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Abstract

Much recent work in the AI community concerns algorithms for computing optimal mixed strategies
to commit to, as well as the deployment of such algorithms in real security applications. Another possi-
bility is to commit not to play certain actions. If only one player makes such a commitment, then this is
generally less powerful than completely committing to a single mixed strategy. However, if players can
alternatingly commit not to play certain actions and thereby iteratively reduce their strategy spaces, then
desirable outcomes can be obtained that would not have been possible with just a single player com-
mitting to a mixed strategy. We refer to such a setting as a disarmament game. In this paper, we study
disarmament for two-player normal-form games. We show that deciding whether an outcome can be
obtained with disarmament is NP-complete (even for a fixed number of rounds), if only pure strategies
can be removed. On the other hand, for the case where mixed strategies can be removed, we provide a
folk theorem that shows that all desirable utility profiles can be obtained, and give an efficient algorithm
for (approximately) obtaining them.

1 Introduction

Disarmament is often a desired objective in international relations, but it is not always easy to reach the
end goal. A key problem is that by removing military assets, a country may leave itself vulnerable to
attack if the other country does not disarm. Therefore, disarmament typically happens in a sequence of
carefully designed stages, so that neither country is ever too exposed at any stage. Besides reductions in
military assets, we can also take disarmament as a metaphor for other strategic situations. For example.
two companies may each hold a portfolio of patents that could be used to inflict significant damage on the
other company, and the companies may wish to make a sequence of legal agreements to reduce the risk on
both sides. In these situations, once one of the players deviates from the disarmament protocol, the possible
actions each side has remaining can strategically interact in complex ways to determine the final payoffs
realized.

In order to achieve a high level of generality, in this paper, we consider disarmament in general two-
player normal-form games, as illustrated by the following example.

Example 1 (Extended Prisoner’s Dilemma). Consider the following modified version of the prisoner’s
dilemma.

Cooperate Defect Painful
Cooperate 3,3 0,4 0.1,0

Defect 4,0 1,1 0.5,0.5
Painful 0,0.1 0.5,0.5 0,0

Table 1: Payoff matrix of Extended Prisoner’s Dilemma

1



Strategy Defect strictly dominates strategies Cooperate and Painful for both players. Thus, the only
Nash (or even correlated, or coarse correlated) equilibrium of this game is (Defect, Defect), with utilities
(1, 1). If a single player can commit, this does not help, because the other player would still play Defect.
On the other hand, suppose both players can alternatingly remove their strategies and act according to the
following protocol. In the first round, Row removes Defect. Since Defect is still Column’s dominant strategy,
the only Nash equilibrium of the reduced game is (Painful, Defect) with utilities (0.5, 0.5). Next, Column
removes his strategy Defect. In the remaining game, Cooperate has become a dominant strategy, resulting
in utilities (3, 3). At each step in this protocol of removing strategies, deviating from the protocol and
playing the game remaining at that point is dominated by (3, 3). Thus, both players are best off following
the disarmament protocol.

In this paper, we first formalize the idea of a disarmament game, as played on top of a game represented
in normal form (as illustrated in Example 1). We introduce the computational problem DISARM, which
asks whether there is an equilibrium of the disarmament game leading to some desired specified outcome,
and a variantK-DISARM in which there are onlyK rounds of disarmament. We show both problems to be
NP-complete. We then introduce a mixed disarmament variant that allows the removal of mixed strategies,
by upper-bounding the probabilities on individual pure strategies. Here our results are positive: we show a
type of folk theorem holds (without repetition of the game!), namely that for any feasible utilities that exceed
players’ security levels, there is an equilibrium achieving at least those utilities. Our proof is constructive,
and in fact shows that we can approximately obtain the desired result in approximate equilibrium using only
few rounds of disarmament.

2 Related Work

Our work is related to the literature on commitment in game theory, dating back at least to early work by von
Stackelberg. In our work, players alternatingly commit to not play something. Without such alternation,
i.e., if only one player can commit not to play something before the game is played, such commitment can
be more powerful than committing to a pure strategy. For example, consider the game in Table 2.

Left Center Right
Top 0,0 4,0 0,4

Middle 0,0 0,4 4,0
Bottom 1,1 5,0 5,0

Table 2: Example where the row player (player 0) wants to commit to not play Bottom.

Bottom is a dominant strategy for the row player, so by iterated dominance the players get utilities 1, 1.
After committing to not play Bottom, a matching-pennies-type mixed equilibrium results with expected
utilities 2, 2. In contrast, committing to play a pure strategy (such as Top) does not help. On the other hand,
by committing to play a mixed strategy one can do as well as by committing not to play Bottom, namely by
committing to (1/2, 1/2, 0). This idea generalizes to show that committing to a mixed strategy is always at
least as powerful as committing not to play something: one can always commit directly to whatever mixed
strategy one would play in the equilibrium that results after committing not to play something. This is no
longer true, though, if players can alternatingly disarm: in the game in Table 1, committing to a mixed
strategy at the outset will give the row player at most 1.

Game-theoretic commitment, especially to mixed strategies, has received significant recent attention
in the multiagent systems literature, in large part due to their application in various security domains [9].
In a two-player normal-form game, an optimal mixed strategy to commit to can be found in polynomial
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time [4, 11], though there are hardness results for Bayesian and extensive-form games [4, 7, 6, 2]. There is
also significant interest in other types of action one can take before the game in order to make the outcome
more favorable. This includes promising payments if a certain outcome is reached [8, 1, 5] or getting to
choose from multiple possible utilities in the entries [3]. Also, mechanism design involves a special player,
the designer, committing to the mechanism beforehand. But in all these cases, there is only one commitment
step before the game is played, unlike in this paper.

3 Definitions

We define disarmament games based on the normal-form representation, as in the example provided in the
introduction. We restrict attention to two-player games throughout. A normal-form game is defined by
G = 〈S0, S1, u0, u1〉, such that for each player b, his set of pure strategies is Sb and his utility function is
ub : S0 × S1 → R, where ub(s0, s1) denotes player b’s utility when player 0 plays s0 and player 1 plays s1.
Moreover, for T0 ⊆ S0 and T1 ⊆ S1, the game induced by T0 and T1 is the two-player normal-form game
GT0,T1 = 〈T0, T1, u0, u1〉, where u0 and u1 are restricted to T0 × T1. As usual, we use −b to denote the
player other than b. For convenience, the utility for each player is normalized into the interval [0, 1].

We now define the disarmament gameGD(G) on top of this normal-form game. This disarmament game
consists of a disarmament stage during which players alternatingly remove nonempty sets of strategies from
S0 and S1, and a game play stage—triggered when a player removes nothing—during which they play
whatever normal-form game remains. Note that many disarmament sequences can result in the same state
[T0, T1, b] (where b is the player to move); rather than duplicate this state many times in the game tree, we
represent the tree as a directed acyclic graph (DAG) in which each state occurs only once. Note the game
is one of perfect information, except that the players move simultaneously in the game play stage. We now
present the extensive form of the game precisely.1

Definition 3.1 (Disarmament Game). The disarmament game GD(G) is defined as an extensive-form game
as follows.

• The set of disarmament actions A: {X0 | ∅ 6= X0 ( S0} ∪ {X1 | ∅ 6= X1 ( S1} ∪ {Play}, where Xb

denotes the set of strategies to keep and Play denotes ending the disarmament stage;

• The set of non-terminal nodes H: {[T0, T1, b] | ∅ 6= T0 ⊆ S0, ∅ 6= T1 ⊆ S1, b ∈ {0, 1}};

• The set of terminal nodes Z: {[T0, T1] | ∅ 6= T0 ⊆ S0, ∅ 6= T1 ⊆ S1};

• The player selection function ρ : H → {0, 1}: ρ([T0, T1, b]) = b;

• The available-actions function χ : H → 2A, where χ([T0, T1, b]) = {Xb | ∅ 6= Xb ( Tb} ∪ {Play};

• The successor function γ : H ×A→ H ∪ Z:

– γ([T0, T1, 0], X0) = [X0, T1, 1];

– γ([T0, T1, 1], X1) = [T0, X1, 0];

– γ([T0, T1, b],Play) = [T0, T1];

• The root of the game is root = [S0, S1, 0].

1Formally, what we present is not exactly the extensive form because (1) we use a DAG rather than a tree and (2) the terminal
nodes are associated with the game to be played in the game-play stage rather than directly with utilities, but it is straightforward
to extract the formal extensive form from this.
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In the terminal nodes z = [T0, T1], players 0 and 1 play the normal-form game GT0,T1 , resulting in their
final utilities.

Definition 3.2 (Strategy in GD). A strategy σb = (α, β) for GD consists of disarmament strategy α ∈∏
h∈H | ρ(h)=b χ(h) for non-terminal nodes and play strategy β ∈

∏
z=[T0,T1]∈Z ∆(Tb) for terminal nodes

(where ∆(Tb) is the set of distributions over Tb).

Note we restrict our attention to deterministic behavior during the (perfect-information) disarmament
stage.

Definition 3.3 (On-path history & outcome). For a strategy profile (σ0, σ1) with σ0 = (α0, β0) and σ1 =
(α1, β1), denote the on-path history by P = (h0 = root, h1, · · · , hK , hK+1 = z = [T0, T1]) where for all
i, γ(hi, αρ(hi)(hi)) = hi+1. The outcome of the strategy profile (σ0, σ1) is (β0(z), β1(z)).

We say an on-path history has length K if it contains K non-terminal nodes, excluding the root. In a
slight abuse of notation, let ub(o) be player b’s (expected) utility for outcome o. A strategy profile (σ0, σ1)
forms a Nash equilibrium if and only if no player can increase his utility by deviating to another strategy.

We consider the following computational problem:

Definition 3.4 (DISARM problem). In DISARM, given a disarmament game GD and an outcome o∗ =
(β∗0 , β

∗
1), the objective is to determine whether there exists a Nash equilibrium (σ∗0, σ

∗
1) such that the outcome

is o∗.

We also consider a variation of DISARM problem, called K-DISARM.

Definition 3.5 (K-DISARM problem). In K-DISARM, given a disarmament game GD and an outcome
o∗ = (β∗0 , β

∗
1), the objective is to determine whether there exists a Nash equilibrium (σ∗0, σ

∗
1) such that the

outcome is o∗ and the length of its induced on-path history is at most K.

4 Computational Complexity

Since the number of game states is exponential, an efficient algorithm cannot output the entire strategy
profile under the standard representation that lists each player’s action at every game state. We next show
that a restricted class of strategies that can be represented efficiently suffices. These strategies directly
specify the on-path behavior and require that minimax strategies are used off-path.

4.1 On-path Histories are Sufficient

Recall that the on-path history of a profile of strategies in an extensive-form game consists of the actions
that the players take when nobody deviates. For every non-terminal node in the on-path history, one can
define the security level for each player.

Definition 4.1 (Security level). The security level secb for player b in a two-player normal-form game
G = 〈T0, T1, u0, u1〉 is the utility that player b can guarantee himself no matter how the other player plays.
Formally,

secb(GT0,T1) = max
βb∈∆(Tb)

min
β−b∈∆(T−b)

ub(βb, β−b)

We are going to show that the security level is the essential quantity to determine whether an on-path
history can be induced by a Nash equilibrium strategy profile or not. In order for a specific outcome to be
reached in Nash equilibrium, every player must have strong enough incentive to follow the on-path history,
rather than deviating, at any point in the on-path history. To minimize incentive to deviate, we may assume
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that if someone deviates, the other player will act to minimize the deviator’s utility. This does not prevent
the latter player’s strategy from being a best response, because such punishment will not occur on the path
of play. The most effective punishment will be to bring the deviator down to his security level, which is
possible by the minimax theorem [10].

Lemma 4.1. P is an on-path history induced by a Nash equilibrium strategy profile with outcome o if and
only if for each non-terminal node [T0, T1, b] ∈ P , secb(GT0,T1) ≤ ub(o).

Proof. “⇒”: If there exists a non-terminal node h = [T0, T1, b] ∈ P such that secb(GT0,T1) > ub(o), then
at the node h, player b can deviate to choose Play and play a strategy in

arg max
βb∈∆(Tb)

min
β−b∈∆(T−b)

ub(βb, β−b)

in the induced game to guarantee himself a utility at least secb(GT0,T1), which is larger than ub(o).
“⇐”: If for each non-terminal node h = [T0, T1, b] ∈ P , secb(GT0,T1) ≤ ub(o), consider a strategy

profile that specifies to:

• For nodes in the on-path history, choose the action to follow the on-path history; and for every non-
terminal node not in the on-path history, choose Play;

• For an off-path terminal node z = [Xb, T−b] with ∅ 6= Xb ⊆ Tb (where this node was reached because
b deviated from the path), player −b plays arg minβ−b∈∆(T−b) maxβb∈∆(Xb) ub(βb, β−b).

We claim that such a strategy profile forms a Nash equilibrium with outcome o. Suppose, for the
sake of contradiction, that player b benefits from deviating to another strategy resulting in induced on-path
history P ′. Let the longest common prefix of P and P ′ be Ppre, ending with h∗ = [T0, T1, b]. Thus, player b
deviates at h∗. Then, the disarmament stage ends in at most one round after h∗, since either player b deviates
to choose Play, or player b chooses a different subset Xb to keep but player −b chooses Play immediately
after that. Therefore, the induced game is GXb,T−b

with ∅ 6= Xb ⊆ Tb, and −b will act to minimize b’s
utility. By the minimax theorem,

min
β−b∈∆(T−b)

max
βb∈∆(Xb)

ub(βb, β−b) = max
βb∈∆(Xb)

min
β−b∈∆(T−b)

ub(βb, β−b)

≤ max
βb∈∆(Tb)

min
β−b∈∆(T−b)

ub(βb, β−b) ≤ ub(o)

This proves that we can restrict our attention to strategy profiles that explicitly specify on-path play
and implicitly assume immediate Play and minimax punishment of deviators off-path. Moreover, note that
the length of an on-path history is O(|S0| + |S1|) and the security level can be computed via a linear
programming. Hence, an on-path history serves as a polynomial-length, polynomially verifiable certificate
for the DISARM (or K-DISARM) problem, which is hence in NP.

4.2 Complexity of K-DISARM and DISARM

In an on-path history with length K, the total number of turns in which a player chooses an action other
than Play is at most K. For K ≤ 2, K-DISARM is in P since there is a unique on-path history leading
to the node o∗, namely the one where each player removes all the strategies he needs to remove in his one
(non-Play) disarmament turn. We now show that 3-DISARM is NP-complete by a reduction from the
BALANCED-VERTEX-COVER problem.
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Definition 4.2. In VERTEX-COVER, the objective is to check in graph (V,E) whether there exists a
subset of the vertices V ′ ⊆ V , with |V ′| = L, such that every edge e ∈ E has at least one of its endpoints
in V ′. BALANCED-VERTEX-COVER is the special case of VERTEX-COVER in which L = |V |/2.

BALANCED-VERTEX-COVER is NP-complete via a reduction from VERTEX-COVER [4].

Theorem 4.1. 3-DISARM is NP-complete.

Proof. Given an instance of BALANCED-VERTEX-COVER with |V | = n and |E| = m, we construct a
two-player normal-form game G(V,E) = 〈S0, S1, u0, u1〉, in which S0 = {`} ∪ V and S1 = {`} ∪ V ∪E.
The utilities are defined as follows:

• U0(`, `) = U1(`, `) = 1− 2
n ;

• U0(v, `) = 2 for all v ∈ V ;

• U0(v, v′) = 1 for all v, v′ ∈ V and v 6= v′;

• U1(`, e) = 2 for all e ∈ E;

• U1(v, e) = 1 for all e ∈ E, v ∈ V and v 6∈ e;

and unspecified utilities are simply 0. The desired outcome o∗ is (`, `). See Table 3 for an example.

` 1 2 3 (1, 2) (2, 3) (1, 3)

` 1− 2
n , 1−

2
n 0, 0 0, 0 0, 0 0, 2 0, 2 0, 2

1 2, 0 0, 0 1, 0 1, 0 0, 0 0, 1 0, 0

2 2, 0 1, 0 0, 0 1, 0 0, 0 0, 0 0, 1

3 2, 0 1, 0 1, 0 0, 0 0, 1 0, 0 0, 0

Table 3: G(V,E) for V = {1, 2, 3}, E = {(1, 2), (2, 3), (1, 3)}.

If there exists a BALANCED-VERTEX-COVER with vertices V ∗ then the on-path history with h1 =
[{`} ∪ V ∗, S1, 1], h2 = [{`} ∪ V ∗, {`} ∪ V, 0] and h3 = [{`}, {`} ∪ V, 1] is induced by a Nash equilibrium
strategy profile with outcome o∗ by Lemma 4.1. This is because if player 0 deviates in the first round, player
1 can punish player 0 by playing any strategy e ∈ E; if player 1 deviates in the second round, player 0 can
punish player 1 by playing uniformly from V ∗, which will result in a utility of 0 for player 1 at least 2/n of
the time because V ∗ is a vertex cover of size n/2; and if player 0 deviates in the third round, player 1 can
punish player 0 by playing uniformly from V ∗, which will result in a utility of 0 for player 0 at least 2/n of
the time.

For the other direction, suppose there exists an on-path history leading to o∗ induced by a Nash equilib-
rium strategy profile. Note that (`, `) cannot be a Nash equilibrium in the induced game if for the terminal
node z = [T0, T1], V ∩ T0 6= ∅ or E ∩ T1 6= ∅. Therefore, we have T0 = {`} and T1 ⊆ {`} ∪ V . In
3-DISARM, there are at most 4 different induced games in the on-path history. These must be GS0,S1 ,
GS′0,S1

, GS′0,T1 and G{`},T1 , where S′0 = {`} ∪ V ′ for some V ′. According to Lemma 4.1, we must have
sec1(GS′0,S1

) ≤ 1− 2
n and sec0(GS′0,T1) ≤ 1− 2

n .
In GS′0,S1

, since U1(v, e) = 1 for all e ∈ E, v ∈ V and v 6∈ e, if there exists an e′ ∈ E uncovered by
V ′, then player 1 can deviate to Play and then play strategy e′ to guarantee himself utility 1. Thus, V ′ must
be a vertex cover. As for GS′0,T1 , if |V ′| > n/2, then player 0 can play uniformly among the strategies in
V ′ to guarantee himself utility 1 − 1

|V ′| > 1 − 2
n . Thus, |V ′| cannot be larger than n/2. Therefore, V ′ is a

solution to the BALANCED-VERTEX-COVER problem.
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The fact only 3 rounds are available is essential for the reduction above to work: if there are more rounds,
disarmament may be possible even without a balanced vertex cover, by alternatingly removing vertices for
player 0 and edges for player 1 while ensuring that the remaining vertices for player 0 form a vertex cover
for the remaining edges only. However, with a number of modifications to the reduction, we can prove that
any successful disarmament of the modified game requires a balanced vertex cover for all the edges at some
point in the process.

Theorem 4.2. DISARM is NP-complete.

Proof. Given an instance of BALANCED-VERTEX-COVER with V = [n], and denoting Vn2 = {vi,j | i, j ∈
[n]}, Xn2 = {xi,j | i, j ∈ [n]}, Yn2 = {yi,j | i, j ∈ [n]} and En2 = {ei,j | i, j ∈ [n]}, we con-
struct a two-player normal-form game G(V,E) = 〈S0, S1, u0, u1〉, in which S0 = {`, ∗} ∪ Vn2 ∪ En2

and S1 = {`} ∪Xn2 ∪ Yn2 ∪En2 . Let constants δ = 1/(2n2) and γ = 2n− 1. We define the utility matrix
as follows:

For player 0:

• U0(`, `) = 1− δ;

• U0(ei,j , `) = n3, for all i, j ∈ [n];

• U0(vi,j , xk,l) = 1, for all (i, j) 6= (k, l);

• U0(vi,j , yk,l) = 1, for all i, j, k, l ∈ [n];

• U0(vi,j , ei,j) = n2 − 1, for all i, j ∈ [n];

• U0(ei,j , xk,l) = 1, for all (i, j) ∈ E, k, l ∈ [n];

• U0(ei,j , yk,l) = 1, for all (i, j) ∈ E and (k 6= l);

• U0(ei,j , yk,k) = 1, for all (i, j) ∈ E and (k 6= i) and (k 6= j);

• U0(∗, `) = n3, U0(∗, xi,j) = n3, U0(∗, yi,j) = n3, for all i, j ∈ [n];

For player 1:

• U1(`, `) = 1;

• U1(`, s) = n3, for all s 6= `;

• U1(vi,j , xi,j) = U2(ei,j , xi,j) = α, for all i, j ∈ [n];

• U1(vi,j , yi,j) = U2(ei,j , yi,j) = β, for all i, j ∈ [n];

• U1(vi,j , ek,l) = n3, for all i, j, k, l ∈ [n], (i, j) 6= (k, l);

• U1(vi,j , ek,l) = n3 − 1, for all i, j, k, l ∈ [n], (i, j) = (k, l);

• U1(ei,j , ek,l) = 1 + 1/n2, for all (i, j) 6= (k, l);

where α = n2

1+δ , β = n2

1−γδ and unspecified utilities are simply 0. The desired outcome o∗ is (`, `). See
Table 4 for an example. In this game, we assume player 1 moves first in the disarmament process.
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` x1,1 x1,2 x2,1 x2,2 y1,1 y1,2 y2,1 y2,2 e1,1 e1,2 e2,1 e2,2

` 1− δ, 1 0, n3 0, n3 0, n3 0, n3 0, n3 0, n3 0, n3 0, n3 0, n3 0, n3 0, n3 0, n3

v1,1 0, 0 0, α 1, 0 1, 0 1, 0 1, β 1, 0 1, 0 1, 0 n2 − 1, n3 − 1 0, n3 0, n3 0, n3

v1,2 0, 0 1, 0 0, α 1, 0 1, 0 1, 0 1, β 1, 0 1, 0 0, n3 n2 − 1, n3 − 1 0, n3 0, n3

v2,1 0, 0 1, 0 1, 0 0, α 1, 0 1, 0 1, 0 1, β 1, 0 0, n3 0, n3 n2 − 1, n3 − 1 0, n3

v2,2 0, 0 1, 0 1, 0 1, 0 0, α 1, 0 1, 0 1, 0 1, β 0, n3 0, n3 0, n3 n2 − 1, n3 − 1

e1,1 n3, 0 1, α 1, 0 1, 0 1, 0 0, β 0, 0 0, 0 0, 0 0, 0 1, 1 + 1/n2 1, 1 + 1/n2 1, 1 + 1/n2

e1,2 n3, 0 1, 0 1, α 1, 0 1, 0 0, 0 1, β 1, 0 0, 0 1, 1 + 1/n2 0, 0 1, 1 + 1/n2 1, 1 + 1/n2

e2,1 n3, 0 1, 0 1, 0 1, α 1, 0 0, 0 1, 0 1, β 0, 0 1, 1 + 1/n2 1, 1 + 1/n2 0, 0 1, 1 + 1/n2

e2,2 n3, 0 1, 0 1, 0 1, 0 1, α 0, 0 0, 0 0, 0 0, β 1, 1 + 1/n2 1, 1 + 1/n2 1, 1 + 1/n2 0, 0

∗ n3, 0 n3, 0 n3, 0 n3, 0 n3, 0 n3, 0 n3, 0 n3, 0 n3, 0 0, 0 0, 0 0, 0 0, 0

Table 4: G(V,E) for V = {1, 2}, E = {(1, 2)}.

Lemma 4.2. If there exists a BALANCED-VERTEX-COVER with vertices V ∗ then there exists an on-path
history induced by a Nash equilibrium strategy profile with outcome o∗.

Proof. For convenience, let YV ∗ = {yi,i | i ∈ V ∗}. Consider the following on-path history:

h1 = [S1, {`} ∪Xn2 ∪ YV ∗ ∪ En2 , 0]

h2 = [{`} ∪ Vn2 ∪ En2 , {`} ∪Xn2 ∪ YV ∗ ∪ En2 , 1]

h3 = [{`} ∪ Vn2 ∪ En2 , {`} ∪Xn2 ∪ YV ∗ , 0]

h4 = [{`} ∪ Vn2 , {`} ∪Xn2 ∪ YV ∗ , 1]

h5 = [{`} ∪ Vn2 , {`}, 0]

We show that the above on-path history is induced by a Nash equilibrium strategy profile according to
Lemma 4.1. For h1, player 1 can play uniformly among strategies in En2 to give player 0 at most 1 − 1

n2 .
For h2, notice that

1

α
· (n2 − n

2
) +

1

β
· n

2
= 1.

Player 0 can play ei,j with probability 1/α if yi,j 6∈ YV ∗ and with probability 1/β if yi,j ∈ YV ∗ , which
gives player 1 at most 1. For h3, player 1 can play uniformly among strategies in Xn2 and YV ∗ . Since V ∗

is a BALANCED-VERTEX-COVER, for each ei,j ∈ En2 , there exists at least one yk,k ∈ YV ∗ such that
U0(ei,j , yk,k) = 0. Therefore, player 1’s mixed strategy gives player 0 at most 1− δ.

For h4, player 0 can play vi,j with probability 1/α if yi,j 6∈ YV ∗ and with probability 1/β if yi,j ∈ YV ∗ ,
which gives player 1 at most 1. Finally, in h5, the unique Nash equilibrium is exactly (`, `).

Lemma 4.3. If there exists an on-path history P induced by a Nash equilibrium strategy profile with outcome
o∗, then we can construct a BALANCED-VERTEX-COVER from P .

Proof. Suppose P = [h0, h1, h2, · · · , hK , hK+1 = z = [T0, T1]]. For convenience, let hi = [T i0, T
i
1]. We

now prove a series of claims about P .

Claim 1. TK−1
0 ∩ Vn2 6= ∅.

Proof. Note that (`, `) can be a Nash equilibrium in the induced game only if for the terminal node z =
[T0, T1], T0 ⊆ {`} ∪ Vn2 and T1 = {`}. Moreover, if z = [{`}, {`}], then it must be player 0 that performs
the last disarmament and we have TK−1

0 ∩ Vn2 6= ∅. Therefore, we have TK−1
0 ∩ Vn2 6= ∅.

Claim 2. Assume p∗ = sup{k | ∗ ∈ T k0 }. Then, we have En2 ⊆ T p
∗

1 .
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Proof. If En2 ∩ T p
∗

1 = ∅, then in hp∗ , player 0 can simply play ∗ to guarantee himself n3. Therefore,
En2 ∩ T p

∗

1 6= ∅. Suppose En2 ∩ T p
∗

1 ⊂ En2 . Since TK−1
0 ∩ Vn2 6= ∅ according to Claim 1, we have

T p
∗

0 ∩ Vn2 6= ∅. Let V ′ = T p
∗

0 ∩ Vn2 and |V ′| ≤ n2 − 1. Then, player 0 can place probability 1/n3

for strategy ∗ and uniformly distribute the remaining probability on V ′, which guarantees himself at least
1−1/n3

|V ′| · (n
2 − 1) ≥ 1− 1/n3.

Claim 3. For each ei,j ∈ En2 , assume k∗ = sup{k | ei,j ∈ T k1 }. Then, we have ei,j ∈ T k
∗

0 .

Proof. According to Claim 2, k∗ > p∗. Therefore, ∗ 6∈ T k
∗

0 . For the sake of contradiction, suppose
ei,j 6∈ T k

∗
0 . Then in hk∗ , player 1 can simply play ei,j to guarantee himself at least 1 + 1/n2.

Combining Claim 2 and 3, we have En2 ⊆ T p
∗

0 . Moreover, let e∗i,j ∈ En2 with the maximum
sup{k | e∗i,j ∈ T k0 } and let q∗ = sup{k | e∗i,j ∈ T k0 }. Combining Claim 1, 2 and 3, we can get

T q
∗

1 ⊆ {`} ∪Xn2 ∪ Yn2 and T q
∗

0 ⊆ {`} ∪ Vn2 .

Claim 4. Vn2 ⊆ T q
∗

0 and Xn2 ⊆ T q
∗

1 .

Proof. For the sake of contradiction, suppose xk,l 6∈ T q
∗

1 . Then, in hq∗ , according to Claim 1, Vn2∩T q
∗

0 6= ∅.
If vk,l ∈ T q

∗

0 , then player 0 can place probability 1/n3 for strategy e∗i,j and place 1− 1/n3 for strategy vk,l
to guarantee himself at least 1− 1/n3. Therefore, vk,l ∈ T q

∗

0 only if xk,l ∈ T q
∗

1 . However, player 1 can play
uniformly among the strategies inXn2∩T q

∗

1 to guarantee himself at least α/|Xn2∩T q
∗

1 | ≥ α/(n2−1) > 1.
Thus, Xn2 ⊆ T q

∗

1 .
Based on Xn2 ⊆ T q

∗

1 , if Vn2 6⊆ T q
∗

0 . Let X ′ = {xi,j ∈ Xn2 | vi,j ∈ T q
∗

0 } and |X ′| ≤ n2 − 1. Player
1 can play uniformly among the strategies in X ′ to guarantee himself at least α/|X ′| ≥ α/(n2 − 1) > 1.
Thus, Vn2 ⊆ T q

∗

0 .

Claim 5. For any q∗ ≤ i < p∗, |Yn2 ∩ T i1| ≤ n/2.

Proof. From previous claims, we have ∗ 6∈ T i0, Vn2 ⊆ T i0 and Xn2 ⊆ T i1. For the sake of contradiction,
suppose |Yn2 ∩ T i1| = g > n/2. Notice that

1

α
(n2 − g) +

1

β
g < 1

Let ε = (1 − 1
α(n2 − g) − 1

β g)/n2. Consider that player 1 places probability 1/α + ε on strategy xk,l for
yk,l 6∈ Yn2 ∩T i1 and places 1/β+ε on strategy yk,l for yk,l ∈ Yn2 ∩T i1. Then, player 1 can guarantee himself
more than 1. Hence, we obtain a contradiction.

Claim 6. Let V ∗ = {k | (k, k) ∈ Yn2 ∩ T p
∗

1 }. Then, V ∗ must be a vertex cover.

Proof. For the sake of contradiction, suppose there exists an edge (i, j) ∈ E that cannot be covered by V ∗.
Let l∗ = sup{k | ei,j ∈ T k0 }; from Claim 2 and 3, l∗ must be larger than p∗. We have ei,j 6∈ T l

∗
1 according

to Claim 3. Then, in hl∗ , player 0 can simply play ei,j to guarantee himself at least 1.

Therefore, given an on-path history P induced by a Nash equilibrium strategy profile with outcome o∗,
one can find p∗ = sup{k | ∗ ∈ T k0 } and let V ∗ = {k | (k, k) ∈ Yn2 ∩ T p

∗

1 }, which must be a vertex cover
and according to Claim 5, |V ∗| is at most n/2,

Combining Lemma 4.2 and 4.3, we can conclude that DISARM is NP-complete.
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4.3 MILP for K-DISARM and DISARM

Although K-DISARM and DISARM are NP-complete, they can be solved via a mixed integer linear
program (MILP). For convenience, suppose S0 = [n] and S1 = [m]. To formulate a MILP for K-DISARM
with input o = (β∗0 , β

∗
1), we introduce binary variables xki (and ykj ) for 0 ≤ k ≤ K, such that strategy i ∈ S0

(j ∈ S1) is not yet removed at step k if and only if xki = 1 (yki = 1). Let β∗b (i) be the probability on strategy
i in mixed strategy β∗b . In order to represent a valid disarmament leading to the outcome o, these binary
variables must satisfy the following constraints:

x2k+1
i ≤ x2k

i , x
2k+2
i = x2k+1

i ∀i, k
y2k+2
j ≤ y2k+1

j , y2k+1
j = y2k

j ∀i, k
xki = 1, ykj = 1 ∀β∗0(i) > 0, β∗1(j) > 0, k

x0
i = 1, y0

j = 1 ∀i, j

Moreover, according to the minimax theorem,

secb(GT0,T1) = max
βb∈∆(Tb)

min
β−b∈∆(T−b)

ub(βb, β−b) = min
β−b∈∆(T−b)

max
βb∈∆(Tb)

ub(βb, β−b)

From Lemma 4.1, we require secb(GT0,T1) ≤ ub(o), which is equivalent to finding a β−b ∈ ∆(T−b) such
that for all pure strategies j ∈ Tb, ub(j, β−b) ≤ ub(o). Therefore, we introduce vector variables pk to
represent β−b at step k. Recall that the utility is normalized into [0, 1], thus, we can use 1− xki (or 1− ykj )
to make the constraint void under the right conditions.∑

j p
2k
j u0(i, j) ≤ u0(o) + 1− x2k

i ∀i, k∑
i p

2k+1
i u1(i, j) ≤ u1(o) + 1− y2k+1

j ∀j, k
p2k
j ≤ y2k

j , p
2k+1
i ≤ x2k+1

i ∀i, j

Finally, we need to check (β∗0 , β
∗
1) forms a Nash equilibrium for the game stage. That is∑

j β
∗
1(j)u0(i, j) = u0(o) ∀β∗0(i) > 0∑

i β
∗
0(i)u1(i, j) = u1(o) ∀β∗1(j) > 0∑

j β
∗
1(j)u0(i, j) ≤ u0(o) + 1− xKi ∀β∗0(i) = 0∑

i β
∗
0(i)u1(i, j) ≤ u1(o) + 1− yKj ∀β∗1(j) = 0

Therefore, combining all the above constraints, we obtain a MILP for K-DISARM, and an instance of K-
DISARM is true if and only its corresponding MILP has a feasible solution. As for DISARM, notice that
the maximum number rounds of disarmament is bounded by n+m. Therefore, we can use K-DISARM to
solve DISARM by setting K = n+m.

5 Mixed Disarmament

So far, we have considered only removing pure strategies. But pure disarmament has its limitations. Con-
sider the standard prisoner’s dilemma:

If either player removes his Defect strategy, the other player has no motivation to do the same: he would
prefer to play Defect. The former player, anticipating this, would not remove Defect, either.

However, now suppose that the players are able to remove mixed strategies. It turns out under this
setting, there is a way to get to cooperation.

10



C D
C 3,3 0,4
D 4,0 1,1

Table 5: Payoff matrix for the prisoner’s dilemma

Example 2. Consider the prisoner’s dilemma as presented above, and suppose players can reduce their
strategy spaces by limiting the maximum probability they can put on D. No matter how players reduce their
strategy space, it is always a dominant strategy to put as much probability on Defect as possible. Therefore,
in any sequence of disarmament steps, the player who should take the last disarmament step that reduces
the probability he can put on D will have no incentive to do so. As a result it is impossible to reduce the
probability that either player puts on D at all.

This is reminiscent of how in a finitely repeated prisoner’s dilemma, cooperation cannot be attained.
But the same is not true for infinitely repeated prisoner’s dilemma, per the folk theorem. It turns out we
can make a similar move here. Suppose that after each disarmament step, we flip a coin that comes up
Heads with probability δ. If it comes up Heads, the players stop disarming and play the game. Otherwise,
disarmament continues. In this way, neither player ever knows that she is about to take the last disarmament
step.

Specifically, consider the following procedure. In each disarmament step, each player reduces the max-
imum probability he can put on D by a factor k, so that once each player has taken t disarmament steps,
he can put at most probability kt on D. Once the coin comes up Heads, of course both players will put
maximum probability onD. For player 0, the expected utility of continuing to follow the protocol, given that
both players have already reduced to kt, is

∞∑
t′=0

(1− δ)2t′δu0(kt+1+t′ , kt+t
′
) +

∞∑
t′=0

(1− δ)2t′+1δu0(kt+1+t′ , kt+1+t′)

where u0(p, q) = 1pq + 0(1 − p)q + 4p(1 − q) + 3(1 − p)(1 − q) is the utility to player 0 when the
players play the game with limits p and q on D, respectively. On the other hand, if player 0 deviates at this
point and is immediately punished by player 1 choosing Play, then 0 obtains utility at most u0(kt, kt). In
order for player 0 to be best off following the protocol, the former needs to be no less than the latter; after
simplification, we obtain (3δ − 2)(k − 1) ≥ 0. Since k < 1, we must have δ ≤ 2

3 . Similarly, for player
1, after simplification, we have (k − 1)(k − 1

3(1−δ)) ≤ 0. Since δ ≤ 2
3 , we have 1 − δ ≥ 1

3 . Therefore,
1

3(1−δ) ≤ k < 1.

To avoid dealing with nasty expressions involving δ in what follows, we observe that in the limit as
δ → 0, the utility for following the protocol converges to 3, which is the utility that would be obtained after
“infinitely many rounds of disarmament.” We can use this fiction—that following the protocol results in
playing the game after infinitely many rounds of disarmament—to facilitate the analysis. Specifically, in
this infinite-length model, all that is needed to ensure that nobody deviates is that the utility for deviating
never exceeds 3. (In Lemma 5.1, we prove formally that as δ → 0, we reach the infinite-length model in the
limit.)

Example 3. Consider now the following slightly different version of the prisoner’s dilemma in which a
player receives utility 12 instead of 4 when he plays D while the other player plays C. As it turns out, in
this game it is not possible to reach the (C,C) outcome with the infinite-disarmament model. The problem
is that if we were reach a point where both players have achieved certain values for the upper bound on
D—for example, 1/2—then deviation at that point would give at least 0.25 · 3 + 0.25 · 12 + 0.25 · 1 = 4,
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which is more than the 3 from reaching (C,C). Moreover we cannot “jump over” these values. On the
other hand, this is not really a problem, in the sense that both players would actually be better off with this
profile than with (C,C). Thus, this example is consistent with the following claim: any sufficiently high
utilities that occur in the game can be obtained via disarmament.

Specifically, we can attain utilities (4, 4) for the players with the following disarmament sequence (in
the infinite-length model). Let pt be the maximum probability onD after 2t disarmament steps, initialized to
p0 = 1. Both players take turns to reduce the maximum probability to pt+1 = 9pt−1

8pt+3 , which converges to 1
2

as t→∞. In this case, player 1’s utility from deviation after t steps is exactly 4 (so player 1 is indifferent2)
while player 0’s incentive to deviate is smaller.

Motivation. In practice, it is easy to imagine how one could commit to not play a given pure strategy, but
perhaps this is more difficult for the case of mixed strategies. Of course, the issue is similar for the case
of committing to a mixed strategy, and yet this has found plenty of applications. Commitment to a mixed
strategy is usually achieved by reputation, for example by the follower observing the leader’s actions many
times before acting. The same might work in our model. Alternatively, one could look for some unrelated
random variable, such as the weather. If one can make it so that one cannot play a given pure strategy if
it is (say) cloudy, then this upper-bounds the probability of the strategy at 70% (assuming it is cloudy 30%
of the time). Finally, rather than interpreting mixed strategies literally as probability distributions, one can
think of these probabilities as representing a quantitative choice, such as how much of one’s continuum of
resources to devote to a particular course of action, and then placing upper bounds on this.

5.1 Formal Definition and Basic Properties

In mixed disarmament, each player can reduce his strategies by reducing the maximum probabilities on each
of his pure strategies (with the requirement that at least one of these decreases strictly), or choose Play. For
convenience, assume S0 = S1 = [n] and let 0 (and 1) denote a vector of all zeroes (ones). Therefore, the
representation of the game state becomes [p0, p1, b] where pb ∈ ∆+(Sb) is the vector of probability upper
bounds for player b. Here, ∆+(Sb) denotes vectors of probabilities summing to at least 1. In the induced
game Gp0,p1 , player b’s strategy βb must satisfy βb ≤ pb point-wisely.

Definition 5.1 (Mixed Disarmament Game). The mixed disarmament gameGMD (G) is defined as an extensive-
form game by the following.

• The set of disarmament actions A: {p0 | p0 ∈ ∆+(S0)} ∪ {p1 | p1 ∈ ∆+(S1)} ∪ {Play};

• The set of non-terminal nodes H: {[p0, p1, b] | p0 ∈ ∆+(S0), p1 ∈ ∆+(S1), b ∈ {0, 1}};

• The set of terminal nodes Z: {[p0, p1] | p0 ∈ ∆+(S0), p1 ∈ ∆+(S1)};

• The player selection function ρ : H → {0, 1}: ρ([p0, p1, b]) = b;

• The available-actions function χ : H → 2A, where: χ([p0, p1, b]) = {p′b | p′b � pb, pb ∈ ∆+(Sb)} ∪
{Play};

• The successor function γ : H ×A→ H ∪ Z:

– γ([p0, p1, 0], p′0) = [p′0, p1, 1];

– γ([p0, p1, 1], p′1) = [p0, p
′
1, 0];

– γ([p0, p1, b], P lay) = [p0, p1];

2Player 1 can be made to strictly prefer not deviating by reducing the upper bounds at a slightly slower rate.
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In the terminal nodes z = [p0, p1], player 0 and 1 play the normal-form game Gp0,p1 resulting in their final
utilities.

Strategies, on-path histories, and outcomes in mixed disarmament games are defined similarly as in
pure disarmament games. For convenience, let C(p) = {µ | |µ|1 = 1 and 0 ≤ µ ≤ p} denote the set of
probability distributions consistent with upper bounds p. The security level in a mixed disarmament game
is defined as follows.

Definition 5.2 (Security level in mixed disarmament game). The security level secb for player b in a two-
player normal-form game G = 〈p0, p1, u0, u1〉 is the utility that player b can guarantee himself no matter
how the other player plays. Formally,

secb(Gp0,p1) = max
βb∈C(pb)

min
β−b∈C(p−b)

ub(βb, β−b)

Note that in game Gp0,p1 , C(p0)×C(p1) is a compact convex set. Therefore, the minimax theorem still
holds for Gp0,p1 [10], and so does Lemma 4.1. Now, we are ready to demonstrate that as δ → 0, we reach
the infinite-length model in the limit. Throughout, ε-equilibrium denotes approximate Nash equilibrium in
the (standard) additive sense.

Lemma 5.1. Consider a Nash equilibrium (σ0, σ1) = ((α0, β0), (α1, β1)) of the infinite-length disarma-
ment game, leading to3 terminal node z = [p∗0, p

∗
1]. Then for any ε > 0, there exists some D > 0 such that

for any 0 < δ < D, we have that (σ0, σ1) is an ε-equilibrium of the δ-coin-toss disarmament game (where
(β0(z), β1(z)) is played when the coin toss lands Heads).

To prove Lemma 5.1, we first prove the following auxiliary lemma.

Lemma 5.2. Consider upper bounds p0 ≤ p′0 and p1 ≤ p′1. If |p′0 − p0|1 < ε, |p′1 − p1|1 < ε and (µ∗0, µ
∗
1)

is a Nash equilibrium in Gp0,p1 , then (µ∗0, µ
∗
1) is an ε-equilibrium in Gp′0,p′1 .

Proof. Since (µ∗0, µ
∗
1) is a Nash equilibrium in Gp0,p1 , for all µ0 ∈ C(p0), u0(µ0, µ

∗
1) ≤ u0(µ∗0, µ

∗
1). As

for µ0 ∈ C(p′0) \ C(p0), there exists a d such that µ′ = µ0 + d ∈ C(p0),
∑
di = 0, and |d|1 ≤ 2ε, since

|p′0 − p0|1 ≤ ε. Thus, u0(µ0, µ
∗
1) ≤ u0(µ∗0, µ

∗
1) + ε · (umax

0 − umin
0 ). Similarly, we get, for all µ1 ∈ C(p′1),

u1(µ∗0, µ1) ≤ u1(µ∗0, µ
∗
1) + ε · (umax

1 − umin
1 ). Since utilities are normalized to [0, 1], for each player b,

umax
b − umin

b ≤ 1.

Proof of Lemma 5.1. The upper bounds on strategies resulting from (α0, α1) are non-increasing and so must
converge. Suppose the sequence of on-path upper bounds is ([p0

0, p
1
0], · · · , [pi0, pi1], · · · ). Hence, there exists

T such that after T rounds of disarmament, for all t > T , |pt0 − p∗0|1 < ε/2 and |pt1 − p∗1|1 < ε/2. (If
disarmament completes after finitely many rounds, simply set T to be larger than the number of rounds.) By
Lemma 5.2, we have that (β0(z), β1(z)) is an (ε/2)-Nash equilibrium in G(pt0, p

t
1) for t > T .

Without loss of generality, suppose player 0 deviates. In the best response of player 0’s to player 1’s
strategy σ1, no matter in which induced game Gpt0,pt1 they end up, player 0 takes a best response to β1(z).
Let

D = sup{δ |
T∑
t=0

(1− δ)tδ · u0(µt0, β1(z)) ≤ ε/2}

where µt0 is the best response of player 0 to β1(z) in game Gpt0,pt1 .

3Here, leading to means either that we terminate at this node after finitely many rounds, or that the disarmament stage continues
forever but the upper bounds converge to [p∗0, p

∗
1].
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If player 0 deviates at step t′ + 1 <= T , then for δ < D:

t′∑
t=0

(1− δ)tδ · u0(µt0, β1(z)) + (1−
t′∑
t=0

(1− δ)tδ)sec0(pt
′

0 , p
t′
1 ) ≤ ε/2 + u0(β0(z), β1(z))

because sec0(pt
′

0 , p
t′
1 ≤ u0(β0(z), β1(z)) by the fact that we started from an equilibrium of the infinite-

length game. Otherwise, if player 0 deviates at step t′ + 1 > T , then for δ < D:

T∑
t=0

(1− δ)tδ · u0(µt0, β1(z))

+

[
t′∑

t=T+1

(1− δ)tδ · u0(µt0, β1(z)) + (1−
t′∑
t=0

(1− δ)tδ)sec0(pt
′

0 , p
t′
1 )

]
≤ ε/2 + [u0(β0(z), β1(z)) + ε/2]

5.2 A Folk Theorem for Mixed Disarmament

The folk theorem for repeated games shows that any utilities that exceed the players’ security levels can
be obtained as an equilibrium of the infinitely repeated game (as the discount factor approaches 1). We
now show a similar result for (non-repeated) mixed disarmament games. (For pure disarmament games, the
prisoner’s dilemma provides a counterexample.) Let GMD (G) denote the infinite-length mixed disarmament
game resulting from normal-form game G, and let utilities (v0, v1) be feasible for G if there exists a mixed-
strategy profile of G that results in these utilities.

Theorem 5.1. In mixed disarmament games GMD (G), for all feasible utilities (v0, v1) with v0 > sec0(G)
and v1 > sec1(G), there exists a Nash equilibrium of GMD (G) such that the terminal node z = [p0, p1] of its
induced on-path history satisfies sec0(Gp0,p1) = v0 and sec1(Gp0,p1) = v1.

For any (β0, β1) constituting an equilibrium of Gp0,p1 , we have ub(β0, β1) ≥ secb(Gp0,p1); otherwise,
player b can deviate to the strategy that guarantees his security level.

Corollary 5.1. In mixed disarmament games GMD (G), for all feasible utilities (v0, v1) with v0 > sec0(G)
and v1 > sec1(G), there exists a Nash equilibrium of GMD (G) such that its outcome o satisfies u0(o) ≥ v0

and u1(o) ≥ v1.

In Theorem 5.1 and Corollary 5.1, the induced on-path history of the Nash equilibrium may have infinite
length. Of course, by Lemma 5.1, we can come arbitrarily close to this with a game that will terminate in
finite time with probability 1.

5.3 A Constructive Proof

In this subsection, we provide a constructive proof for Theorem 5.1 via an algorithm to generate the corre-
sponding on-path history. Following the intuition provided in Example 3, in each round, the player reduces
his upper bounds as much as possible, i.e., until his opponent’s security level equals his target utility.

Formally, given target utilities (v0, v1) with corresponding strategy profile (β0, β1), for each player b,
let β′b = 1− βb. We introduce two parameters θ0 and θ1, initialized to 1, such that the upper bound vectors
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are p0 = β0 + θ0β
′
0 and p1 = β1 + θ1β

′
1. For convenience, let Gβ0,β1,θ0,θ1 = Gβ0+θ0β′0,β1+θ1β′1

. Define an
update function f :

f(b, θb, θ−b) = inf{θ′b | sec−b(Gβb,β−b,θ
′
b,θ−b

) ≤ v−b}

That is, when p0 = β0 + θ0β
′
0, p1 = β1 + θ1β

′
1 and it is player b’s turn, function f returns the minimum θb

such that player −b’s security level in the induced game is still lower than or equal to the target utility.
The function f(b, θb, θ−b) can be computed efficiently by linear programming:

minimize θ′b
subject to u−b(µb, µ−b) ≤ v−b ∀µ−b ∈ C(β−b, θ−b)

µb ∈ C(βb, θ
′
b)

where C(β, θ) = C(β + θ(1 − β)). This program has infinitely many constraints of the first type, so we
need to show that an efficient separation oracle exists. The first type of constraints is equivalent to

max
µ−b∈C(β−b,θ−b)

u−b(µb, µ−b) ≤ v−b

whose left-hand side can be computed by a simple water-filling method that puts as much probability as
possible on the remaining strategy that provides player −b the most utility, given that player b plays mixed
strategy µb. Therefore, an efficient separation oracle exists.

We now present the algorithm for generating the on-path history (Algorithm 1). Of course, if we require
an infinite-length history, this algorithm will not terminate, but every point in the history will be eventually
generated by it.

Algorithm 1: Generate on-path strategy for feasible utilities that exceed security levels
Input: G and a target strategy profile (β0, β1)
Output: An on-path history P for GMD (G)
Let β′0 = 1− β0;
Let β′1 = 1− β1;
Let h0 = [1,1, 0], b = 0, t = 0;
Let θ0 = θ1 = 1;
while θb − f(b, θb, θ−b) > 0 do

θb = f(b, θb, θ−b);
ht+1 = [β0 + θ0 · β′0, β1 + θ1 · β′1, 1− b];
b = 1− b;
t = t+ 1;

ht+1 = [β0 + θ0 · β′0, β1 + θ1 · β′1];
return h;

Lemma 5.3. Algorithm 1 produces an on-path history that is part of a Nash equilibrium and leads to a
terminal node z = [p0, p1] where sec0(Gp0,p1) = v0 and sec1(Gp0,p1) = v1.

To prove Lemma 5.3, we first prove the following auxiliary lemma.

Lemma 5.4. In Algorithm 1, suppose we have just set θ′b = f(b, θb, θ−b) in an iteration. If θb− θ′b ≤ ε, then
sec−b(Gβb,β−b,θb,θ−b

) ≥ v−b − nε.

Proof. For any fixed µ−b ∈ C(β−b, θ−b), let µ∗b(µ−b) ∈ arg minµb∈C(βb,θb) u−b(µb, µ−b). Since θb − θ′b ≤
ε, we have µ∗b(µ−b)− ε1 ≤ βb + θ′b · β′b. Denote a set D(βb, θ

′
b, µ
∗
b(µ−b), ε) as

{µ ≥ 0 | µ∗b(µ−b)− ε1 + nεµ ∈ C(βb, θ
′
b)}.
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(Note that every element in this set must have |µ| = 1, and the set is nonempty.) Then:

min
µb∈C(βb,θ

′
b)
u−b(µb, µ−b) ≤ min

µ′b∈D(βb,θ
′
b,µ
∗(µ−b),ε)

u−b(µ
∗
b(µ−b)− ε1 + nεµ′b, µ−b)

≤ u−b(µ
∗
b(µ−b), µ−b) + nε(umax

−b − umin
−b )

Thus, we have

sec−b(Gβb,β−b,θ
′
b,θ−b

) = max
µ−b∈C(β−b,θ−b)

min
µb∈C(βb,θ

′
b)
u−b(µb, µ−b)

≤ max
µ−b∈C(β−b,θ−b)

u−b(µ
∗
b(µ−b), µ−b) + nε(umax

−b − umin
−b )

≤ sec−b(Gβb,β−b,θb,θ−b
) + nε

where the last step follows because utilities are normalized to lie in [0, 1].
The above in fact shows that sec−b(Gβb,β−b,θ

′
b,θ−b

) is continuous in θ′b. By the intermediate value the-
orem it follows that after setting θ′b = f(b, θb, θ−b), we have sec−b(Gβb,β−b,θ

′
b,θ−b

) = v−b. Hence we
conclude that

sec−b(Gβb,β−b,θb,θ−b
) ≥ sec−b(Gβb,β−b,θ

′
b,θ−b

)− nε = v−b − nε

Proof of Lemma 5.3. We first show that for each b, θb is nonincreasing. This is because reducing player
−b’s strategy space can only decrease −b’s security level. Hence, having updated θ−b (which, by induction,
cannot have increased) and returning to updating θb, the current value of θb still suffices to keep−b’s security
level at or below the target level. (Note that the initial value of θb, which is 1, also suffices for this, since by
assumption the target values are at least the security levels in the non-reduced game.) Hence f(b, θb, θ−b) ≤
θb. Consequently, we must converge to some θ∗0 ≥ 0 and θ∗1 ≥ 0. All that remains to be shown is that the
security values for these θ∗b are the target values; from this it also follows that we have a Nash equilibrium,
since the security levels on the path never exceed the target values.

If the algorithm terminates, it must be because at some point we have θb = f(b, θb, θ−b). By Lemma 5.4,
the security level of −b at that point is v−b. Moreover, at this point we must also have θ−b = f(−b, θb, θ−b)
by the previous update (note that the algorithm cannot terminate in the first step). Hence also the security
level of b is vb.

On the other hand, suppose the algorithm never terminates. We know that θb converges, so for any ε,
there exists T such that for t > T , f(b, θtb, θ

t
−b) > θtb − ε. Hence by Lemma 5.4, for any t > T , the security

level of −b exceeds v−b − nε. It follows that −b’s security level converges to v−b.

5.4 Convergence Rate

Theorem 5.1 guarantees the existence of a Nash equilibrium with the desired utilities, but its induced on-
path history may have infinite length. From Lemma 5.1, we know we can approximate this with a path that
(with probability 1) has finite length, but this still does not tell us whether this is a reasonable number of
rounds. We next show that we can in fact approximate it in a reasonable number of rounds. Instead of using
coin tosses, here we simply stop after O(T ) rounds, resulting in an O(n/T ) approximate equilibrium where
the security levels are within O(n/T ) of the desired values.

Theorem 5.2. In mixed disarmament games GMD (G), for all feasible utilities (v0, v1) with v0 > sec0(G)
and v1 > sec1(G), and ε > 0, there exists an nε-Nash equilibrium of GMD (G) such that the length of
its on-path history is O(1/ε) and the terminal node z = [p0, p1] satisfies sec0(Gp0,p1) > v0 − nε and
sec1(Gp0,p1) > v1 − nε.
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To prove Theorem 5.2, we first extend Lemma 4.1 to approximate Nash equilibrium.

Lemma 5.5. On-path history P with outcome o is induced by an ε-Nash equilibrium strategy profile if and
only if (1) for each non-terminal node h = [T0, T1, b] ∈ P , secb(GT0,T1) ≤ ub(o) + ε, and (2) o is an
ε-equilibrium of the terminal node to which P leads.

Proof of Theorem 5.2. We use Algorithm 1 to construct the path. From Lemma 5.4, we know that if for
θ′b = f(b, θb, θ−b), θb − θ′b ≤ ε, then sec−b(Gβb,β−b,θb,θ−b

) ≥ v−b − nε. At that point we also have (as
observed in the proof of Lemma 5.4) secb(Gβb,β−b,θb,θ−b

) = vb. Therefore, we can strengthen the condition
of the while loop and exit it, returning the on-path history P , when θb − θ′b ≤ ε. This results in an nε-Nash
equilibrium by Lemma 5.5, because in Algorithm 1, the security level never exceeds the target value vb, and
not deviating results in at least vb − nε for a player. Finally, because θb and θ−b are between 0 and 1, the
modified algorithm terminates after at most O(1/ε) iterations.

6 Conclusion

We have shown that while disarmament with pure strategies is NP-hard, with mixed strategies a type of
folk theorem holds and an efficient algorithm exists. Since this is, to our knowledge, the first paper on this
topic, there are many directions for future research. These including studying the topic for representations
other than the normal form and solution concepts other than Nash equilibrium. One could also consider
different types of mixed disarmament, where the mixed strategy space is reduced in a way that is different
from putting upper bounds on the probabilities. Of course, our result shows that upper bounds already allow
us to attain everything that can reasonably be expected. In any case, as long as the disarmament procedure
ensures that the space of remaining mixed strategies stays compact and convex and there exists an efficient
separation oracle for the LP to compute the update function f , our results should continue to hold. Another
direction is to design algorithms for the pure disarmament case that work well in practice. Finally, we can
look for new applications of this framework.
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