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The word “auction” generally refers to a mechanism for allocating one or more resources to one
or more parties (or bidders). Generally, once the allocation is determined, some amount of money
changes hands; the precise monetary transfers are determined by the auction process. While in some
auction protocols, such as the English auction, bidders repeatedly increase their bids in an attempt
to outbid each other, this is not an essential component of an auction. There are many other auction
protocols, and we will study some of them in this chapter.

Auctions have traditionally been studied mostly by economists. In recent years, computer scien-
tists have also become interested in auctions, for a variety of reasons. Auctions can be useful for
allocating various computing resources across users. In artificial intelligence, they can be used to allo-
cate resources and tasks across multiple artificially intelligent “agents.” Auctions are also important
in electronic commerce: there are of course several well-known auction Web sites, but additionally,
search engines use auctions to sell advertising space on their results pages. Finally, increased com-
puting power and improved algorithms have made new types of auctions possible—most notably
combinatorial auctions, in which multiple items are for sale in the same auction, and bidders can
bid on bundles of items.
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We begin this chapter by studying single-item auctions. Even though most computer scientists
are perhaps more interested in combinatorial auctions, single-item auctions allow us to more easily
introduce certain concepts that are also of key importance in combinatorial auctions.

16.1 Standard Single-Item Auction Protocols

In this section, we review some basic protocols for auctioning a single item. The reader is encouraged
to think about which of these protocols are similar to each other; we will discuss relationships among
them shortly.
English. The English auction is the most familiar protocol to most people. In an English auction, every
bidder is allowed to place a bid higher than the current highest bid. If at some point, no bidder wishes
to place a higher bid, then the bidder with the current highest bid wins the item, and pays her bid.
Dutch. The Dutch auction proceeds in the opposite direction from the English auction. In a Dutch
auction, an initial price is set that is very high, after which the price is gradually decreased. At any
moment, any bidder can claim the item. She then wins the item and has to pay the current price.
Japanese. In a Japanese auction, the initial price is zero; the price is then gradually increased. A bidder
can leave the room when the price becomes too high for her. Once there is only one bidder remaining,
that bidder wins the item, and pays the price at which the last other bidder left the room.
First-price sealed-bid. In a first-price sealed-bid auction, each bidder communicates a bid privately
to the auctioneer—say, in a sealed envelope. The auctioneer then opens all the envelopes; the bidder
with the highest bid wins the item, and pays the bid that she placed.
Second-price sealed-bid (also known as Vickrey). The second-price sealed-bid auction proceeds
exactly as the first-price sealed-bid auction, except the highest bidder (who still wins the item) now
pays the second-highest bid, instead of her own.

Let us consider which of these auction protocols are similar to each other. Perhaps the most
obvious similarity is between the English and the Japanese auctions. For both, there is a price that
is rising, and the last remaining bidder wins. There is a distinction, however: in an English auction,
two bidders may be bidding each other up, while a third bidder quietly sits by, even though she
remains interested in the item. In this case, the first two bidders are unaware that they have another
competitor. In a Japanese auction, this situation cannot occur.

The Japanese auction and the second-price sealed-bid auction are also closely related (and the
English auction is related to the second-price sealed-bid auction in a similar way). Suppose, for a
second, that each bidder in a Japanese auction decides at the beginning of the auction on the price
at which she will leave the room. Of course, other strategies are possible: a bidder may base how
long she stays in the room on which other bidders are still left. However, if the bidders follow the
former kind of strategy, then the bidder who, at the beginning, chose the highest price will end up
winning, and she will end up paying the second-highest price selected by a bidder—similarly to the
second-price sealed-bid auction.

The Dutch auction and the first-price sealed-bid auction are even more closely related. Similarly to
the Japanese auction, in a Dutch auction, a bidder may decide at the beginning on the price at which
she will claim the item (if this price is reached). In fact, unlike in the Japanese auction, there is little else
that a bidder can do in terms of strategizing. In a Japanese auction, a bidder can let her bidding strategy
depend on who else is left; but in a Dutch auction, there is nothing to condition her strategy on, since
the only event that can happen is that someone else claims the item—but at that point the auction is
over and it no longer matters what anyone does. Now, the bidder who chooses the highest price will
win, and pay that price—similarly to the first-price sealed-bid auction. Because of this argument,
the Dutch and first-price sealed-bid auctions are usually considered strategically equivalent.

We will see some other single-item auctions later in this chapter. For most of this chapter,
we will focus on sealed-bid auctions. As we have seen, for each of the auctions studied so far,
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there is a roughly equivalent sealed-bid auction; in a sense, this is true for any auction, as we will
see shortly. Nevertheless, there are reasons to use English, Japanese, and Dutch auctions (more
generally, ascending and descending auctions). One reason is that they allow bidders to postpone
certain decisions until later. For example, if a bidder in a Dutch auction is deciding whether to claim
the item at $60 or $50, she may as well wait until the price drops to, say, $70, before she starts to
think about what she will do. If another bidder claims the item before that, the former bidder will
have saved herself some unnecessary agonizing. This is related to preference elicitation, which we
will discuss toward the end of this chapter.

16.2 Valuations and Utilities

How a bidder should bid in an auction depends on how much the item for sale is worth to her. In
this chapter, we will assume that each bidder can determine how much the item is worth to her, and
that events in the auction will not change her assessment. That is, each bidder i has an unchanging
valuation vi for the item, which she can determine at the beginning of the auction. This assumption
is not always realistic. For example, if a bidder sees that other bidders are bidding aggressively on an
item, this may be evidence to her that, before the auction, those bidders inspected the item in person
and found it to be of good quality. This evidence may improve the first bidder’s perception of—and
hence, valuation for—the item. Settings such as these, where some bidders have private information
that would affect the valuation of other bidders for the item, are known as interdependent valuations
settings. Most research assumes away the possibility of interdependent valuations, and we will do so
in this chapter.

In general, each bidder has a utility for each outcome of the auction, and acts to maximize her
expected utility. We will assume that a bidder’s utility for winning the item and having to pay πi is
ui = vi − πi, and her utility for not winning the item and having to pay πi is ui = −πi. (Generally,
losing bidders will not be made to pay anything; however, later in this chapter, we will see an auction
that makes payments to losing bidders, in which case πi is negative.) Thus, we are assuming that
a bidder’s utility function decomposes into separate valuation and payment components, and that
utility is linear in money. This assumption is known as the quasilinear preferences assumption.
It, too, is not always realistic, for the following reasons. In general, one’s utility may be strictly concave
in money (that is, one may have decreasing marginal utility for money: the utility of having another
(say) dollar may decrease as one accumulates more money), since at some point one runs out of
uses for money. Also, in general, the effect of money on utility may depend on whether one has won
the item: for example, if a bidder wins a pair of skis in an auction, she needs money to travel on a
skiing vacation (and hence has high marginal utility for money), whereas if she does not win, she
has less use for additional money (and hence has low marginal utility for money). Nevertheless, the
quasilinearity assumption is usually made, and we will do so in this chapter.

Another assumption that is implicit in the above text is that a bidder who does not win the item
does not care about which other bidder wins the item, and that bidders do not care about how much
other bidders pay. This assumption is known as the no externalities assumption. Once again, this
assumption is not always realistic: a bidder may prefer to see the item end up with a friend rather
than with an enemy, or she may prefer to see the other bidders run out of money so that they will
not compete in future auctions. Again, we will not go into detail on this in this chapter.

16.3 Strategic Bidding

It does not always make sense for a bidder to simply bid her true valuation. For example, if bidder
i bids her true valuation vi in a first-price sealed-bid auction, then even if she wins, her utility will
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be vi − πi = vi − vi = 0. Hence, she should bid lower than her true valuation to have any chance of
obtaining positive utility. But how much lower should she bid? Intuitively, this should depend on
her beliefs about the other bidders’ valuations. If she expects to be the only bidder who is seriously
interested in obtaining the item, she can place a low bid and still probably win; whereas if she expects
there to be many other competitive bidders, she should bid closer to her true valuation to have a
decent chance of winning. However, it is not obvious how to calculate her optimal bid precisely,
even given a probability distribution over the others’ valuations. This is because she cannot expect
the other bidders to bid their true valuations, either: they also need to bid below their true valuations
to have a chance of obtaining positive utility. And precisely how much lower is optimal for them to
bid depends, in turn, on how the first bidder bids.

16.3.1 Solving the First-Price Sealed-Bid Auction

To resolve this circularity, we need to turn to game theory, which studies settings in which each
bidder’s (or, more generally, agent’s) optimal course of action depends on the actions of the other
bidders. To apply game theory to the first-price sealed-bid auction, we first need to introduce the
concept of a strategy. In a sealed-bid auction, a strategy for bidder i is a function si : R

≥0 → R
≥0,

where si(vi) is the bid that i will place if her true valuation is vi. That is, for every valuation that the
bidder may have, the strategy specifies what she should bid. This may appear somewhat excessive: if
the bidder already knows her true valuation, why should she have to specify what she would have
bid if her valuation had been different? The reason that we need to think about this is that the other
bidders do not know bidder i’s valuation, and they need to think about what i would do for each
valuation. In turn, bidder i needs to think about what the other bidders will do, and hence also needs
to think about what they think she will do.

Let us suppose that for each bidder i, there is a (commonly known) prior probability distribution
pi over her valuation vi; moreover, let us assume that the valuations are drawn independently.
Hence, each bidder i knows her own valuation vi exactly, but for every other bidder j �= i, i’s
probability distribution over j’s valuation is pj. Now, if bidder i knows the strategies of the other
bidders, then for every bid that she might place, she can evaluate her expected utility; and of course
she should choose one that maximizes her expected utility. As is typically done in game theory,
we will look for an equilibrium, which prescribes a strategy for every bidder such that, for every
bidder, for every possible valuation for that bidder, her strategy will prescribe a bid that maximizes
her expected utility, given the other strategies. Formally, a Bayes–Nash equilibrium consists of a
strategy si : R

≥0 → R
≥0 for every bidder such that, for every bidder i, for every vi ∈ R

≥0, and for
every alternative bid v̂i ∈ R

≥0:

�
v−i

⎛
⎝∏

j �=i

pj(vj)

⎞
⎠ ui(vi, s−i(v−i), si(vi))dv−i ≥

�
v−i

⎛
⎝∏

j �=i

pj(vj)

⎞
⎠ ui(vi, s−i(v−i), v̂i)dv−i

Let us dissect this complicated inequality. First, the notation −i is shorthand for “the bidders other
than i,” so that v−i is shorthand for v1, . . . , vi−1, vi+1, . . . , vn. The notation v̂i is generally used for
bidder i’s bid, not necessarily equal to her true valuation vi. ui(vi, v̂−i, v̂i) is the utility that bidder
i obtains if her true valuation is vi, but she bid v̂i, and the other bidders bid v̂−i. In the first-price
sealed-bid auction, ui(vi, v̂−i, v̂i)= vi − v̂i if v̂i is higher than all the bids in v̂−i, and it is 0 otherwise.
Now we can see that the inequality says that, if the bidders other than i follow their strategies, then
i’s expected utility for bidding si(vi) should be at least equal to her expected utility for bidding any
other v̂i—that is, she should not be able to do better by not following the strategy si, given that the
other bidders are indeed following their strategies s−i.

We will now give an example of an equilibrium. Suppose that each pi is a uniform distribution
over [0, 1]. We will show that the strategies defined by si(vi)= vi(n − 1)/n (where n is the number



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C016 Revises Page 5 2009-8-28

Auction Protocols 16-5

of bidders) constitute an equilibrium. (We will not get into detail here on how one might have
actually derived these strategies, but there are techniques for doing so.) Suppose that all other
bidders (−i) indeed follow these strategies. Then, the expected utility for i of bidding v̂i ≤ (n − 1)/n
is (v̂in/(n − 1))n−1(vi − v̂i), because the probability that a given other bidder bids less than v̂i is
v̂in/(n − 1). (There is no reason to bid more than (n − 1)/n, because no other bidder will bid more
than (n − 1)/n.) Using simple calculus, one can check that this expression is maximized by setting
v̂i equal to vi(n − 1)/n—exactly as the strategy prescribes! This proves that these strategies indeed
constitute an equilibrium.

16.3.2 Solving the Second-Price Sealed-Bid Auction

Now, let us turn to the second-price sealed-bid auction. As it turns out, the analysis needed to
solve this auction is not nearly as complicated. In fact, in the second-price sealed-bid auction, it
is always optimal for a bidder to bid her true valuation, regardless of the other bids! That is, the
strategy si(vi)= vi is a dominant strategy. While this may come as a surprise at first, it is not so
difficult to see why it is true. Suppose, for a second, that bidder i can actually see the others’ bids
before placing her own bid. Let us consider the value v̂max, the highest bid among the other bidders.
Bidder i effectively has only two choices: to bid higher than v̂max, and obtain utility vi − v̂max;
or to bid lower than v̂max, and obtain utility 0. Clearly, she should do the former if and only if
vi > v̂max. But this is exactly what would happen if she just bid her true valuation—for which she
does not even need to know the others’ bids! Hence, by bidding her true valuation, she performs
as well as she could have performed even if she had known the others’ bids. This implies that
bidding truthfully is also a Bayes–Nash equilibrium, although the result is much stronger than
that. For example, in the first-price auction, if one knows the bids of the other bidders, then
certainly one might be better off bidding differently from the equilibrium that we derived for that
auction (which we derived under the assumption that bidders do not know each other’s valuations).
Hence, the strategies in the first-price auction equilibrium are not dominant strategies. Mechanisms
in which revealing one’s true valuation is a dominant strategy (such as the second-price sealed-
bid auction) are called (dominant-strategies) incentive compatible, strategy-proof, or simply
truthful.

16.4 Revenue Equivalence

Now that we have analyzed how bidders should bid in these two auctions, let us ask the following
question: which one obtains more revenue for the seller, in expectation? The answer is not immedi-
ately obvious: naïvely, one might say that the first-price auction should result in more revenue, since
after all it charges the highest bid rather than the second-highest; but then again, in equilibrium, the
bids are lower in the first-price auction. Which of these two effects is stronger?

For the case of independent uniform priors over [0, 1], we can compute the expected revenues
using the equilibrium strategies from above text. For the first-price auction, the probability that all
bids are below a given value b is (bn/(n − 1))n, which is also the probability that the revenue will be
below b. That is, this expression gives the cumulative density function of the revenue of the first-price
auction, and using it one can compute the expected revenue to be (n−1)/(n+1). For the second-price
auction, the probability that there is at most one bid higher than b is bn + nbn−1(1 −b), which is also
the probability that the revenue will be below b. That is, this expression gives the cumulative density
function of the revenue of the second-price auction, and using it one can compute the expected
revenue to be (n − 1)/(n + 1)—the same as that for the first-price auction! This is no accident: it is a
special case of the following result, which is known as the revenue equivalence theorem (Myerson,
1981; Riley and Samuelson, 1981).
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THEOREM 16.1 Suppose that the bidders’ valuations are independent and identically distributed
over a continuous interval [L, H], and that there are no “gaps” in this distribution. Then, any two
auction mechanisms that

1. in equilibrium always allocate the item to the bidder with the highest valuation, and
2. give a bidder with valuation L an expected utility of 0,

will result in the same expected revenue for the seller.

(There are more general versions of this result.) In the next section, we will see single-item auction
mechanisms that result in different expected revenues, because they violate one of the two conditions
in the theorem. From this point on, we will study only truthful mechanisms. This is justified by a
result known as the revelation principle (Gibbard, 1973; Green and Laffont, 1977; Myerson, 1979,
1981), which states (roughly) that, if bidders bid strategically, then for every mechanism that is not
a truthful mechanism, there is a truthful mechanism that performs equally well.

16.5 Auctions with Different Revenues

Suppose that we have a prior distribution over each bidder’s valuation, and that we wish to design
a mechanism that maximizes expected revenue. It is easy to see that running, say, a second-price
sealed-bid auction is not always optimal. For example, suppose there is only one bidder. The second-
price sealed-bid auction will never collect any revenue in this case, because there is no second bidder.
However, we can also make a take-it-or-leave-it offer to the one bidder: the bidder will obtain the
item if and only if it is worth more than some fixed value k to her, in which case she will pay k;
otherwise, the seller keeps the item. This will generate a revenue of k at least some of the time. While
this may not seem like an auction, setting a reserve price of k in a second-price sealed-bid auction
will have the same effect. (In such an auction, if only one bid is above the reserve price, then that bid
pays the reserve price.)

In general, the auction that maximizes expected revenue is known as the Myerson auction (Myer-
son, 1981), and it proceeds as follows. For each bidder i, compute her virtual valuation ψi(v̂i) as a
function of her bid, as follows:

ψi(v̂i)= v̂i − (1 − Fi(v̂i))/fi(v̂i)

Here, Fi is the cumulative density function of i’s valuation, and fi is its derivative, the probability
density function. The bidder with the highest virtual valuation wins, unless this bidder has a virtual
valuation below 0, in which case nobody wins. The price that the winning bidder pays is the lowest
value that she could have bid while still winning. For example, if each bidder’s valuation is drawn from
the uniform distribution over [0, 1], then the Myerson auction becomes a second-price sealed-bid
auction with a reserve price of 1/2. This is because

ψi(1/2) = 1/2 − (1 − Fi(1/2))/fi(1/2) = 1/2 − (1 − 1/2)/1 = 0

It does not always make sense to try to maximize expected revenue. In some settings, our main
goal is to allocate the item efficiently (that is, to the bidder that values it most), and payments are
merely a necessary nuisance in achieving this goal. For example, suppose that several parties jointly
own an item, and they wish to run an auction amongst themselves to decide on a single owner. What
should happen to the revenue of this auction? It seems to make sense to redistribute it back to the
bidders themselves, but doing so effectively changes the auction mechanism. For example, suppose
that the bidders run a second-price sealed-bid auction for the item, and then redistribute the revenue
of this auction equally (each bidder receives 1/n of the revenue). Unlike the second-price sealed-bid
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auction without redistribution, this auction is actually not truthful: the second-highest bidder now
has an incentive to increase her bid to drive up the price that the highest bidder pays, because the
second-highest bidder will receive a fraction of this price.

Fortunately, it turns out that we can redistribute at least some of the revenue while maintaining
truthfulness. One auction mechanism that achieves this is the following [independently invented on
at least three different occasions (Bailey, 1997; Porter et al., 2004; Cavallo, 2006)]. Let us define v2−i
to be the second-highest bid among bidders other than bidder i. For the top two bidders, this is the
third-highest bid overall (v3); for the remaining n − 2 bidders, it is the second-highest bid (v2). We
run the second-price sealed-bid auction, and we redistribute v2−i/n to bidder i. This redistribution
payment does not affect bidders’ incentives in bidding, because no bidder can affect her own
redistribution payment. Hence, the auction remains truthful. Additionally, the total redistributed
is 2v3/n + (n − 2)v2/n ≤ v2—so the total redistributed is no more than is collected from the
second-price sealed-bid auction. A total of 2(v2 − v3)/n is not redistributed. This money must be
given to someone else (but not someone whom the bidders care about, since that might affect their
incentives), or, say, burned. It is impossible to achieve efficient allocation without ever wasting any
money, but it is possible to waste even less money (either on average or in the worst case): this is
achieved by also letting bidder i’s redistribution payment depend on v3−i, v4−i, . . . , vn−1−i (Guo and
Conitzer, 2007; Moulin, 2007).

It is interesting to note that the revenue equivalence theorem from above text does not apply to
Myerson’s auction because the first condition is not satisfied; it does not apply to the redistribution
mechanisms because the second condition is not satisfied.

16.6 Complementarity and Substitutability

Now that we have studied single-item auctions, let us consider settings where multiple items are
for sale. One possibility is to sell each item in a separate single-item auction; these auctions can be
held simultaneously (parallel auctions) or back-to-back (sequential auctions). If, for each item, each
bidder’s valuation for that item does not depend on which other items she wins, then the individual
auctions are entirely separate events, and we can apply the techniques that we have studied up to
this point. However, this is not always a realistic assumption. For example, if the items for sale are
a plane ticket to Las Vegas and a hotel reservation in Las Vegas, then it may be that the bidder’s
valuation for the plane ticket alone is 200, her valuation for the hotel reservation alone is 100, but
her valuation for both together is 500. The package of both items is worth more than the sum of its
parts, that is, the items are complementary.

Now suppose that the plane ticket is auctioned first, and the hotel reservation second (both in
second-price sealed-bid auctions). How much should the bidder bid in the first auction? If she bids
200 for the ticket, she may lose to a bidder bidding 201, only to later find out she could have won
the hotel reservation for 101, so that she regrets not bidding higher in the first auction. However,
if she bids 400 for the ticket, she may win it at a price of 399, only to later find out that the hotel
reservation sells for 1000, so that she regrets winning the ticket. It is not clear what the bidder should
do—she no longer has a dominant strategy. Moreover, the resulting allocation of items can be
inefficient.

Another possibility is that the package of items is worth less than the sum of its parts, in which case
the items are said to be substitutable. For example, if reservations for two different hotels are for sale,
a bidder may value each individual reservation at 100, but the package of both reservations at 150.
In sequential auctions, substitutability can cause problems similar to those caused by complemen-
tarity. Both can also cause similar problems in parallel auctions.

Instead of making the bidders agonize over the prices at which items in future or parallel auctions
are likely to sell, an alternative is to let each bidder report all her valuations, one for each subset of
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the items, and decide on the allocation of items to bidders based on that information. This is what
is done in a combinatorial auction, and it circumvents the problems that parallel and sequential
auctions run into when there are complementarities and substitutabilities.

16.7 Combinatorial Auctions

In a combinatorial auction, a set I of multiple items is (simultaneously) for sale, and bidders can bid
on any bundle (that is, subset) of items. If we again make the assumptions that bidders’ valuations
for the items do not change based on other bidders’ private information, utilities are quasilinear, and
there are no externalities, then each bidder i has a privately held valuation function vi : 2I → R

≥0,
where vi(S) is i’s valuation for bundle S ⊆ I; and the utility of bidder i when she wins bundle S
and pays πi is vi(S) − πi. Generally it is assumed that vi(∅)= 0, and additionally that for S ⊆ S′,
vi(S) ≤ vi(S′). (The latter assumption is often called free disposal: receiving additional items can
never decrease a bidder’s valuation, because at worst the additional items can simply be discarded.)
We will start by looking at sealed-bid combinatorial auctions. An immediate problem with this
approach is that in general, each bidder must reveal 2m − 1 real numbers (where m = |I|), one for
each nonempty bundle. Once m gets to be somewhat large, this becomes impractical. However, there
is usually some structure in the bidders’ valuation functions, so that they can be represented more
concisely.

One very restrictive, but commonly studied assumption about this structure is that bidders are
single-minded. A bidder i is single-minded if there exists some bundle Si and some real number vi
such that vi(S)= vi if Si ⊆ S, and vi(S)= 0 otherwise. That is, there is a single bundle of items that
the bidder wishes to obtain; she will simply discard any additional items, and if she fails to obtain
even one item within her desired bundle, her valuation drops to 0. If bidders are single-minded, then
a bid can be represented simply as an ordered pair (Si, vi) ∈ 2I × R

≥0.
A single-minded bid cannot represent even fairly straightforward valuation functions, such as

additive valuation functions. (A valuation function vi is additive if for all S ⊆ I, vi(S)= ∑
s∈S vi({s}).

That is, there are no complementarities or substitutabilities.) We would like to give bidders some
more flexibility, by providing them with a richer bidding language in which to describe their
valuation function. One such bidding language is the OR language, which effectively allows a bidder
to submit multiple single-minded bids. Formally, a bid in the OR language takes the form (S1, v1)
OR (S2, v2) OR . . . OR (Sk, vk). Such a bid is interpreted as follows: for any subset T ⊆ {1, . . . , k}
with the property that for any j1, j2 ∈ T, j1 �= j2, we have Sj1 ∩ Sj2 = ∅, vi(

⋃
j∈T Sj)= ∑

j∈T vj. That
is, the auctioneer can accept any subcollection of the single-minded bids within the OR-bid, as long
as there is no overlap between the accepted Sj. (To be precise, the last = symbol should really be a ≥
symbol, because it is possible that the same set

⋃
j∈T Sj (or a subset thereof) can be written as a union

of disjoint Sj in a different way that results in a greater sum of vj. The bidder’s valuation for the subset
is the maximum value that can be obtained in this way. Hence, equality holds only if there is no better
way to write the bundle as a union of disjoint Sj. For example, given the bid ({A}, 1) OR ({A, B}, 3) OR
({B, C}, 3) OR ({C}, 2), we have vi({A, B, C})= vi({A, B}) + vi({C})= 5 > 4 = vi({A}) + vi({B, C}).)
The OR language allows for representing additive valuations, simply by OR-ing together singleton
bundles.

Nevertheless, there are valuation functions that the OR language cannot capture. For exam-
ple, suppose there are two items, a and b, and that bidder i’s valuation function is given by
vi({a})= 1, vi({b})= 1, vi({a, b})= 1. That is, she wants either item, and having both items is no
more useful to her than having a single one. This function cannot be represented in the OR lan-
guage: the bid would have to contain the terms ({a}, 1) and ({b}, 1), but this would already imply
that vi({a, b}) ≥ 2. A language that can capture this valuation function is the XOR language. The
difference between the OR and XOR languages is that the auctioneer can accept at most one of the
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single-minded bids that are XORed together, even if they do not overlap. For example, the above
valuation function is easily expressed as ({a}, 1) XOR ({b}, 1): this bid implies a valuation of only
1 for the bundle {a, b}, since it is not possible to accept both single-minded bids in the bid. Using
XORs, we can in fact represent any valuation function, by using a single-minded bid for every
possible bundle and XOR-ing them all together. Of course, this is not a very concise representation.
Unfortunately, even representing additive valuation functions can require exponentially long bids
if we use only XORs. But it is also possible to use ORs and XORs simultaneously, to get the best of
both worlds. For example, the bid (({a}, 1) XOR ({b}, 1)) OR ({c}, 2) indicates a value of 1 + 2 = 3
for the bundle {a, b, c}. There are other bidding languages that are not based on ORs and XORs, but
we will not discuss them in this chapter.

16.8 The Winner Determination Problem

Now that we have considered how to bid in a (sealed-bid) combinatorial auction, we must consider
how to determine who wins what. Of course, we cannot award a single item to two different bidders.
But this still leaves plenty of options. One natural approach is to maximize efficiency, the total value
generated. That is, if Si is the bundle of items that we award to bidder i, then we should maximize∑n

i = 1 v̂i(Si) (under the constraint that Si ∩ Sj = ∅ for all i �= j). This optimization problem is known
as the winner determination problem (WDP).

As it turns out, the WDP is computationally hard. Even if we consider the special case where each
bidder submits a single-minded bid, the problem turns out to be equivalent to WEIGHTED-SET-
PACKING, which is NP-hard (Rothkopf et al., 1998) and inapproximable (Sandholm, 2002). On the
other hand, the problem does not become any harder if we allow bidders to use ORs, since a bidder
using ORs is effectively submitting multiple single-minded bids. In fact, even if we allow XORs, the
problem in a sense becomes no harder: this is because, for the purpose of solving the WDP, we can
transform an instance with XORs into one with only ORs using the following trick (Fujishima et al.,
1999; Nisan, 2000). Given a bid of the form (S1, v1) XOR (S2, v2), we create a new “dummy” item,
d, and replace the bid by (S1 ∪ {d}, v1) OR (S2 ∪ {d}, v2). Even though there is an OR between these
two bids, they cannot both be accepted, since they have an item in common; moreover, since no
other bids mention this item, everything else remains unaffected. Because of this, in the next two
subsections, we will focus on algorithms for the single-minded case only. We will consider optimal
algorithms for both the general case and some special cases. We will postpone the discussion of
approximation algorithms until later, because we will require a particular kind of approximation
algorithm in this context.

16.8.1 General-Purpose Winner Determination Algorithms

Given single-minded bids {(Si, v̂i)}, one straightforward way to solve the winner determination
problem is to solve the following integer program, which uses a binary variable bi to indicate
whether bid i is accepted:

maximize
∑

i biv̂i
subject to
for each s ∈ I, (

∑
i:s∈Si

bi) ≤ 1
for each i, bi ∈ {0, 1}

The main constraint of this integer program ensures that each item is awarded at most once.
Software packages such as CPLEX can be used to solve such an integer program; since the WDP is
NP-hard, it should come as no surprise that solving integer programs is also NP-hard.
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One interesting aside is that in some settings, bids can be accepted partially. For example, if we
have three bids, ({a, b}, 2), ({a, c}, 2), and ({b, c}, 2), it may be possible to accept half of each bid,
awarding half of a and half of b to the first bidder for a value of 1, half of a and half of c to the
second bidder for a value of 1, and half of b and half of c to the third bidder for a value of 1. This
gives us a total value of 3 (we note that if we cannot accept bids partially, then we can obtain only 2).
If accepting bids partially is possible, then we can solve the WDP by modifying the above program
slightly. We make the bi continuous variables, replacing the last constraint by

for each i, 0 ≤ bi ≤ 1

At this point, the program has become a linear program, and linear programs can be solved in
polynomial time (Khachiyan, 1979). However, in the remainder of this chapter we will assume that
it is not possible to accept bids partially.

An alternative approach to solving the general WDP is to write a search algorithm based on
techniques from artificial intelligence; for an overview of work along this line, see Sandholm (2006).
It should be noted that such algorithms are in many ways similar to algorithms for solving integer
programs.

Yet another option is to use the following dynamic programming approach (Rothkopf et al., 1998).
For any subset S ⊆ I, let w(S) be the maximum total value that can be obtained using only items in
S (that is, if we threw away the items in I − S). Let B(S) be the collection of all proper subsets S′ ⊂ S
such that there is at least one bid on exactly S′. Then, we have

w(S) = max{max
i

v̂i(S), max
S′∈B(S)

w(S′) + w(S − S′)}

Since the occurrences of w on the right-hand side involve subsets smaller than S, we can use dynamic
programming to compute w(S) for every subset, starting with the small ones and working our way
up to I—and w(I) gives the maximum value that can be obtained overall. This algorithm runs in
O(n3m) time (where m is the number of items). It is straightforward to extend the dynamic program
to keep track not only of the values that can be obtained, but also of the bids that need to be accepted
to obtain these values.

16.8.2 Special-Purpose Winner Determination Algorithms

The WDP is NP-hard in general. Nevertheless, if the bids have some structure, then the WDP is
sometimes solvable in polynomial time. For example, suppose that there are only (single-minded)
bids on pairs of items (Rothkopf et al., 1998). Certainly, if multiple bids bid on the same pair of items,
it never makes sense to accept a bid that is not the highest. Hence, we know the value of pairing any
two given items together for sale (namely, the highest bid for that pair), and the only decision left
is which items to pair together. This is a MAXIMUM-WEIGHTED-MATCHING problem, which
can be solved in polynomial time. (This can easily be extended to also allow for bids on individual
items—for example, by adding dummy items.) Unfortunately, if we allow for bids on sets of three
items, the problem becomes NP-hard (by reduction from EXACT-COVER-BY-3-SETS).

As another example, suppose that the items are arranged as the vertices of a graph, and that every
bid is on a bundle of items that constitutes a connected component in the graph. This is always
possible by adding an edge between every pair of items (that is, making the graph a complete graph),
but we will be interested in restricted classes of graphs. In particular, if the graph is a tree or a cycle,
or, more generally, has bounded treewidth, then the WDP can be solved in polynomial time using
dynamic programming (Sandholm and Suri, 2003; Conitzer et al., 2004). To use a result like this, we
can either collect the bids first and then find a graph with which they are consistent, or we can specify
the graph beforehand and require all bids to be consistent with this graph. A later result generalizes
this even further by considering hypertree decompositions (Gottlob and Greco, 2007).
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There are various other works on structure that bids may have that makes the WDP easier
(Tennenholtz, 2000; Penn and Tennenholtz, 2000; Sandholm and Suri, 2003). Even if the bidders’
valuations are not likely to have the required structure exactly, one possibility is to force the bidders
to only use bids with this structure. This comes at the loss of some economic efficiency, because
bidders can no longer express their exact valuations; nevertheless, it is generally better than reverting
to single-item auctions.

16.9 The Generalized Vickrey Auction

So far, we have not yet considered how much a winning bidder should pay in a combinatorial
auction. We could simply make such a bidder pay her bid (that is, her reported valuation for the
bundle she won), resulting in a first-price sealed-bid combinatorial auction. As in the case of a
first-price sealed-bid single-item auction, no bidder would ever bid her true valuation function,
since this would guarantee that even if she wins something, she will have a utility of 0. We recall
that an auction is truthful if revealing one’s true valuation function is always optimal, regardless
of the others’ bids. Can we create a truthful combinatorial auction? A natural approach is to try
to generalize the (truthful) second-price sealed-bid (aka. Vickrey) auction to the combinatorial
setting. There are multiple ways in which one can generalize the Vickrey auction. For example,
one can charge a winning bidder the highest other bid that was placed on exactly the same bundle.
To see that this is not a good idea, consider the following example. Suppose that the bids are ({a}, 1),
({b}, 1), and ({a, b}, 5), all from different bidders. The third bidder would win both items, and this
bidder would pay 0, because nobody else bid on the bundle {a, b}. This intuitively feels wrong, since
there was demand for the items from the other bidders. If the third bidder had bid ({a}, 5) instead,
she would have had to pay 1; thus, by bidding for more items, the bidder actually pays less! This also
shows that this particular generalization is not truthful: if the third bidder is in fact interested only
in a, she is still better off bidding on both items, and just throwing b away.

Fortunately, there is another generalization that does work. Let V̂ be the total value of the accepted
bids. Let V̂−i be the total value that would have resulted if i had never entered the auction. (Computing
this requires solving the winner determination problem again, this time without i.) Then, if Si is
the bundle that bidder i wins (possibly the empty bundle), she must pay V̂−i − (V̂ − v̂i(Si)). This
expression is the difference between how much the other bidders would have valued the allocation
that would have resulted if i had never been present, and how much they value the current allocation.
(For this reason, it is sometimes said that i pays the externality that she imposes on the other bidders.)
Let us consider the above example with bids ({a}, 1), ({b}, 1), and ({a, b}, 5). If the third bidder had
not been present, the first two bids would have been accepted, so V−3 = 2. Hence, bidder 3 pays
2 − (5 − 5)= 2. Let us make the example slightly richer, by adding bids ({c}, 2) and ({a, c}, 5),
again from different bidders. Now, the third and fourth bidders win, for a total value of 5 + 2 = 7.
Without the third bidder, the second and fifth bidders would have won, for a total value of 1 + 5 = 6.
Hence, the third bidder must pay 6 − (7 − 5)= 4. Without the fourth bidder, again, the second and
fifth bidders would have won, for a total value of 6. Hence, the fourth bidder must pay 6−(7−2)= 1.

This way of computing payments is usually called the Generalized Vickrey Auction (GVA).
It is sometimes also called the Clarke mechanism, or the VCG mechanism [for Vickrey, Clarke,
and Groves (Vickrey, 1961; Clarke, 1971; Groves, 1973)]. (Clarke and VCG refer to generalizations
beyond auctions.) The GVA has several nice properties. For one, it is truthful. To see this, we note that
bidder i’s eventual utility is vi(Si)−πi = vi(Si)−(V̂−i −(V̂ − v̂i(Si)))= vi(Si)+(V̂ − v̂i(Si))− V̂−i. It
is impossible for i to affect V̂−i; therefore, i can focus on maximizing vi(Si) + (V̂ − v̂i(Si))= vi(Si) +∑

j �=i v̂j(Sj). There is only one way in which this expression depends on i’s bid v̂i: her bid affects
the chosen allocation S1, . . . , Sn. Now, if i had complete control over the chosen allocation (which
she does not, but let us suppose for a second that she does), then she would choose the Sj to
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maximize vi(Si)+∑
j �=i v̂j(Sj). The winner determination algorithm, on the other hand, chooses the

Sj to maximize
∑

j v̂j(Sj)= v̂i(Si) + ∑
j �=i v̂j(Sj). The only difference between the two expressions

is that the first uses vi, and the second uses v̂i. But then, if bidder i truthfully reports v̂i = vi, the
two expressions will be the same, and the winner determination algorithm will choose exactly the
allocation that maximizes i’s utility! Hence, the GVA is truthful.

A very observant reader may have noticed that in the proof of truthfulness, the only property of the
payment term V̂−i that we used is that i cannot affect it with her bid. Therefore, if truthfulness is all that
we care about, we can replace the term V̂−i in the payment expression with any other term that does
not depend on i’s bid. The mechanisms that can be obtained in this way are the Groves mechanisms
(the G in VCG). The GVA mechanism, however, does have some additional nice properties that
not all Groves mechanisms have. For one, it satisfies voluntary participation (aka. individual
rationality): a bidder never receives negative utility as a result of participating in the auction, as long
as she bids truthfully. This is because V̂ ≥ V̂−i (if this were false, it would mean that we had chosen
a suboptimal allocation), and hence vi(Si) − πi = vi(Si) + (V̂ − v̂i(Si)) − V̂−i ≥ vi(Si) − v̂i(Si); and
the last expression is zero if i reports truthfully. A final nice property of the GVA is the nondeficit
(aka. weak budget balance) property: at least as much money is collected from the bidders as is
given to them. In fact, no money is ever given to a bidder. This is because V̂−i ≥ V̂ − v̂i(Si)

(V̂ − v̂i(Si) is the value of an allocation that is feasible even when i is not present), and hence
πi = V̂−i − (V̂ − v̂i(Si)) ≥ 0.

16.10 Collusion and False-Name Bidding

The GVA is truthful, so it is not possible for an individual bidder to benefit from misreporting her
valuation function. However, if multiple bidders simultaneously misreport, that is, they collude,
then it is possible that all of them benefit from this. To some extent, this problem occurs even in a
single-item Vickrey auction. For example, suppose that there are three bidders with valuations 1, 3,
and 4. If the third bidder can convince the second bidder not to place any bid, then the third bidder
has to pay only 1 instead of 3. The third bidder may even pay the second bidder 1 for staying out, so
that they each increase their utility by 1 from this. [In general, the colluders need some protocol for
colluding (Graham and Marshall, 1987; Leyton-Brown et al., 2000, 2002), but we will not concern
ourselves with that here.]

Still, there is a limit on what colluders can achieve in a single-item Vickrey auction. For example,
they can never win the item at a price lower than the highest bid by a noncolluder; nor can they
reduce the seller’s revenue below what the seller would have made if the colluders had not participated.
It turns out that in a combinatorial auction, not even these properties are true. For example, consider
a GVA with only two items, a and b. Suppose two bidders have each placed a bid ({a, b}, 1). If these
are the only bidders, then one of them will win, and pay 1. However, let us now suppose that there
are two additional bidders (the colluders): one of them bids ({a}, 2) and the other bids ({b}, 2). The
colluders then win. How much does each colluder pay? If we remove one of the colluders, then
the other colluder still wins—that is, the remainder of the allocation does not change. Thus, each
colluder (individually) imposes no externality on the other bidders, and hence pays 0. The colluders
benefit from this (assuming they have some value for the items they receive), and the auction’s
revenue has actually decreased as a result of the additional bids. More detail on collusion in the GVA
can be found, for example, in work by Ausubel and Milgrom (2006) and Conitzer and Sandholm
(2006).

The same example can also be used to demonstrate a different vulnerability of the GVA. Suppose
that the auction is run in an open, anonymous environment such as the Internet. In such an auction,
it is usually possible for a single bidder to participate in the auction under multiple identifiers
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(for example, e-mail addresses). Thus, given two other bids ({a, b}, 1), a single bidder can place
a bid ({a}, 2) under one identifier, and a bid ({b}, 2) under another identifier. As a result, the
“false-name” bidder will win both items, and, as before, the price charged to each bid is 0. Hence,
bidders sometimes have an incentive to bid under multiple identifiers; that is, the GVA is not false-
name-proof (Yokoo et al., 2001, 2004).

It should be emphasized that this manipulation cannot be performed simply by submitting
multiple bids under a single identifier [for example by bidding ({a}, 2) OR ({b}, 2)]. In this case, to
compute the bidder’s GVA payment, we would remove the bidder’s OR-bid in its entirety, so that the
resulting payment would be 1. In the example where the bidder uses two different identifiers, there
would be no problem if we could tell that the two identifiers correspond to the same real bidder,
because in that case we would remove both identifiers’ bids simultaneously to compute the bidder’s
GVA payment. Unfortunately, it is generally not possible to tell which identifiers were created by
the same bidder.

One may wonder whether we can address some of these problems by using a combinatorial
auction mechanism other than the GVA. It has been shown that any mechanism that avoids these
issues (revenue nonmonotonicity, collusion, and false-name bidding) must have some unnatural
properties (Rastegari et al., 2007). Still, several false-name-proof combinatorial auction mechanisms
have been designed (Yokoo et al., 2001; Yokoo, 2003; Yokoo et al., 2004). It is also possible to
make the use of multiple identifiers suboptimal by verifying the identities of some of the bidders
(Conitzer, 2007).

16.11 Computationally Efficient Truthful Combinatorial
Auctions

Another problem with the GVA is that it requires us to solve the winner determination problem
to optimality. In fact, to compute the GVA payments, we need to solve up to n additional WDP
instances: for each winning bidder, we need to solve the problem again with that bidder omitted.
[It should be noted that at least in some settings, some of the computational work can be reused
across the different instances (Hershberger and Suri, 2001).] An obvious idea is to not solve the
WDP to optimality, but rather to use an approximation algorithm that returns a solution that is close
to optimal. However, this effectively changes the mechanism, and there is no reason to think that
desirable properties such as truthfulness and voluntary participation will continue to hold (Nisan
and Ronen, 2001).

Let us consider the special case of single-minded bidders. One natural approximation algorithm is
the following. Sort the bids (Si, vi) by vi/|Si|, the per-item value of the bid, in descending order. Then,
consider the bids in this order, and accept any bid that can still be accepted. For example, suppose the
bids are, in sorted order, ({a}, 11), ({b, c}, 20), ({a, d}, 18), ({a, c}, 16), ({c}, 7), ({d}, 6). The algorithm
will accept the first two bids; the next three bids can then no longer be accepted, because one of their
items has already been allocated; finally, the last bid is accepted. The total value of this allocation is
11+20+6 = 37 (which is less than the 20+18 = 38 that could have been obtained by accepting just
the second and third bids). Now, if we wish to calculate the first bidder’s GVA payment using this
approximation algorithm, we must remove this bid, and run the algorithm again. After removing the
first bid, the algorithm will actually accept the bids ({b, c}, 20) and ({a, d}, 18), the optimal solution.
Hence, the first bidder’s (approximated) GVA payment is 38 − (37 − 11)= 12. This is more than
the bidder’s valuation! It follows that this approximation of the GVA mechanism does not satisfy
voluntary participation (and hence it is also not truthful, because the bidder would have been better
off bidding 0).
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However, we can use this approximation algorithm for the WDP to obtain a truthful mechanism
that satisfies voluntary participation: we just need to compute the payments somewhat differ-
ently (Lehmann et al., 2002). For each winning bid, consider the first bid in the sorted list that was
forced out by this bid. The ratio vi/|Si| for that bid is what the winning bid must pay per item. For
example, in the above instance, the first bid forced out by the winning bid ({a}, 11) is ({a, d}, 18).
Hence, the bid ({a}, 11) pays 18/|{a, b}| = 9 per item—and since it wins only one item (a), that
means it pays 9. As for the winning bid ({b, c}, 20), the first bid forced out by it is ({c}, 7) (it is not
({a, c}, 16), because this bid was already forced out by ({a}, 11)), so the bid pays 7/|{c}| = 7 per item,
and since it wins two items, it pays 14. The final winning bid, ({d}, 6), forces no other bids out and
hence pays 0. Given that bidders are single-minded, this mechanism satisfies voluntary participation
and truthfulness (each winning bidder pays the lowest amount that they could have bid while still
winning).

The above approximation algorithm for the WDP has a worst-case approximation ratio of m, the
number of items. If we sort the bids by vi/

√|Si| instead, then the approximation ratio is improved
to

√
m.

There is a significant body of work on computationally efficient truthful combinatorial auctions:
see, for example, Nisan and Ronen (2000); Mu’alem and Nisan (2002); Bartal et al. (2003); Archer
et al. (2003); Dobzinski et al. (2006); Bikhchandani et al. (2006); Dobzinski and Nisan (2007a,b).

16.12 Iterative Combinatorial Auctions and Preference
Elicitation

In a perfect world, every bidder would have a valuation function that can be concisely expressed
in the bidding language of the combinatorial auction. Unfortunately, in reality, this is often not
the case. This does not mean that bidders usually submit extremely long bids (such as an XOR
of 2m − 1 bundles): this is too impractical, not only because it requires the communication of an
exponential amount of information, but also because determining one’s valuation for a given bundle
is generally a nontrivial task. Instead, bidders bid on a few bundles on which they think their bids
will be competitive. But they may not know exactly on which bundles they would be competitive,
and if they do not bid on the right bundles, this results in decreased economic welfare.

A potential remedy for this is to, during the auction, give the bidders feedback on how they are
doing in the auction. This means that we must abandon the sealed-bid format, and instead consider
iterative auction mechanisms. We have already seen some examples of iterative auctions in the
single-item context, namely the English, Japanese, and Dutch auctions. For example, in the English
auction, a bidder knows if she is currently winning, and if she is not, she can choose to raise her bid.
The English and the Japanese auctions are ascending auctions.

It turns out that we can also create ascending combinatorial auctions. As an example, let us study
the iBundle ascending combinatorial auction (Parkes and Ungar, 2000). This auction maintains,
for each bidder i, for each bundle S, a current price pi(S). In each round of the auction, the bidder
is supposed to choose the bundle(s) most attractive to her at her current prices, that is, the set
arg maxS vi(S)− pi(S), and bid pi(S) on these bundles. The exception is if vi(S)− pi(S) < 0 for every
bundle S, in which case the bidder is supposed to drop out. If a bidder follows this strategy, she is said
to bid straightforwardly. At the end of the round, the winner determination problem is solved with
the submitted bids. Then, for every active bidder i that is not winning anything, for every bundle
S that she bid on, the price pi(S) is increased by some predetermined amount ε. Eventually, there
will be a round where every active bidder wins something, and at this point the auction terminates
with the current allocation and payments. This auction is known to have some nice properties:
for example, if the bidders’ valuations satisfy a condition known as buyer submodularity, then
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straightforward bidding is an ex-post equilibrium, and the GVA outcome results (Ausubel and
Milgrom, 2002). Informally, buyer submodularity means that the more bidders are already present,
the less having additional bidders adds to the final allocation value. Strategies are said to be in
ex-post equilibrium if for each bidder i, it is optimal to follow the strategy, assuming that the other
bidders follow their strategies (but regardless of what the other bidders’ valuations are). Numerous
other iterative combinatorial auctions have been proposed [for an overview, see (Parkes, 2006)], and
inherent limitations of this approach have also been studied (Blumrosen and Nisan, 2005).

More generally, the auctioneer can sequentially ask the bidders various queries about their
valuation functions, until the auctioneer has enough information to determine the final outcome.
If the final outcome is (always) the GVA outcome, then responding truthfully to the auctioneer is
an ex-post equilibrium. This flexible query-based approach is generally referred to as preference
elicitation (Conen and Sandholm, 2001). Common queries include value queries (“What is your
valuation for bundle S?”) and demand queries (“Given these prices, which bundle(s) do you prefer?”).
Demand queries can use either item prices, where the price for a bundle is the sum of the prices
of the individual items, or bundle prices, where each bundle has a separate price (as we saw in
the iBundle auction above). For some restricted classes of valuation functions, it has been shown
that a polynomial number of queries suffices to learn a bidder’s valuation function completely (if
we assume that the valuation function lies in that class). For example, a valuation function can be
elicited using a number of (bundle-price) demand queries that is polynomial in the length of the
function’s XOR-representation (Lahaie and Parkes, 2004), though in general an exponential number
of queries is required if only item prices (and value queries) are allowed (Blum et al., 2004). Various
other results have been obtained on classes of valuation functions that can(not) be elicited using a
polynomial number of queries (Zinkevich et al., 2003; Santi et al., 2004; Blumrosen and Nisan, 2005;
Conitzer et al., 2005; Lahaie et al., 2005).

Without any restrictions on the valuation functions, negative results are known: for example, solv-
ing the winner determination problem in general requires an exponential amount of communication,
regardless of what types of query are used (Nisan and Segal, 2005).

16.13 Additional Topics

In this final section, we mention a few additional topics and provide some references for the interested
reader.

There are several important variants of (combinatorial) auctions, including (combinatorial)
reverse auctions and (combinatorial) exchanges. In a reverse auction, the auctioneer seeks to buy
one or more items, and the bidders submit bids indicating how much they need to be compensated
to provide the items. In an exchange, bidders can act as buyers as well as sellers. While these
variants display some significant similarities to regular (forward) auctions, there are also important
differences (Sandholm et al., 2002).

Quite a few researchers have tried to generalize Myerson’s expected-revenue maximizing auction
to combinatorial auctions; this turns out to be surprisingly difficult (Avery and Hendershott, 2000;
Armstrong, 2000; Conitzer and Sandholm, 2004; Likhodedov and Sandholm, 2004, 2005). A different
take on this problem is to design competitive auctions, which obtain a revenue that is within a factor
of the revenue that can be obtained with a single sale price (Goldberg et al., 2006).

A final important direction is the design of online auctions. “Online” here does not refer to
Internet auctions; rather, it refers to settings in which the bidders arrive at and depart from the
auction over time, and allocation decisions must be made before all the bidders have arrived. (More
detail can be found in, for example, Lavi and Nisan, 2000; Awerbuch et al., 2003; Blum et al., 2003;
Friedman and Parkes, 2003; Kleinberg and Leighton, 2003; Hajiaghayi et al., 2004, 2005; Bredin and
Parkes, 2005; Blum et al., 2006; Babaioff et al., 2007; Hajiaghayi et al., 2007; Parkes and Duong, 2007.)
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