PB(xA,xB +1)≥ PB(xA,xB), which proves (ii).

LEMMA 4. FNP2 is false-name-proof.

Proof Part 1 of Lemma 2 follows from Lemma 3. In addition, for every profile where xA > xB,

PA(xA,xB)≤mint∈{1,...,xA−1}{PA(xA−t,xB)+c(t+1)} follows from Definition 3. It remains to

prove that for 1< xA≤ xB, PA(xA,xB)≤mint∈{1,...,xA−1}{PA(xA−t,xB)+c(t+1)} (we actually

prove that for 1 < xB ≤ xA, PB(xA,xB)≤
mint∈{1,...,xB−1}{PB(xA,xB− t)+ c(t +1)}, which is equivalent).

We begin by considering a profile (xA,xB) where 1 < xB < xA (we treat profiles where xB =

xA next). Consider a profile (xA,xB− k), where k ∈ {1, . . . ,xB−1}. For false-name-proofness,

we need PB(xA,xB)≤ PB(xA,xB− k)+ c(k+1). Note that

PB(xA,xB)−PB(xA,xB− k) (1)

= 1−PA(xA,xB)− (1−PA(xA,xB− k))

= PA(xA,xB− k)−PA(xA,xB)

By Definition 3, we have PA(xA,xB) = mint∈{1,...,xA−1}{PA(xA− t,xB)+ c(t +1),1}. The case

where PA(xA,xB) = 1 holds trivially because PA(xA,xB− k) ≤ 1. Hence, assume without loss

of generality that PA(xA,xB) < 1 and let t? ∈ {1, . . . ,xA} be such that PA(xA,xB) = PA(xA−
t?,xB)+c(t?+1) (i.e., it is the binding constraint of the minimum). Note that due to PA(xA,xB−
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k) = mint∈{1,...,xA−1}{PA(xA− t,xB− k)+ c(t + 1),1}, PA(xA,xB− k) ≤ PA(xA− t?,xB− k)+

c(t?+1) holds. Then

PA(xA,xB− k)−PA(xA,xB) (2)

≤ PA(xA− t?,xB− k)+ c(t?+1)− (PA(xA− t?,xB)+ c(t?+1))

= PA(xA− t?,xB− k)−PA(xA− t?,xB)

If xA− t? = xB, we can stop at this point, since PA(xA− t?,xB) = PA(xB,xB) = .5, and PA(xA−
t?,xB− k) = PA(xB,xB− k) ≤ PA(xB− k,xB− k)+ c(k + 1) = .5+ c(k + 1). Combining this

with (1) and (2), we obtain PB(xA,xB)−PB(xA,xB− k)≤ c(k+1).

If xA−t? 6= xB, we reiterate the above analysis. In particular, similarly to the above analysis,

there exists t?? ∈ {1, . . . ,xA− t?−1} such that PA(xA− t?,xB) = PA(xA− t?− t??,xB)+ c(t?+

t??+1). Also similarly, PA(xA− t?,xB− k)≤ PA(xA− t?− t??,xB− k)+ c(t?+ t??+1). Thus,

PA(xA− t?,xB− k)−PA(xA− t?,xB)

≤ PA(xA− t?− t??,xB− k)−PA(xA− t?− t??,xB)

Applying this process iteratively, we either reach profile (xB,xB), in which case the above

conclusion applies, or we obtain

PA(xA,xB− k)−PA(xA,xB)≤ PA(1,xB− k)−PA(1,xB) (3)

Since FNP2 is defined symmetrically, PA(1,xB− k)−PA(1,xB) = (1−PA(xB− k,1))− (1−
PA(xB,1))=PA(xB,1)−PA(xB−k,1)≤ c(k+1), where the inequality follows from PA(xB,1)=

mint∈{1,...,xB−1}{PA(xB− t,1)+c(t+1),1}. Combining all of the above observations, we have

PB(xA,xB)−PB(xA,xB− k)≤ c(k+1).

It remains to show that for x > 1 and k ∈ {1, . . .x− 1}, PB(x,x)− PB(x,x− k) = .5−
PB(x,x− k) ≤ c(k + 1). Since PA(x,x− k) = mint∈{1,...,x−1}{PA(x− t,x− k) + c(t + 1),1},
PA(x,x− k) ≤ PA(x− k,x− k)+ c(k+1) = .5+ c(k+1). Thus, PB(x,x)−PB(x,x− k) = .5−
(1−PA(x,x− k)) = PA(x,x− k)− .5≤ c(k+1). This completes the proof that FNP2 satisfies

the conditions of Lemma 2, and is therefore false-name-proof.

PROPOSITION 2. For all 0 < xB < xA, FNP2 satisfies:

(i) If c′′(·)≥ 0 then

PA(xA,xB) = min{0.5+ c(2)(xA− xB),1}

(The linear cost model in which c(t+1) = k ·t for t,k≥ 0, whereby c(2) = k, is a special case.)

(ii) Let π(·) be defined (recursively) as follows: π(1) = 0 and π(x) = mint∈{1,...,x−1}

{π(x− t)+ c(t +1)} for x > 1. If PA(xA,1)< 1, then PA(xA,xB) = .5+π(xA)−π(xB)

(iii) If PA(xA,1)< 1 and c′′(·)< 0 then

PA(xA,xB) = .5+ c(xA)− c(xB)
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Proof (i) Consider 0 < xB < xA and k,k′ ∈ {1, . . . ,xA− 1} such that k′ < k. By false-name-

proofness, PA(xA − k′,xB) ≤ PA(xA − k,xB) + c(k− k′ + 1). Since c(1) = 0 and c′′(·) ≥ 0,

c(k+1)≥ c(k−k′+1)+c(k′+1).12 But then PA(xA−k,xB)+c(k+1)≥PA(xA−k,xB)+c(k−
k′+1)+c(k′+1)≥ PA(xA−k′,xB)+c(k′+1). Thus, the false-name-proofness constraint that

PA(xA,xB)≤PA(xA−k,xB)+c(k+1) is already implied by the constraint PA(xA,xB)≤PA(xA−
k′,xB)+c(k′+1), where k′ < k. Since k and k′ were arbitrarily chosen in {1, . . . ,xA−1}, it fol-

lows that PA(xA,xB) = min{PA(xA−1,xB)+c(2),1}. Similarly, PA(xA−1,xB) = min{PA(xA−
2,xB)+ c(2),1}, . . . ,PA(xB + 1,xB) = min{.5+ c(2),1}. Combining these equalities, we ob-

tain PA(xA,xB) = min

{0.5+ c(2)(xA− xB),1}.
(ii) It is straightforward to check that PA(xA,1) =mint∈{1,...,xA−1}{PA(xA−t,1)+c(t+1),1}=
min{PA(1,1)+π(xA),1}= min{.5+π(xA),1}. If PA(xA,1)< 1, then

PA(xA,1) = .5+π(xA). It also follows from Lemma 3 that for any k < xA, PA(k,1) = .5+π(k).

Assume xA > 2. By neutrality, PA(1,2) = 1− PA(2,1) = .5− π(2). We also have that

PA(3,2) = min{1,PA(1,2)+ c(3),PA(2,2)+ c(2)}. However, PA(2,2) = .5+ π(2)− π(2) =

PA(1,2)+π(2). It follows that PA(3,2) =min{PA(1,2)+π(3),1}=min{.5+π(3)−π(2),1}.
Similarly, for any 2 < k ≤ xA, PA(k,2) = .5+π(k)−π(2) (where PA(k,2) < 1 follows from

Lemma 3). A similar process can be done for PA(k,3) for 3 < k ≤ xA. Specifically, assuming

xA > 3, we have PA(1,3) = 1−PA(3,1) = .5− π(3), PA(2,3) = 1−PA(3,2) = .5+ π(2)−
π(3) = PA(1,3)+π(2), and PA(3,3) = .5+π(3)−π(3) = PA(1,3)+π(3). It then follows that

PA(k,3) = PA(1,3)+π(k) = .5+π(k)−π(3).

The proof proceeds by induction (the above being the base step). Hypothesize that for t ∈
{1, . . . ,kB}, kB < xB, and for any kA ≤ xA, PA(kA, t) = .5+π(kA)−π(kB) (where PA(kA, t)< 1

follows from Lemma 3 and the assumption that PA(xA,1) < 1). By the induction hypothesis,

for x < kB + 1, PA(x,kB + 1) = 1−PA(kB + 1,x) = .5+ π(x)− π(kB + 1). In addition, from

the definition of FNP2, PA(kB + 1,kB + 1) = .5 = .5+π(kB + 1)−π(kB + 1). It follows that

for kB +1 < kA ≤ xA, PA(kA,kB +1) = .5+π(kA)−π(kB +1), which completes the induction.

Therefore, if PA(xA,1)< 1, then PA(xA,xB) = .5+π(xA)−π(xB).

(iii) For k > 0, c′′(·)< 0 implies that c(k+1)− c(k)< c(k)− c(k−1)< .. . < c(2)− c(1) =

c(2). Now, since c(1) = 0, c(k) = c(1)+c(k). By the above inequalities, c(k+1)< c(1+1)+

c(k). Similarly, c(k+2)< c(1+2)+c(k), . . . ,c(k+ t1)< c(1+ t1)+c(k). Applying a similar

set of inequalities, we can obtain c(k + t1 + . . .+ tm) < c(1+ t1)+ . . .+ c(1+ tm)+ c(k). It

follows that π(k) = c(k).

Consider any 0 < xB < xA such that PA(xA,1) <. By Part (ii), we have PA(xA,xB) = .5+

π(xA)−π(xB). Combining this with the above, we have PA(xA,xB) = .5+ c(xA)− c(xB).

12 To see this, note that c′′(·)≥ 0 implies c(t +1)−c(t)≥ c(t)−c(t−1)≥ . . .≥ c(2)−c(1). Now, since c(1) = 0,

c(k′+1) = c(1)+c(k′+1). By the above inequalities, c(k′+1+1)≥ c(1+1)+c(k′+1). Similarly, c(k′+1+2)≥
c(1+ 2)+ c(k′+ 1), . . . ,c(k′+ 1+(k− k′)) ≥ c(1+ k− k′)+ c(k′+ 1). The final inequality gives c(k+ 1) ≥ c(k−
k′+1)+ c(k′+1).


