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We consider the problem of planning with participation constraints introduced in [24]. In this problem, a

principal chooses actions in a Markov decision process, resulting in separate utilities for the principal and

the agent. However, the agent can and will choose to end the process whenever his expected onward utility

becomes negative. The principal seeks to compute and commit to a policy that maximizes her expected

utility, under the constraint that the agent should always want to continue participating. We provide the

first polynomial-time exact algorithm for this problem for finite-horizon settings, where previously only

an additive 𝜀-approximation algorithm was known. Our approach can also be extended to the (discounted)

infinite-horizon case, for which we give an algorithm that runs in time polynomial in the size of the input and

log(1/𝜀), and returns a policy that is optimal up to an additive error of 𝜀.
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1 INTRODUCTION
How do we keep users from leaving? That is the question asked daily by service providers such as

banks, phone carriers, cable networks, and internet streaming companies. Much of the depth of the

question originates from its dynamic nature: services last over (normally an extensive period of)

time, users can leave at almost any moment, and the cost and benefit of leaving vary depending on

the situation. Consider cable networks: when a new user signs their first contract, the network

typically offers a discounted rate for 6 or 12 months, and if the user switches to another network

during that time, there will be an early termination fee. However, after the first several months,

when the user has become attached to the network, the monthly rate increases to the normal

amount. Similar strategies (free trials, sign-up bonuses, etc.) are used by almost all service providers,

especially those conducting business over the internet, where it is easier for users to leave a provider

and switch to another. While there are certainly many other considerations behind such strategies,

arguably the main objective is to keep users around while generating as much revenue as possible.

Even in the simple example of cable networks, the dynamic nature of the problem already

introduces some delicate tradeoffs: a low (or 0) early termination fee would make it harder to

keep the user in the first several months, but would also encourage the user to start the service
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in the first place (equivalently, prevent the user from leaving at the very beginning); similarly, a

higher normal rate (which means higher revenue) may still be acceptable once the user becomes

sufficiently attached, but anticipating this eventual higher normal rate at the outset, a new user

may not sign the contract in the first place, or may leave before becoming attached to the network.

In other words, the network’s policy in a “state” not only affects whether the user would leave

in that state, but also affects the user’s decision in all “previous” states. Moreover, although the

network and the user have misaligned interests, they are by no means in a zero-sum situation: the

network may spend extra effort on improving the quality of the service, which would cost the

network, but benefit the user even more, so they have less incentive to leave — the question is, is

that worthwhile?

The presence of these issues suggests that designing a business strategy should be viewed as a

planning problem, where the network is the planner (or the principal), and the user is the agent. The
principal decides what action to take in each possible situation (i.e., each state). The action gives the

principal and the agent possibly different rewards, and brings the state to a possibly random new

state, where another action will be taken. The agent does not have a voice in which actions to take

in which states, but always has the option to leave, which is the rational move to make when the

agent’s expected onward utility is below 0 (where without loss of generality, 0 is the utility induced

by the best outside option, taking into consideration the cost of leaving). The goal of the principal

is to design a policy that maximizes the principal’s utility subject to participation constraints, which
require that the agent’s expected onward utility in every possible state should be at least 0.

1
Such

participation constraints introduce a mechanism design flavor to the problem, which distinguishes

it from the classical problem of planning in Markov Decision Processes (MDPs). In fact, the latter

can be viewed as a special case of the former, where conceptually, the agent does not have the

ability to leave. We can bring the classical case into the formalism here by making sure the agent’s

reward is always nonnegative, so the agent would never want to leave.

In this paper, we study the problem of planning with participation constraints from a computa-

tional point of view. Our goal is to answer the following question:

Given all parameters of a dynamic environment (i.e., reward functions and transition
probabilities), can we efficiently compute a policy that maximizes the principal’s utility
subject to participation constraints?

1.1 Equivalent Variants
For further motivation, we now present some variants that result in the same technical problem, so

that our techniques apply to them as well. The reader who is satisfied to keep the above motivation

in mind can safely skip this subsection, as the remainder of the paper is written in line with the

above motivation.

Equivalently, we can also consider problems where the goal is not to prevent the agent from

leaving, but rather the goal is to prevent the agent from entering. Such examples are reminiscent of

problems in the security games literature [11, 21]. For example, suppose we wish to discourage

young people from joining a gang. We consider a representative agent (young person) and assume

that once he joins the gang, he can no longer leave it. We can plan various, generally costly,

1
Of course, sometimes it is more desirable for the principal to simply let the agent leave. Still, technically, the assumption

that the principal never allows the agent’s expected onward utility to be negative is without loss of generality. This is

because we can extend the MDP with an “end” action from each state (where it is possible for the agent to have negative

onward utility), which deterministically leads to an additional, absorbing state corresponding to the process having ended.

From this state, no additional rewards will be obtained by either party. With these extensions, a policy that would result in

the agent actually leaving the MDP at some point is equivalent to the policy that is the same except for, at that point, taking

the “end” action within the MDP, ensuring zero onward utility.
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enforcement measures that reduce the expected onward utility of being in the gang. (Note that

we cannot condition these actions on whether the agent has joined the gang, as we are generally

unable to observe gang membership; we have to commit to taking the actions even if we believe

the agent was successfully deterred from joining the gang.) In this case, the goal is to ensure that

this expected onward utility always stays nonpositive, so the agent will not join the gang. Simply

negating the agent’s rewards thus brings us back to the problem considered before.

In this example, our actions do not affect the agent’s utility before the agent enters (joins the
gang), whereas in the original problem we introduced, our actions do not affect the agent’s utility

after the agent leaves. A natural generalization is that our actions may affect the agent’s utility both

before and after the agent has left or entered. In the previous example, the most effective way to

prevent the agent from joining the gangmay not be to reduce the utility of being in the gang through

enforcement, but rather to increase the utility of not being in the gang, for example by investing in

after-school programs. Or, perhaps a combination of both is optimal. In this case, there is no longer

a sharp distinction between entering and leaving — entering the gang is equivalent to leaving the

alternative activities. What matters is the difference in reward between having entered/left and not

yet having done so. If we normalize the rewards to the agent so that leaving results in onward

rewards of 0, we arrive back at the problem considered before.
2
Thus, in the remainder of this paper,

we focus on the original problem where leaving results in onward utility zero, in the understanding

that this problem captures the full generality of such problems where rewards may be received

both before and after leaving/entering.

1.2 Our Results
Our main result is an affirmative answer to our main question: there is a polynomial-time algorithm
that computes an optimal policy subject to participation constraints (see Theorem 1). Simple as it

may appear, we find the existence of such an algorithm highly counterintuitive. In classical MDPs,

it is well known that optimal policies are without loss of generality deterministic and history-

independent. Given this, an optimal policy can be found by a simple backward induction procedure.

Unfortunately, this is no longer true in the presence of participation constraints. In fact, as we show

in Section 2.2, restricting the policy to be either deterministic or history-independent may lead

to an enormous loss in the principal’s utility. In other words, to solve our problem, we need to

optimize over randomized and history-dependent policies. Such optimization problems are often

extremely hard (i.e., APX-hard or PSPACE-hard), which is the case for, e.g., partially observable

MDPs and various special cases thereof [12, 15]. Another concrete example is that computing an

optimal dynamic mechanism (a problem closely related to ours, which can be viewed as our setting

with additional incentive-compatibility constraints) is APX-hard [25]. In fact, to the best of our

knowledge, no other planning problem of a similar level of generality (i.e., generalizing planning

in classical MDPs) where history-dependence is required admits efficient exact algorithms — this

phenomenon is famously known as the curse of history [18, 20, 23]. Moreover, the fact that optimal

policies may be history-dependent also rules out the possibility of computing the flat representation

of an optimal policy efficiently, since the size of such a representation is already exponential in the

number of states. (Our algorithm computes a succinct and implicit representation that encodes an

optimal policy.) Given all the above, at least we were surprised that an efficient algorithm exists for

planning with participation constraints.

2
Indeed, previously, when we assumed staying out of the gang gave rewards of 0, and we then negated the rewards of

being in the gang, this corresponded exactly to this normalization step: the negated rewards of being in the gang are the

normalized rewards of staying out of the gang in that case.
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Technically, our algorithm operates over the concept of Pareto frontier curves (formally defined

in Section 2.3). Roughly speaking, the Pareto frontier curve associated with a state specifies, for

each given onward utility that we may wish to guarantee the agent, the maximum onward utility

for the principal that is achievable by a policy that satisfies: (1) it gives the agent exactly the desired

onward utility and (2) it satisfies all future participation constraints. If we were able to somehow

compute the Pareto frontier curves in all states, then it would be possible (although probably

still nontrivial) to construct an optimal policy given these curves, or at least find the principal’s

optimal utility subject to participation constraints. However, although these curves are piecewise

linear, in general they have exponentially many pieces, which makes computing them explicitly

impossible. Our algorithm instead only tries to evaluate these curves in specific ways. In particular,

we make two types of evaluations: evaluations at specific points, and evaluations along specific

directions. While none of these evaluations can be done in a straightforward way (because we

cannot compute the curves), we show that they can be recursively reduced to each other, through

binary searching over the direction of an evaluation. Then, by scheduling all recursive evaluations

in the right order, the algorithm is able to perform all essential evaluations using only polynomial

computation, given that the binary searches only require polynomially many iterations. Bounding the
number of iterations then requires a careful analysis of the numerical precision of the algorithm

and the numerical “resolution” of the Pareto frontier curves, which turns out to work exactly in the

way we want. As a result, we obtain a weakly polynomial-time algorithm (similar to all currently

known polynomial-time algorithms for linear programming), whose time complexity depends on

the number of bits required to encode the input numbers. A more detailed overview is given in

Section 3.1.

The algorithm discussed above is for finite-horizon (episodic) environments, but it is not too

hard to adapt it into an algorithm for infinite-horizon discounted environments. As a byproduct of

our main result, we also give an algorithm that computes a policy that is additively suboptimal by

at most 𝜀 for any 𝜀 > 0 in infinite-horizon discounted environments, which runs in time polynomial

in log(1/𝜀) and the size of the input. This is discussed in Section 3.4, together with other remarks

and extensions of the finite-horizon algorithm.

1.3 Related Work
Most closely related to our results is the recent work by Zhang et al. [24]. They provide two

algorithms for planning with participation constraints in finite-horizon environments: an approxi-

mation algorithm and an exact algorithm. Their approximation algorithm computes a policy that

can be additively suboptimal by at most 𝜀 for any 𝜀 > 0, in time polynomial in 1/𝜀, as well as the
size of the problem. Note that this guarantee is not only weaker compared to that provided by

our exact algorithm, but also weaker than the one provided by our algorithm for infinite-horizon

discounted environments, whose time complexity is polynomial in log(1/𝜀) rather than 1/𝜀. Their
exact algorithm, which computes the Pareto frontier curves in all states, takes exponential time in

the worst case. Our polynomial-time exact algorithm closes the main question left open by Zhang

et al. [24], i.e., whether the problem of planning with participation constraints is in P.
From an economic perspective, the problem of planning with participation constraints can

be viewed as dynamic mechanism design (see, e.g., [5–7, 16, 17]) under individual rationality

constraints only. The key difference is that in dynamic mechanism design, the agent has private

information that may affect the reward of both the agent and the principal. So, in addition to

satisfying participation constraints (i.e., individual rationality constraints), normally the principal’s

policy also needs to be incentive compatible, so the agent is encouraged to report their private

information truthfully. From a computational point of view, the fact that the agent does not have

private information enables polynomial-time algorithms for computing an optimal policy, which is
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known to be hard with incentive-compatibility constraints [14, 25]. A conceptually related problem

is that of “moving the goalposts” [8], in which an agent works on a task of uncertain difficulty,

modeled as the duration of required effort, and the principal knows the task difficulty and provides

information over time, with the goal being to encourage the agent to finish the task. This problem

can be viewed as a structured special case of planning with participation constraints, where the

state consists of the agent’s belief of the difficulty of the task, as well as the fraction of the task

that is already finished. Another related problem is dynamic evaluation design [22], in which the

principal evaluates an agent who is learning their own ability, with the goal being to persuade

the agent that they are of high ability so that they will keep working. Again, this problem can be

viewed as a special case of ours, where the state is the agent’s belief of their own ability. These

results are not comparable to ours, since they focus on characterizing optimal policies in structured
environments, whereas our goal is to compute optimal policies in general environments.

The problem of planning with participation constraints is related to a number of planning

problems in different variants and generalizations of MDPs. In constrained MDPs (CMDPs) [3], the

planner aims to find an optimal policy subject to an overall constraint, such as that the expected

cumulative “cost” must be at most some certain amount. It is known that in CMDPs, optimal policies

are without loss of generality history-independent, and can be found by linear programming [1, 2, 4].

Another related model is multi-objective MDPs (MOMDPs) [19]. Similar to CMDPs, MOMDPs

focus on the overall cumulative reward vector, whereas in our problem, participation constraints

have to be satisfied throughout the process. In multi-agent (partially observable) MDPs [9, 10, 13],

multiple agents act individually in a common environment, based only on local information and

beliefs about each other. One key difference between our problem and multi-agent MDPs is that

we consider an asymmetric environment where the principal has the exclusive power to choose a

policy, and the agent can only choose to participate or not.

2 PRELIMINARIES
Wefirst formally introduce the problem setup, discuss why the problem is challenging, and introduce

the notion of Pareto frontier curves which will be instrumental in the algorithm and the analysis

thereof.

2.1 Problem Setup
The environment. We mostly focus on finite-horizon environments in this paper. There are 𝑛

states S = [𝑛] = {1, . . . , 𝑛} and𝑚 actions A.
3
For each state 𝑠 ∈ S and action 𝑎 ∈ A, let 𝑟𝑃 (𝑠, 𝑎)

and 𝑟𝐴 (𝑠, 𝑎) be the rewards of the principal and the agent respectively when action 𝑎 is played in

state 𝑠 . Moreover, let 𝑃 (𝑠, 𝑎) ∈ R𝑛 be the transition probabilities when action 𝑎 is played in state 𝑠 ,

where 𝑃 (𝑠, 𝑎, 𝑠 ′) is the probability that the next state is 𝑠 ′ ∈ S.
Without loss of generality, we assume that the states are ordered by reachability. Formally, for

any 𝑠, 𝑠 ′ ∈ S where 𝑠 ≥ 𝑠 ′, we have 𝑃 (𝑠, 𝑎, 𝑠 ′) = 0 for all 𝑎 ∈ A.
4
We assume 𝑠init = 1 is the initial

state, and 𝑠term = 𝑛 is the terminal state where no action is available.

Histories and policies. A history of length 𝑡 ∈ N is a tuple (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ). LetH𝑡 be the set of

all histories of lengths 𝑡 for each 𝑡 ∈ N. In particular,H0 = {∅}, where ∅ denotes the empty history.

LetH =
⋃

𝑡 ∈NH𝑡 . For history ℎ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ) ∈ H and state-action pair (𝑠, 𝑎) ∈ S × A, we

3
We assume all actions are available in every non-terminal state. This is without loss of generality because if an action 𝑎 is

not available in a state 𝑠 , we can set 𝑎’s rewards and transition probabilities to be the same as any available action in 𝑠 .
4
This is without loss of generality for finite-horizon (episodic) environments because one can make a copy of each state for

each time step. Then, copies of states at earlier times can only transition into copies at later times.
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write ℎ + (𝑠, 𝑎) for the history obtained by appending (𝑠, 𝑎) to the end of ℎ:

ℎ + (𝑠, 𝑎) = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 , 𝑠, 𝑎).
Define (𝑠, 𝑎) + ℎ similarly. For two history-state pairs (ℎ, 𝑠) and (ℎ′, 𝑠 ′) where ℎ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 )
and ℎ′ = (𝑠 ′

1
, 𝑎′

1
, . . . , 𝑠 ′

𝑡 ′, 𝑎
′
𝑡 ′), we say (ℎ′, 𝑠 ′) extends (ℎ, 𝑠), or (ℎ′, 𝑠 ′) ⊇ (ℎ, 𝑠), if 𝑡 ′ > 𝑡 , and

(𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 , 𝑠) is a prefix of (𝑠 ′1, 𝑎′1, . . . , 𝑠 ′𝑡 ′, 𝑎′𝑡 ′, 𝑠 ′).
Let Δ(A) denote the probability simplex over A. A policy 𝜋 : H × S → Δ(A) maps a history

ℎ ∈ H and a state 𝑠 ∈ S to a random action 𝑎 ∈ A, where 𝜋 (ℎ, 𝑠, 𝑎) is the probability that 𝜋 plays

action 𝑎 at history-state pair (ℎ, 𝑠). Let Π be the set of all (randomized, history-dependent) policies,

which may or may not satisfy participation constraints (defined below).

Utility and participation constraints. Under a policy 𝜋 , the expected onward utility 𝑢𝜋
𝑃
(ℎ, 𝑠) of the

principal at history-state pair (ℎ, 𝑠) can be defined in the following recursive way.

𝑢𝜋𝑃 (ℎ, 𝑠) =
{
0 if 𝑠 = 𝑠term,

E𝑎∼𝜋 (ℎ,𝑠),𝑠′∼𝑃 (𝑠,𝑎) [𝑟𝑃 (𝑠, 𝑎) + 𝑢𝜋𝑃 (ℎ + (𝑠, 𝑎), 𝑠
′)] otherwise.

(1)

The onward utility of the agent 𝑟𝜋
𝐴
(ℎ, 𝑠) can be defined similarly, with 𝑢𝑃 and 𝑟𝑃 replaced by 𝑢𝐴

and 𝑟𝐴 respectively. We say a policy is feasible if it satisfies participation constraints in all states.

Throughout the paper, we assume that there exists a feasible policy (e.g., the policy that maximizes

the agent’s utility). Our goal is to find a feasible policy that maximizes the principal’s overall utility.

Formally, we want to compute a policy 𝜋 that maximizes 𝑢𝜋
𝑃
(∅, 𝑠init), subject to the participation

constraints that 𝑢𝜋
𝐴
(ℎ, 𝑠) ≥ 0 for all (ℎ, 𝑠) ∈ H × S. 5

Encoding the input. In order to properly formulate the computational problem, we assume that

all parameters of the problem (including 𝑛,𝑚, 𝑟𝑃 (𝑠, 𝑎), 𝑟𝐴 (𝑠, 𝑎), and 𝑃 (𝑠, 𝑎, 𝑠 ′)) are given in binary

representations. Moreover, we assume that −1 ≤ 𝑟𝑃 (𝑠, 𝑎) ≤ 1 and −1 ≤ 𝑟𝐴 (𝑠, 𝑎) ≤ 1 for all 𝑠 and 𝑎,

and each of the input numbers has at most 𝐿 bits.

2.2 Some Natural Approaches and Why They Fail
Before diving into our algorithm,we first discuss some natural approaches andwhy they do notwork.

In classical MDPs, it is well known that optimal policies are without loss of generality deterministic

and history-independent. Given this, an optimal policy can be found by a simple backward induction

procedure. Unfortunately, this is no longer true in the presence of participation constraints. As

we illustrate in the following examples, restricting the policy to be either deterministic or history-

independent may lead to a significant loss in the principal’s utility.

Example 1. Consider the left environment in Figure 1. This environment has 𝑛 = 4 states, where

𝑠init = 1 and 𝑠term = 4. All states have at most 1 available action except for state 1. In state 1 there

are two actions available, the upper (blue) one and the lower (red) one, leading to state 2 and state 3

respectively. The optimal (randomized) policy is to play the upper action and the lower action each

with probability 1/2 in state 1, which gives the principal overall utility 1/2, and the agent onward

utility 0 in all states. However, restricted to deterministic policies, the only feasible policy is to play

the lower action in state 1, which gives the principal overall utility 0.

Example 2. Consider the right environment in Figure 1. This environment has 𝑛 = 7 states, where

𝑠init = 1 and 𝑠term = 7. All states have at most 1 available action except for state 4. In state 4, there

5
Note that some history-state pairs may not be reachable with positive probability under a policy. For consistency, we

enforce participation constraints for such pairs as well. This is without loss of generality, since if (ℎ, 𝑠) is not reachable,
then the policy from this point onward does not affect the principal’s utility, so we can run the policy that maximizes the

agent’s utility to satisfy participation constraints.
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Fig. 1. Examples where deterministic/history-independent policies are far from optimal.

are two actions available, the upper (blue) one and the lower (red) one, leading to states 5 and 6

respectively. Moreover, in state 1, the only available action randomly transits to state 2 or 3 with

equal probability. The optimal (history-dependent) policy is to play the upper action in state 4 if

the previous state is state 3, and play the lower action if the previous state is state 2, which gives

the principal overall utility 1/2, and the agent nonnegative onward utility in all states. However,

restricted to history-independent policies, the only feasible policy is to play the lower action in

state 4, which gives the principal overall utility 0. In particular, note that in state 4 we cannot play

one of the two actions uniformly at random, because then the agent’s onward utility in state 2

would be −1/2.

Optimizing over history-dependent policies is often computationally intractable. This phenom-

enon is famously known as the curse of history [18, 20, 23]. For instance, the problem of finding

optimal policies for partially observable MDPs (as well as various special cases thereof [12, 15]) is

PSPACE-hard. Another concrete example is that computing an optimal dynamic mechanism (which

can be viewed as our setting with additional incentive-compatibility constraints) is APX-hard [25].

Another difficulty that arises from history-dependence is that we cannot efficiently describe an

optimal policy in the flat representation, since the optimal policy may need to specify which action

to take in each of exponentially many histories.

We conclude this section by showing that it is computationally hard to find an optimal determin-

istic policy. While the best deterministic policy could perform worse than the optimal randomized

policy, there are situations where one may want to focus on deterministic policies. More importantly,

this further illustrates the complexity of our problem. We reduce from the 0-1 knapsack problem.

Claim 1. It isNP-hard to find an optimal deterministic policy that satisfies participation constraints.

Proof. Consider a knapsack instance with 𝑘 items and size limit 𝑆 , where item 𝑖 has size 𝑠𝑖
and value 𝑣𝑖 . The goal of the knapsack problem is to pick a subset of items with maximum total

value, subject to the constraint that their total size does not exceed 𝑆 . Without loss of generality,

assume 𝑠𝑖 ≤ 𝑆 for each 𝑖 ∈ [𝑘]. We construct an environment with 𝑛 = 𝑘 + 2 states that encodes the
knapsack instance, where 𝑠init = 1, 𝑠term = 𝑛, and state 𝑖 + 1 corresponds to item 𝑖 .

There is a single action 𝑎0 available in state 𝑠init = 1 with 𝑟𝑃 (𝑠init, 𝑎0) = 0, 𝑟𝐴 (𝑠init, 𝑎0) = 1−𝑘
𝑘
·𝑆 , and

𝑃 (𝑠init, 𝑎0, 𝑖 + 1) = 1

𝑘
for each 𝑖 ∈ [𝑘]. For each item 𝑖 , there are two actions 𝑎𝑖,0, 𝑎𝑖,1 available in the

corresponding state 𝑖 + 1. Intuitively, 𝑎𝑖,0 corresponds to not taking item 𝑖 , where 𝑟𝑃 (𝑖 + 1, 𝑎𝑖,0) = 0,

𝑟𝐴 (𝑖+1, 𝑎𝑖,0) = 𝑆 ; and 𝑎𝑖,1 corresponds to taking item 𝑖 , where 𝑟𝑃 (𝑖+1, 𝑎𝑖,1) = 𝑣𝑖 , 𝑟𝐴 (𝑖+1, 𝑎𝑖,1) = 𝑆−𝑠𝑖 .
Both actions lead to the terminal state deterministically, i.e., 𝑃 (𝑖+1, 𝑎𝑖,0, 𝑠term) = 𝑃 (𝑖+1, 𝑎𝑖,1, 𝑠term) = 1.

We show that this encodes the knapsack instance. Due to the structure of the environment we

construct, all policies are without loss of generality history-independent, so we omit the dependence

on ℎ. For a deterministic policy 𝜋 , let 𝑇 𝜋 ⊆ [𝑘] be the set of items that 𝜋 decides to pick, that is,

𝑖 ∈ 𝑇 𝜋
iff 𝜋 (𝑠, 𝑎𝑖,1) = 1. Then we have
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• 𝑟𝜋𝑃 (𝑠init) =
1

𝑘

∑
𝑖∈𝑇𝜋

𝑣𝑖 .

• For each 𝑖 ∈ [𝑘], we always have 𝑟𝜋
𝐴
(𝑖 + 1) ≥ 0.

• 𝑟𝜋𝐴 (𝑠init) ≥ 0 ⇐⇒
∑
𝑖∈𝑇𝜋

𝑠𝑖 ≤ 𝑆 .

It follows immediately that an optimal deterministic policy subject to participation constraints

corresponds to an optimal solution to the knapsack instance. □

2.3 Pareto Frontier Curves
Now we define the notion of Pareto frontier curves, which is instrumental in designing and

analyzing our algorithm. Intuitively, these curves capture the Pareto optimal tradeoffs between the

principal’s and the agent’s (onward) utilities at different states.

We associate a Pareto frontier curve with each state 𝑠 ∈ S. For state 𝑠 , we consider all policies
starting at 𝑠 (as if 𝑠 is the initial state) and the onward utilities of the principal and the agent

𝑢𝜋
𝐴
and 𝑢𝜋

𝑃
as defined in Equation (1). We say a policy 𝜋 is feasible in the future iff 𝜋 satisfies the

participation constraints at all later history-state pairs.

Let 𝐷𝑠 = [𝑢−𝐴 (𝑠), 𝑢+𝐴 (𝑠)] be the range of onward utility of the agent that is achievable by policies

that are feasible in the future. Formally,

𝑢−𝐴 (𝑠) = min{𝑢𝜋𝐴 (∅, 𝑠) | 𝜋 ∈ Π : 𝑢𝜋𝐴 (ℎ
′, 𝑠 ′) ≥ 0, ∀(ℎ′, 𝑠 ′) ⊇ (∅, 𝑠)},

𝑢+𝐴 (𝑠) = max{𝑢𝜋𝐴 (∅, 𝑠) | 𝜋 ∈ Π : 𝑢𝜋𝐴 (ℎ
′, 𝑠 ′) ≥ 0, ∀(ℎ′, 𝑠 ′) ⊇ (∅, 𝑠)}.

Note that we consider policies that satisfy participation constraints after leaving state 𝑠 , and put no

restrictions on the agent’s onward utility in state 𝑠 .

The Pareto frontier curve 𝑓𝑠 : 𝐷𝑠 → R in state 𝑠 ∈ S maps the agent’s onward utility 𝑥 ∈ 𝐷𝑠 to

the maximum principal’s onward utility 𝑦 that is achievable by some feasible-in-the-future policy

𝜋 , such that the agent’s onward utility is exactly 𝑥 under 𝜋 . Formally, for each 𝑠 ∈ S and 𝑥 ∈ 𝐷𝑠 ,

𝑓𝑠 (𝑥) = max{𝑢𝜋𝑃 (∅, 𝑠) | 𝜋 ∈ Π : 𝑢𝜋𝐴 (∅, 𝑠) = 𝑥 and 𝑢𝜋𝐴 (ℎ
′, 𝑠 ′) ≥ 0, ∀(ℎ′, 𝑠 ′) ⊇ (∅, 𝑠)}. (2)

The following property of Pareto frontier curves, which was observed in [24], plays an important

role in our algorithm and analysis.

Lemma 1. For each 𝑠 ∈ S, the Pareto frontier curve 𝑓𝑠 defined in Equation (2) is concave on 𝐷𝑠 .

The concavity of these curves is a direct consequence of the fact that randomizing between

feasible-in-the-future policies always results in a feasible-in-the-future policy.

3 OUR ALGORITHM AND ANALYSIS
Our main result is a polynomial-time exact algorithm for the problem of planning with participation

constraints.

Theorem 1. There is an algorithm that runs in time poly(𝑛,𝑚, 𝐿) and computes an optimal policy
satisfying participation constraints, where 𝑛,𝑚, and 𝐿 are the number of states, number of actions, and
number bits required to encode each input number (rewards and transition probabilities) respectively.

The proof of the theorem is deferred to Section 3.5, and the next subsection is dedicated to a

more friendly presentation of the algorithm and the analysis.
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Fig. 2. The two types of evaluation subroutines of our algorithm.

3.1 Overview of the Algorithm
Given the definition of Pareto frontier curves, the maximum overall utility of the principal that

can be achieved by a feasible policy is equal to max𝑥 ∈𝐷𝑠
init
∩R+ 𝑓𝑠init (𝑥). 6 So, the problem of planning

with participation constraints immediately reduces to computing the Pareto frontier curve at the

initial state 𝑠init — which, unfortuantely, turns out to be a highly challenging (if not impossible) task.

In particular, although each 𝑓𝑠 is piecewise linear, there may be exponentially many pieces in each

curve, which makes explicitly computing the curves infeasible. In [24], the authors circumvent

this issue by allowing approximation — they give an approximation algorithm (which achieves

an additive 𝜀-approximation in poly(1/𝜀) time) for planning with participation constraints by

recursively computing approximations of the Pareto frontier curves, from later states to earlier

ones. Their main technical contribution is identifying a computationally feasible recursive relation

between the curves, and coming up with a way to approximate the curves using only a small

number of pieces. However, it seems unlikely that similar approaches could lead to an efficient

exact algorithm.

In contrast to their approach, our algorithm does not try to compute (or approximate) the entire

Pareto frontier curves. Instead, we only evaluate the curves “at specific points” and “along specific

directions” (see Figure 2). The left side of Figure 2 illustrates evaluating 𝑓𝑠 at a given point, where

we want to compute 𝑓𝑠 (𝑥) for a given 𝑥 . The right side of Figure 2 shows an evaluation along

a specific direction 𝛼 ∈ R2, which returns a point (𝑥, 𝑓𝑠 (𝑥)) that maximizes the inner product

𝛼 · (𝑥, 𝑓𝑠 (𝑥)). These two types of evaluations correspond to the two major conceptual subroutines
of our algorithm.

If these subroutines can be implemented efficiently, then we can immediately compute the

maximum overall utility of the principal: it is equal to the 𝑦-coordinate of the point found by

evaluating 𝑓𝑠init along the direction (0, 1) if the 𝑥-coordinate of the returned point is nonnegative;

otherwise it is equal to 𝑓𝑠init (0). This is true because 𝑓𝑠init is concave: if a point with the largest

𝑦-coordinate on 𝑓𝑠init is to the left of 𝑥 = 0, then the optimal feasible point must have 𝑥-coordinate 0.

Based on these observations, we only need to efficiently implement these two subroutines. Below

we discuss how this is possible. We will refrain from being fully formal, and focus on the intuition

instead. For the full description of the algorithm, see Algorithm 1.

Evaluations at specific points. Suppose we want to evaluate 𝑓𝑠 at 𝑥 . We show that this can be

reduced to multiple evaluations along specific directions of 𝑓𝑠 . Consider the left side of Figure 3.

To find the (gray) point (𝑥, 𝑓𝑠 (𝑥)), we only need to find the two endpoints of the piece containing

it, namely the (blue) point (𝑥1, 𝑓𝑠 (𝑥1)) and the (green) point (𝑥2, 𝑓𝑠 (𝑥2)). Then, taking the convex

6
We use R+ to denote the set of nonnegative real numbers.
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combination of these two endpoints with the right coefficients gives us (𝑥, 𝑓𝑠 (𝑥)). These coefficients

can be computed using 𝑥 (given as input), 𝑥1 and 𝑥2, as illustrated in Figure 3. So it suffices to find

the two endpoints.

Consider, for example, the left endpoint (𝑥1, 𝑓𝑠 (𝑥1)). There exists some direction 𝛼 (e.g., 𝛼1 in the

figure) such that

𝛼 · (𝑥1, 𝑓𝑠 (𝑥1)) = max

𝑥 ∈𝐷𝑠

𝛼 · (𝑥, 𝑓𝑠 (𝑥)).

We only need to find such an 𝛼 and evaluate 𝑓𝑠 along that direction. To this end, observe that the

maximizer found by evaluating along 𝛼 moves on the curve monotonically as we rotate 𝛼 (consider,

from the left to the right, 𝛼3, 𝛼1, 𝛼2 and the corresponding maximizers, which are the red, blue,

and green points respectively). Again this is because the curve is concave. So, we need to find

the “rightmost” 𝛼 such that the maximizer found by evaluating along 𝛼 is to the left of 𝑥 , i.e., the

𝑥-coordinate of that maximizer is no larger than 𝑥 .

To achieve this, we perform a binary search over 𝛼 . We defer the discussion on the numerical

issues of this binary search to Section 3.2. For now, we assume the number of iterations this binary

search requires is poly(𝑛,𝑚, 𝐿), which is in fact the case, as we will show later.

Evaluations along specific directions. Now consider the other subroutine where we want to

evaluate 𝑓𝑠 along a given direction 𝛼 . We show that this can be reduced to multiple evaluations

of both types, of the Pareto frontier curves in later states. At a high level, evaluating 𝑓𝑠 along

𝛼 can be viewed as a planning problem, where the goal is to find a policy 𝜋 that maximizes

𝛼 · (𝑢𝜋
𝑃
(∅, 𝑠), 𝑢𝜋

𝐴
(∅, 𝑠)), subject to participation constraints in the future (and not in state 𝑠).

Since the policy is unconstrained in state 𝑠 , without loss of generality, an optimal policy 𝜋

has the Markovian property in state 𝑠 only: consider the behavior of the policy right after taking

action 𝑎 in 𝑠 , leaving 𝑠 , and entering a later state 𝑠 ′ > 𝑠 . The subpolicy from this point on must

maximize 𝛼 · (𝑢𝜋
𝑃
((𝑠, 𝑎), 𝑠 ′), 𝑢𝜋

𝐴
((𝑠, 𝑎), 𝑠 ′)) subject to participation constraints (including in state 𝑠 ′).

In particular, the subpolicy at 𝑠 ′ does not depend on the action 𝑎 taken in state 𝑠 or the subpolicy in

other later states.
7
This subpolicy corresponds to a point on 𝑓𝑠′ , which can be found by evaluating

𝑓𝑠′ twice: along direction 𝛼 and at 𝑥 = 0 respectively, and then picking the point with the larger

𝑥-coordinate (again because 𝑓𝑠′ is concave). In other words, the planning subproblem in each state

𝑠 ′ > 𝑠 can be reduced to two evaluations of 𝑓𝑠′ . After solving these subproblems for each 𝑠 ′ > 𝑠 , the

policy in state 𝑠 should choose an action 𝑎 which maximizes

𝛼 · (𝑟𝑃 (𝑠, 𝑎), 𝑟𝐴 (𝑠, 𝑎)) + E𝑠′∼𝑃 (𝑠,𝑎)
[
𝛼 ·

(
𝑢𝜋𝑃 ((𝑠, 𝑎), 𝑠

′), 𝑢𝜋𝐴 ((𝑠, 𝑎), 𝑠
′)
) ]
.

The above procedure is illustrated in the right side of Figure 3, where the action 𝑎 is a maximizer of

the above expectation. The two cases inside the expectation in the figure correspond to the two

cases of the subproblem in each later state 𝑠 ′. The upper case is when evaluating 𝑓𝑠′ along 𝛼 returns

the (gray) point (𝑥 ′, 𝑓𝑠′ (𝑥 ′)) with 𝑥 ′ ≥ 0, so it corresponds to the subpolicy at 𝑠 ′. The lower case is
when evaluating 𝑓𝑠′ along 𝛼 gives a point with a negative 𝑥-coordinate, in which case the (gray)

point (0, 𝑓𝑠′ (0)) corresponds to the subpolicy in state 𝑠 ′.

Putting everything together. The above discussion already describes a way to perform both types

of evaluations in finite time. This is because evaluations at specific points reduce to only evaluations

along specific directions in the same state; and evaluations along specific directions reduce to only

evaluations in later states (one evaluation of each type for each later state). However, a problem is

that it generally takes exponential time if we recursively perform the evaluations for subproblems in

the naïve way, because for both types of evaluations there can be polynomially many subproblems

7
Note that the subpolicy in state 𝑠′ is in effect only if 𝑠′ is the first state reached after leaving 𝑠 . In the case where we reach

some 𝑠′′ immediately after leaving 𝑠 and then later reach 𝑠′, it is the subpolicy in 𝑠′′ that should apply.
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Fig. 3. Recursive (naïve) implementations of the two subroutines.

(i.e., the number of iterations in the binary search for evaluations at specific points, and the number

of later states for evaluations along specific directions).

So, to evaluate 𝑓𝑠init at 𝑥 = 0 and along (0, 1) efficiently, we need to schedule and handle all

the evaluations involved (most of which originate from recursive calls) in a more global manner.

Intuitively, for any state 𝑠 ∈ S, we only ever need to calculate 𝑓𝑠 (0) and evaluate 𝑓𝑠 along a

polynomial number of directions 𝛼 . This is because each direction 𝛼 can be traced back to one of 𝑛

states that first queries for this 𝛼 ; at the same time, each state only queries a polynomial number of

different 𝛼 ’s. Below we give an informal hierarchical description of the schedule, together with

inline annotations.

• First observe that evaluations at 𝑥 = 0 appear repeatedly in the naïve implementation. We

therefore center our schedule around these evaluations.

• We will compute 𝑓𝑠 (0) for all states 𝑠 ∈ S one by one from later states to earlier ones (i.e.,

from 𝑠term = 𝑛 to 𝑠init = 1), since the recursive dependence (as discussed above) never goes

backwards. We call this the outer loop.
– Consider some state 𝑠 in the outer loop, and suppose we have already computed 𝑓𝑠′ (0) for
all 𝑠 ′ > 𝑠 . As discussed above, to compute 𝑓𝑠 (0), it suffices to perform a binary search on

𝛼 in state 𝑠 .

∗ In each iteration of the binary search, we need to perform an evaluation of 𝑓𝑠 along 𝛼 . As

discussed above, we only need to evaluate 𝑓𝑠′ along 𝛼 for each 𝑠 ′ > 𝑠 , since we already

know 𝑓𝑠′ (0). This can be done in a single backward pass (from 𝑠term = 𝑛 to 𝑠 + 1) without
nested recursive calls, which we call the inner loop.
· For each 𝑠 ′ > 𝑠 in the inner loop, the evaluation of 𝑓𝑠′ along 𝛼 reduces to the evaluation

of 𝑓𝑠′′ along 𝛼 and 𝑓𝑠′′ (0) for all 𝑠 ′′ > 𝑠 ′.
· The former has already been computed in previous iterations of the inner loop, and

the latter has already been computed in previous iterations of the outer loop. We only

need to retrieve the two points for 𝑠 ′′ = 𝑠 ′ + 1, . . . , 𝑛, which means every iteration of

the inner loop takes 𝑂 (𝑛) time.

∗ The inner loop has 𝑂 (𝑛) iterations, so the total time is 𝑂 (𝑛2), which is also the runtime

of one iteration of binary search.

– Now as discussed before, the binary search has poly(𝑛,𝑚, 𝐿) iterations (we will come back

to this not-yet-substantiated claim momentarily), so the total time is poly(𝑛,𝑚, 𝐿).
• The outer loop has 𝑂 (𝑛) iterations, so the total time of computing 𝑓𝑠 (0) for all 𝑠 ∈ S is

poly(𝑛,𝑚, 𝐿).
• Finally, we need one last evaluation of 𝑓𝑠init along the direction (0, 1). This can be done by a

single call to the inner loop above, which takes time 𝑂 (𝑛2).
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A formal description of our algorithm is given in Algorithm 1.

ALGORITHM 1: A polynomial-time algorithm for computing a principal-optimal policy subject to

participation constraints.

Input: state space S = [𝑛], action space A, reward functions 𝑟𝑃 and 𝑟𝐴 , and transition probabilities 𝑃 .

Output: an implicit representation of a principal-optimal policy subject to participation constraints.

/* the outer loop */

1 for 𝑠 = 𝑛, 𝑛 − 1, . . . , 1 do
/* binary search for the endpoints of the piece containing (0, 𝑓𝑠 (0)) */

2 let ℓ ← 0, 𝑟 ← 2
3𝑛𝐿

;

3 while 𝑟 − ℓ ≥ 2
−5𝑛2𝐿 do

4 let 𝛼 ← ((𝑟 + ℓ)/2, 1) ∈ R2 ;
/* the inner loop */

5 for 𝑠 ′ = 𝑛, 𝑛 − 1, . . . , 𝑠 do
6 let 𝑎𝑠′,𝛼 ← argmax𝑎∈A 𝛼 ·

(
(𝑟𝐴 (𝑠 ′, 𝑎), 𝑟𝑃 (𝑠 ′, 𝑎)) + E𝑠′′∼𝑃 (𝑠′,𝑎) [(𝑥𝑠′′,𝛼 , 𝑦𝑠′′,𝛼 )]

)
;

7 let (𝑥𝑠′,𝛼 , 𝑦𝑠′,𝛼 ) ← (𝑟𝐴 (𝑠 ′, 𝑎𝑠′,𝛼 ), 𝑟𝑃 (𝑠 ′, 𝑎𝑠′,𝛼 )) + E𝑠′′∼𝑃 (𝑠′,𝑎𝑠′,𝛼 ) [(𝑥𝑠′′,𝛼 , 𝑦𝑠′′,𝛼 )] ;
/* replace (𝑥𝑠′,𝛼 , 𝑦𝑠′,𝛼 ) with (0, 𝑓𝑠′ (0)) if 𝑥𝑠′,𝛼 < 0; this is possible only for

𝑠 ′ > 𝑠, where 𝑓𝑠′ (0) = 𝑦𝑠′ has already been computed */

8 if 𝑥𝑠′,𝛼 < 0 and 𝑠 ′ > 𝑠 then
9 let (𝑥𝑠′,𝛼 , 𝑦𝑠′,𝛼 ) ← (0, 𝑦𝑠′);

10 let ℓ ← 𝛼 if 𝑥𝑠,𝛼 ≤ 0, and 𝑟 ← 𝛼 otherwise;

11 let 𝛼𝑠,− ← (ℓ, 1), 𝛼𝑠,+ ← (𝑟, 1);
12 let (𝑥𝑠,−, 𝑦𝑠,−) ← (𝑥𝑠,𝛼𝑠,− , 𝑦𝑠,𝛼𝑠,− ), (𝑥𝑠,+, 𝑦𝑠,+) ← (𝑥𝑠,𝛼𝑠,+ , 𝑦𝑠,𝛼𝑠,+ );

/* compute 𝑦𝑠 = 𝑓𝑠 (0) as a linear combination of 𝑦𝑠,− and 𝑦𝑠,+ */

13 let 𝑦𝑠 ← (𝑥𝑠,+ · 𝑦𝑠,− − 𝑥𝑠,− · 𝑦𝑠,+)/(𝑥𝑠,+ − 𝑥𝑠,−);
/* fix infeasible points reached during the binary search */

14 for each 𝛼 tried in the above binary search where 𝑥𝑠,𝛼 < 0 do
15 let (𝑥𝑠,𝛼 , 𝑦𝑠,𝛼 ) ← (0, 𝑦𝑠 );

16 let 𝑒𝑦 = (0, 1);
17 for 𝑠 = 𝑛, 𝑛 − 1, . . . , 1 do
18 let 𝑎𝑠,𝑒𝑦 ← argmax𝑎∈A 𝑒𝑦 ·

(
(𝑟𝐴 (𝑠, 𝑎), 𝑟𝑃 (𝑠, 𝑎)) + E𝑠′∼𝑃 (𝑠,𝑎) [(𝑥𝑠′,𝑒𝑦 , 𝑦𝑠′,𝑒𝑦 )]

)
;

19 let (𝑥𝑠,𝑒𝑦 , 𝑦𝑠,𝑒𝑦 ) ← (𝑟𝐴 (𝑠, 𝑎𝑠,𝑒𝑦 ), 𝑟𝑃 (𝑠, 𝑎𝑠,𝑒𝑦 )) + E𝑠′∼𝑃 (𝑠,𝑎) [(𝑥𝑠′,𝑒𝑦 , 𝑦𝑠′,𝑒𝑦 )];
/* this time we do not need to handle 𝑠init = 1 separately */

20 if 𝑥𝑠,𝑒𝑦 < 0 then
21 let (𝑥𝑠,𝑒𝑦 , 𝑦𝑠,𝑒𝑦 ) ← (0, 𝑦𝑠 );

/* the principal’s optimal reward is 𝑦𝑠init,𝑒𝑦 = 𝑦1,𝑒𝑦 */

22 return all {(𝑥𝑠,−, 𝑥𝑠,+)}, {𝑥𝑠,𝛼 }, {(𝛼𝑠,−, 𝛼𝑠,+)}, and {𝑎𝑠,𝛼 } computed above;

3.2 Handling Numerical Issues
Finally, we come back to the number of iterations required in the binary search in an evaluation

at a specific point (used in the algorithm to compute 𝑓𝑠 (0) for each state 𝑠). We show that under

appropriate parametrization of the direction 𝛼 , it suffices to perform the binary search up to some

singly exponential precision, which implies the number of iterations is polynomial. In particular,

we search over the slope of the perpendicular direction to 𝛼 . The intuition is that we only need
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to distinguish between the slopes of two consecutive pieces on 𝑓𝑠 , which cannot be too close to

each other. In fact, we will establish a stronger claim: the coordinates of all turning points on 𝑓𝑠
must be integral multiples of some singly-exponentially small quantity. Since these coordinates are

bounded between −𝑛 and 𝑛, the slope of the line between any two turning points (which do not

even need to be adjacent) cannot take too many values. Moreover, the magnitude of the slope is

upper bounded by some not too large quantity. This allows the binary search to terminate in not

too many steps. We elaborate in the following paragraph.

To see why the above is true, we consider a specific procedure of recursively constructing the

entire 𝑓𝑠 for all 𝑠 from later states to earlier ones, and treat all quantities involved in the construction

as fractions. Fix some 𝑠 , and assume 𝑓𝑠′ for any 𝑠
′ > 𝑠 has the desired property, i.e., the denominator

of any quantity used to represent 𝑓𝑠′ is not too large. We argue that 𝑓𝑠 also has this property (where

the denominator may be moderately larger than the denominators in later states — in fact, it is the

blowup that we try to bound).

Recall that any turning point on 𝑓𝑠 can be found by evaluating along some direction. So fix a

turning point (𝑥,𝑦) on 𝑓𝑠 , and consider any direction 𝛼 which gives this point. As discussed earlier

(see the right side of Figure 3), there exists some action 𝑎 ∈ A such that

(𝑥,𝑦) = E𝑠′∼𝑃 (𝑠,𝑎) [(𝑥𝑠′, 𝑦𝑠′)] + (𝑟𝐴 (𝑠, 𝑎), 𝑟𝑃 (𝑠, 𝑎))

=
∑
𝑠′>𝑠

𝑃 (𝑠, 𝑎, 𝑠 ′) · (𝑥𝑠′, 𝑦𝑠′) + (𝑟𝐴 (𝑠, 𝑎), 𝑟𝑃 (𝑠, 𝑎)),

where (𝑥𝑠′, 𝑦𝑠′) is either a turning point on 𝑓𝑠′ or (0, 𝑓𝑠′ (0)). Among all quantities on the right

hand side of the above equation, 𝑃 (𝑠, 𝑎, 𝑠 ′), 𝑟𝐴 (𝑠, 𝑎), and 𝑟𝑃 (𝑠, 𝑎) have at most 𝐿 bits in the binary

representation, so the denominators of these quantities are at most 2
𝐿
. Moreover, when (𝑥𝑠′, 𝑦𝑠′)

is a turning point on 𝑓𝑠′ , by the induction hypothesis, the denominators of both coordinates are

not too large. So if all (𝑥𝑠′, 𝑦𝑠′) are turning points, then we immediately know that (𝑥,𝑦) has the
desired property: the denominator of both coordinates can only blow up by a factor of 2

𝐿
. And

importantly, in any case, the denominator of 𝑥𝑠 , or 𝑥𝑠′ for any 𝑠
′ > 𝑠 , can be at most 2

𝑛𝐿
, because

the 𝑥-coordinates of turning points in any state only depend on the 𝑥-coordinates of turning points

in later states.

The problematic case is when (𝑥𝑠′, 𝑦𝑠′) = (0, 𝑓𝑠′ (0)). To handle this case, we need to argue that

the denominator of 𝑦𝑠′ is not too large either, compared to those of the turning points on 𝑓𝑠′ . Recall

that there exist turning points (𝑥ℓ , 𝑦ℓ ) and (𝑥𝑟 , 𝑦𝑟 ) on 𝑓𝑠′ , where 𝑥ℓ < 0 and 𝑥𝑟 > 0, such that

𝑦𝑠′ =
𝑥𝑟 · 𝑦ℓ − 𝑥ℓ · 𝑦𝑟

𝑥𝑟 − 𝑥ℓ
.

So the denominator of𝑦𝑠′ (compared to that of𝑦ℓ or𝑦𝑟 ) can blow up by at most a factor of 2
𝑛𝐿

(which

is the maximum denominator of 𝑥ℓ and 𝑥𝑟 ), times the numerator of 𝑥𝑟 −𝑥ℓ (which is upper bounded

by 2𝑛 · 2𝑛𝐿 because −𝑛 ≤ 𝑥ℓ < 𝑥𝑟 ≤ 𝑛). So in any case, assuming 𝑛 ≥ 2, the maximum blowup

incurred in the construction of 𝑓𝑠 is 2
3𝑛𝐿

, and consequently, the denominator of the 𝑦-coordinate of

any turning point on the curve of any state is 2
3𝑛2𝐿

. The above discussion on numerical issues is

formalized as Lemma 3, which is stated and proved in Section 3.5.

3.3 Decoding the Policy
Algorithm 1 outputs only an implicit representation of an optimal policy. In this subsection,

we describe how to efficiently decode the output of Algorithm 1, so that we can execute the

corresponding policy. The idea is to keep track of the current “objective direction”, which is initially

(0, 1) and may randomly change (and in particular, rotate to the right) as the state evolves. This

objective direction essentially corresponds to how much we need to compensate the agent from
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this point on in order to satisfy participation constraints. In other words, the objective direction

succinctly encodes the relevant part of the history.

According to Algorithm 1, at any time, the onward policy in the current state (given the history)

corresponds to either the maximizer along the objective direction, or the intersection of the

Pareto frontier curve with 𝑥 = 0. In the former case, the agent is satisfied with the current level

of compensation, so we do not need to compensate more. In this case, we can take an action

deterministically, and the objective direction does not change. In the latter case, we need to

compensate the agent more to satisfy participation constraints, so we rotate the objective direction

to the right. In this case, we need to randomize between the two actions corresponding to the two

endpoints of the piece containing the intersection point. Depending on which action is actually

chosen, the new objective direction is the one for which the corresponding endpoint is themaximizer.

Since all these points and directions (along with many other auxiliary points and directions) have

been computed in Algorithm 1, we only need to read them from the output. The full algorithm is

given as Algorithm 2, which maps each history-state pair to a (random) action. Algorithm 2 can be

easily adapted into a dynamic procedure that plays the optimal policy on the fly while interacting

with the environment (by updating 𝛼), rather than re-analyzing the history from scratch at each

point in time.

ALGORITHM 2: An polynomial-time algorithm for decoding and executing (one step of) the optimal

policy found by Algorithm 1.

Input: the output of Algorithm 1 and a history-state pair (ℎ, 𝑠) where ℎ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ).
Output: a possibly random action corresponding to the optimal policy found by Algorithm 1.

1 let 𝛼 ← 𝑒𝑦 = (0, 1);
/* trace the history and compute the current internal state of the policy */

2 for 𝑖 = 1, 2, . . . , 𝑡 do
3 if 𝑥𝑠𝑖 ,𝛼 = 0 then
4 if 𝑎𝑖 = 𝑎𝑠𝑖 ,𝛼𝑠𝑖 ,− then let 𝛼 ← 𝛼𝑠𝑖 ,−; otherwise let 𝛼 ← 𝛼𝑠𝑖 ,+;

5 if 𝑥𝑠,𝛼 = 0 then
/* optimal onward policy corresponds to point (0, 𝑓𝑠 (0)), which requires

randomization in state 𝑠 */

6 return 𝑎𝑠,𝛼𝑠,− with probability 𝑥𝑠,+/(𝑥𝑠,+ − 𝑥𝑠,−), and 𝑎𝑠,𝛼𝑠,+ with probability −𝑥𝑠,−/(𝑥𝑠,+ − 𝑥𝑠,−);
7 else

/* optimal onward policy corresponds to the maximizer along direction 𝛼 */

8 return 𝑎𝑠,𝛼 ;

Note that the behavior of the policy output by Algorithm 1 is unspecified for some history-state

pairs. However, if one strictly follows the specified part of the policy, then the unspecified part

can never be reached (i.e., the probability that we arrive at such a history-state pair is 0). For such

unreachable pairs, the behavior of the decoding algorithm can be arbitrary.

3.4 Remarks and Extensions
Structure of optimal policies. Our algorithm also directly implies some structural properties of

optimal policies with participation constraints. In particular:

• Although there might be exponentially many turning points on the Pareto frontier curves,

for the optimal policy we compute, there are only polynomially many of them for which it is

possible that the policy visits them. These points are maximizers for the polynomially many

directions we queried during the computation of an optimal policy.
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• Optimal policies are almost deterministic. In fact, an optimal policy randomizes between

precisely 2 actions when the participation constraint in the current state (given the history) is

binding. This is also where the policy branches and history-dependence is introduced. In all

other situations, the policy deterministically chooses an action. This aligns well with intuition:

when no participation constraints are binding, it suffices to simply maximize the principal’s

utility, which naturally leads to a completely deterministic and history-independent policy.

Extensions to richer constraints. Our algorithm can be generalized to the case where the agent’s

onward utility in each state must be in one of several disjoint intervals (instead of a single interval

[0,∞)). Moreover, these feasible intervals can be different for each state. In order to handle multiple

feasible intervals in a state 𝑠 , we evaluate 𝑓𝑠 at the endpoints of all these intervals, which can be

done by binary search. Once we have computed these points, to evaluate a curve along a direction

𝛼 , we only need to handle subproblems where we evaluate later curves restricted to feasible intervals.
This can be done since if the unconstrained maximizer is infeasible, then the optimal feasible point

must be one of the two endpoints that are closest to the unconstrained maximizer. Since we have

already computed all endpoints, we can simply try the two points and choose the better one.

Infinite-horizon environments with discounted reward. Now we discuss how to extend our algo-

rithm to the infinite-horizon case with discounted reward. For such environments, we describe

an algorithm that computes a policy subject to participation constraints that is optimal up to an

additive error of 𝜀 > 0, in time poly(𝑛,𝑚, 𝐿, log(1/𝜀)) for any 𝜀 > 0. This is done by reducing to the

finite-horizon case and running Algorithm 1.

First we briefly define infinite-horizon environments. As in the finite-state case, there are 𝑛 states

S = [𝑛] and𝑚 actions A, and 𝑟𝑃 , 𝑟𝐴 and 𝑃 denote the principal’s reward, the agent’s reward, and

the transition probabilities respectively. There is an initial state 𝑠init = 1, but no terminal state.

We also do not require transitions to be from earlier states to later ones. In addition, there are

discount factors 𝛿𝑃 ∈ (0, 1) and 𝛿𝐴 ∈ (0, 1) (which we treat as constants) for the principal and the

agent respectively. Define histories similarly as in finite-horizon environments. The onward utility

𝑢𝜋
𝑃
(ℎ, 𝑠) of the principal under policy 𝜋 in state 𝑠 given history ℎ is defined recursively such that

𝑢𝜋𝑃 (ℎ, 𝑠) = E𝑎∼𝜋 (ℎ,𝑠),𝑠′∼𝑃 (𝑠,𝑎) [𝑟𝑃 (𝑠, 𝑎) + 𝛿𝑃 · 𝑢
𝜋
𝑃 (ℎ + (𝑠, 𝑎), 𝑠

′)] .
The onward utility 𝑢𝜋

𝐴
of the agent is defined similarly, with 𝑢𝜋

𝑃
and 𝑟𝑃 replaced with 𝑢𝜋

𝐴
and 𝑟𝐴.

Participation constraints require that for all (ℎ, 𝑠) ∈ H × S, 𝑢𝜋
𝐴
(ℎ, 𝑠) ≥ 0. We say a policy 𝜋 is

feasible if it satisfies participation constraints. The goal is to find a feasible policy that maximizes

the principal’s overall utility 𝑢𝜋
𝑃
(∅, 𝑠init).

Note that the finite-horizon case can be viewed as a special case of the infinite-horizon case

with discounted reward, by scaling the rewards appropriately and replacing the terminal state

with an absorbing state from which there are no more rewards. As a result, optimal policies in the

infinite-horizon case in general also need to be randomized and history-dependent, so traditional

methods are unlikely to work for the problem. This is true even for approximately optimal policies,

as illustrated in the examples in Section 2.2. Therefore, to handle the infinite-horizon case, it is

necessary to incorporate the ideas developed in our algorithm for the finite-horizon case.

Our algorithm consists of two parts. Based on the principal’s discount factor 𝛿𝑃 and the desired

accuracy 𝜀, we first compute a cutoff time

𝑇 = 𝑂 (log(1/(𝜀 · (1 − 𝛿𝑃 )))/log(1/𝛿𝑃 )).
The idea is that the contribution to the overall utility after the first𝑇 stages is at most

1

1−𝛿𝑃 · 𝛿
𝑇
𝑃
≤ 𝜀.

After the𝑇 -th stage, we run a stationary policy that is optimal for the agent, which can be computed

in polynomial time (through linear programming, or any other algorithm for computing optimal
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policies for standard infinite-horizon MDPs with discounted rewards). Then we treat the first 𝑇

stages as a finite-horizon environment, and run Algorithm 1 for this environment.

Since 𝑇 = 𝑂 (log(1/𝜀)), this blows up the size of the problem at most by a 𝑂 (log(1/𝜀)) factor (as
we make a copy of every state for every period). Two aspects of how this finite-horizon version is set

up deserve mention. First, to match the infinite-horizon version, we have to discount the rewards in

this finite-horizon version. This is a straightforward modification: as every state in the finite-horizon

version is already indexed by time, we can simply adjust the rewards for those time-indexed states

by the appropriate discount factors. Second, we still have to account for the discounted utility that

the agent receives after 𝑇 , as this may make it easier to satisfy the participation constraints before

𝑇 . To do so, we can simply add the total expected discounted utility after𝑇 (from the agent-optimal

stationary policy) as a single lump-sum reward to the final non-terminal state in the finite version.

The overall policy is then to run the output of Algorithm 1 in the first 𝑇 stages, and to run the

agent-optimal stationary policy after the 𝑇 -th stage.

To see why this policy is only suboptimal by at most 𝜀, observe that the expected discounted

principal utility that it obtains from the first 𝑇 stages is at least the expected discounted principal

utility that the overall-optimal policy obtains from those stages. This is because Algorithm 1

explicitly optimizes for the first𝑇 stages only, and the participation constraints it faces in these first

𝑇 stages cannot be tighter than those faced by the optimal policy, as the participation constraints

for the finite-horizon version correspond to being as generous as possible to the agent after 𝑇 .

Furthermore, the expected discounted principal utility that our algorithm obtains from the stages

after 𝑇 can be at most 𝜀 lower than that for the optimal policy, by our choice of 𝑇 .

3.5 Proof of Theorem 1
In this section, we present the proof of our main result (Theorem 1). We start by proving several key

technical lemmas. We first prove the following lemma, which provides a tractable interpretation of

evaluations along specific directions.

Lemma 2. For any state 𝑠 ∈ S and direction 𝛼 ∈ (R × R+),

max

𝑥 ∈𝐷𝑠

𝛼 · (𝑥, 𝑓𝑠 (𝑥)) = max

𝑎∈A

(
𝛼 · (𝑟𝐴 (𝑠, 𝑎), 𝑟𝑃 (𝑠, 𝑎)) + E𝑠′∼𝑃 (𝑠,𝑎)

[
max

𝑥 ′∈𝐷𝑠′∩R+
𝛼 · (𝑥 ′, 𝑓𝑠′ (𝑥 ′))

] )
.

Proof. We first show the left hand side is greater than or equal to the right hand side. Let 𝑎∗

and 𝑥𝑠′ ≥ 0 for each 𝑠 ′ > 𝑠 be the maximizers on the right hand side. By the definition of 𝑓𝑠′ , each

(𝑥𝑠′, 𝑓𝑠′ (𝑥𝑠′)) corresponds to a subpolicy 𝜋∗
𝑠′ starting from state 𝑠 ′. We have

(𝑥𝑠′, 𝑓𝑠′ (𝑥𝑠′)) = (𝑢
𝜋∗
𝑠′

𝐴
(∅, 𝑠 ′), 𝑢𝜋

∗
𝑠′

𝑃
(∅, 𝑠 ′)).

Moreover, for any (ℎ, 𝑠 ′′) ⊇ (∅, 𝑠 ′), 𝑢𝜋
∗
𝑠′

𝐴
(ℎ, 𝑠 ′′) ≥ 0. Now consider the policy 𝜋 defined such that

𝜋 (∅, 𝑠) = 𝑎∗, and for each ℎ = (𝑠, 𝑎∗, 𝑠 ′, 𝑎2, 𝑠3, . . . , 𝑠𝑡 , 𝑎𝑡 ) and 𝑠 ′′ ∈ S,

𝜋 (ℎ, 𝑠 ′′) = 𝜋∗𝑠′ ((𝑠 ′, 𝑎2, 𝑠3, . . . , 𝑠𝑡 , 𝑎𝑡 ), 𝑠 ′′).

That is, 𝜋 follows the recommendations of 𝜋∗
𝑠′ whenever the first state reached after leaving 𝑠 is 𝑠 ′.

For any unspecified history-state pair, 𝜋 always maximizes the agent’s utility. It is easy to show

that

(𝑢𝜋𝐴 (∅, 𝑠), 𝑢
𝜋
𝑃 (∅, 𝑠)) = (𝑟𝐴 (𝑠, 𝑎

∗), 𝑟𝑃 (𝑠, 𝑎∗)) + E𝑠′∼𝑃 (𝑠,𝑎) [(𝑥𝑠′, 𝑓𝑠′ (𝑥𝑠′))] .
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And moreover, because each 𝜋∗
𝑠′ is feasible in the future and 𝑥𝑠′ ≥ 0, 𝑢𝜋

𝐴
(ℎ, 𝑠 ′′) ≥ 0 for any

(ℎ, 𝑠 ′′) ⊇ (∅, 𝑠). This means

max

𝑥 ∈𝐷𝑠

𝛼 · (𝑥, 𝑓𝑠 (𝑥)) ≥ 𝛼 · (𝑢𝜋𝐴 (∅, 𝑠), 𝑢
𝜋
𝑃 (∅, 𝑠))

= 𝛼 · (𝑟𝐴 (𝑠, 𝑎∗), 𝑟𝑃 (𝑠, 𝑎∗)) + 𝛼 · E𝑠′∼𝑃 (𝑠,𝑎) [(𝑥𝑠′, 𝑓𝑠′ (𝑥𝑠′))] .

Now consider the other direction. Let 𝑥∗ be the maximizer on the left hand side, and 𝜋∗ be the
corresponding policy. Without loss of generality, 𝜋∗ (∅, 𝑠) = 𝑎∗ is deterministic (because otherwise

we can simply choose the best action in the support). For each 𝑠 ′, let 𝜋𝑠′ be such that

𝜋𝑠′ (ℎ, 𝑠 ′′) = 𝜋 ((𝑠, 𝑎∗) + ℎ, 𝑠 ′′).

That is, 𝜋𝑠′ is the subpolicy starting from 𝑠 ′ induced by 𝜋∗. Then because 𝜋∗ is feasible in the future,

each 𝜋𝑠′ is also feasible in the future, and moreover, 𝑟
𝜋𝑠′
𝐴
(∅, 𝑠 ′) ≥ 0. So we have:

𝛼 · (𝑥∗, 𝑓𝑠 (𝑥∗)) = 𝛼 · (𝑟𝐴 (𝑠, 𝑎∗), 𝑟𝑃 (𝑠, 𝑎∗)) + E𝑠′∼𝑃 (𝑠,𝑎∗) [𝛼 · (𝑟𝜋𝑠′𝐴
(∅, 𝑠 ′), 𝑟𝜋𝑠′

𝑃
(∅, 𝑠 ′))]

≤ max

𝑎∈A

(
𝛼 · (𝑟𝐴 (𝑠, 𝑎), 𝑟𝑃 (𝑠, 𝑎)) + E𝑠′∼𝑃 (𝑠,𝑎)

[
max

𝑥 ′∈𝐷𝑠′∩R+
𝛼 · (𝑥 ′, 𝑓𝑠′ (𝑥 ′))

] )
.

This concludes the proof. □

The next lemma states that the denominators of the 𝑥 and 𝑦 coordinates returned by any

evaluation of any Pareto curve throughout the algorithm are never too large, which is useful for

upper bounding the number of iterations of binary search.

Lemma 3. Consider all coordinates as fractions. Then we have: (1) the least common denominator of
the 𝑥-coordinates of the turning points on {𝑓𝑠 }𝑠∈S is at most 2𝑛𝐿 , and (2) the least common denominator
of both the 𝑥-coordinates and the 𝑦-coordinates of the turning points on {𝑓𝑠 }𝑠∈S is at most 23𝑛

2𝐿 .

Proof. We start by proving the first statement by mathematical induction. For 𝑠term = 𝑛, each

turning point on 𝑓𝑠term is (𝑟𝐴 (𝑠term, 𝑎), 𝑟𝑃 (𝑠term, 𝑎)) for some 𝑎 ∈ A, and since each 𝑟𝐴 (𝑠term, 𝑎) has
at most 𝐿 bits, 2

𝐿
is a denominator of the 𝑥-coordinate of each turning point.

Now fix some 𝑠 < 𝑠term = 𝑛 and suppose for any 𝑠 ′ > 𝑠 and any turning point on 𝑓𝑠′ , 2
(𝑛−𝑠)𝐿

is a

denominator of the 𝑥-coordinate of that point. We argue that for any turning point on 𝑓𝑠 , 2
(𝑛−𝑠+1)𝐿

is a denominator of the 𝑥-coordinate of the point. Consider any turning point (𝑥, 𝑓𝑠 (𝑥)). Observe
that there is a direction 𝛼 ∈ R × R+ such that

𝛼 · (𝑥, 𝑓𝑠 (𝑥)) = max

𝑥 ′∈𝐷𝑠

𝛼 · (𝑥 ′, 𝑓𝑠 (𝑥 ′)).

So by Lemma 2, there exists an action 𝑎 ∈ A and some 𝑥𝑠′ ∈ 𝐷𝑠 ∩ R+, such that

𝑥 = 𝑟𝐴 (𝑠, 𝑎) +
∑
𝑠′>𝑠

𝑃 (𝑠, 𝑎, 𝑠 ′) · 𝑥𝑠′ .

Moreover, since 𝑥𝑠′ is a maximizer, without loss of generality, either 𝑥𝑠′ = 0 or 𝑥𝑠′ is a turning point

on 𝑓𝑠′ . In both cases, by the induction hypothesis, 2
(𝑛−𝑠)𝐿

is a denominator of 𝑥𝑠′ . Since 2
𝐿
is a

denominator of both 𝑟𝐴 (𝑠, 𝑎) and 𝑃 (𝑠, 𝑎, 𝑠 ′), 2(𝑛−𝑠+1)𝐿 must be a denominator of 𝑥 . This establishes

the first half of the lemma.

Now consider the second statement. We inductively show that for any state 𝑠 ∈ S, we can use

2
3(𝑛−𝑠+1)𝑛𝐿

to upper bound some common denominator of both coordinates of all points on 𝑓𝑠′ , as

well as 𝑓𝑠′ (0), for all 𝑠 ′ ≥ 𝑠 . Given the first half of the lemma, we only need to argue about the

𝑦-coordinates.
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First consider 𝑠term = 𝑛. For the turning points, each 𝑟𝑃 (𝑠term, 𝑎) has at most 𝐿 bits, and 2
𝐿
is

a denominator. As for 𝑓𝑠term (0), let (𝑥−, 𝑦−) and (𝑥+, 𝑦+) be the endpoints of the piece containing
(0, 𝑓𝑠term (0)) on 𝑓𝑠term . Observe that

𝑓𝑠term (0) =
𝑦− · 𝑥+ − 𝑦+ · 𝑥−

𝑥+ − 𝑥−
.

So the product of the denominator of 𝑦− ·𝑥+ −𝑦+ ·𝑥− and the numerator of 𝑥+ −𝑥− is a denominator

of 𝑓𝑠term (0). The former is at most 2
2𝐿
, and the latter is at most 2 × 2𝐿 , so something no larger than

2
3𝐿+1 ≤ 2

3𝑛𝐿
is a common denominator of all the 𝑦-coordinates.

Now suppose for all 𝑠 ′ > 𝑠 , some 𝐷 ≤ 2
3(𝑛−𝑠)𝑛𝐿

is a denominator of all the 𝑦-coordinates used

to represent all 𝑓𝑠′ (including all turning points and 𝑓𝑠′ (0)). We first argue that some 2
𝐿 · 𝐷 is a

common denominator of all the 𝑦-coordinates used to represent all 𝑓𝑠′ for all 𝑠
′ ≥ 𝑠 , excluding

𝑓𝑠 (0) (we will handle 𝑓𝑠 (0) separately). Fix a turning point (𝑥, 𝑓𝑠 (𝑥)), and again consider a direction

𝛼 ∈ R × R+ such that (𝑥, 𝑓𝑠 (𝑥)) is a maximizer. By Lemma 2, there exists 𝑎 ∈ A and 𝑥𝑠′ ∈ 𝐷𝑠 ∩ R+
such that

𝑓𝑠 (𝑥) = 𝑟𝑃 (𝑠, 𝑎) +
∑
𝑠′>𝑠

𝑃 (𝑠, 𝑎, 𝑠 ′) · 𝑓𝑠′ (𝑥𝑠′).

And each 𝑥𝑠′ is either a turning point or 0. By the induction hypothesis, 2
𝐿 · 𝐷 is a denominator of

all 𝑓𝑠 (𝑥) where (𝑥, 𝑓𝑠 (𝑥)) is a turning point. Finally consider 𝑓𝑠 (0). Again, let (𝑥−, 𝑦−) and (𝑥+, 𝑦+)
be the endpoints of the piece containing (0, 𝑓𝑠 (0)) on 𝑓𝑠 . Observe that

𝑓𝑠 (0) =
𝑦− · 𝑥+ − 𝑦+ · 𝑥−

𝑥+ − 𝑥−
.

So the product of the denominator of 𝑦− ·𝑥+ −𝑦+ ·𝑥− and the numerator of 𝑥+ −𝑥− is a denominator

of 𝑓𝑠 (0). The former, as discussed above, is at most 2
𝑛𝐿 · 2𝐿 · 𝐷 ≤ 2

𝐿+𝑛𝐿+3(𝑛−𝑠)𝑛𝐿
, and the latter is at

most 2𝑛 × 2𝑛𝐿 ≤ 2
𝑛𝐿+𝑛

(because the denominator of 𝑥+ − 𝑥− is at most 2
𝑛𝐿
, and 𝑥+ − 𝑥− ≤ 2𝑛), so

there exists a number that is at most 2
3(𝑛−𝑠)𝑛𝐿+2𝑛𝐿+𝑛+𝐿 ≤ 2

3(𝑛−𝑠+1)𝑛𝐿
as a common denominator of

all the 𝑦-coordinates that we care about. This finishes the proof of the lemma. □

Now we are ready to prove the correctness of Algorithm 1.

Proof of Theorem 1. As discussed in the overview in Section 3.1, Algorithm 1 runs in time

poly(𝑛,𝑚, 𝐿). We focus on proving the correctness of Algorithm 1.

In particular, for each pair (𝑠, 𝛼) reached in the execution of the algorithm, (𝑥𝑠,𝛼 , 𝑦𝑠,𝛼 ) satisfies
𝛼 · (𝑥𝑠,𝛼 , 𝑦𝑠,𝛼 ) = max

𝑥 ∈𝐷𝑠∩R+
𝛼 · (𝑥, 𝑓𝑠 (𝑥)).

Moreover, for each 𝑠 ∈ S, 𝑦𝑠 = 𝑓𝑠 (0). The claim regarding (𝑥𝑠,𝛼 , 𝑦𝑠,𝛼 ) can be proved inductively. In

particular, for those points computed in the inner loop (lines 7 and 9) where 𝑠 ′ > 𝑠 , the property of

(𝑥𝑠′,𝛼 , 𝑦𝑠′,𝛼 ) follows from the same property of each (𝑥𝑠′′,𝛼 , 𝑦𝑠′′,𝛼 ) and Lemma 2. As for (𝑥𝑠,𝛼 , 𝑦𝑠,𝛼 ),
the only difference is that when it is first computed in line 7, it is possible that 𝑥𝑠,𝛼 < 0. However,

this is fixed in line 15 given that 𝑦𝑠 = 𝑓𝑠 (0).
To show𝑦𝑠 = 𝑓𝑠 (0), we only need to show that the binary search is accurate enough. In particular,

(𝑥𝑠,−, 𝑦𝑠,−) and (𝑥𝑠,+, 𝑦𝑠,+) are in fact the two endpoints of the piece containing (0, 𝑓𝑠 (0)). Suppose
that this is not the case. That is, without loss of generality, suppose there exists a turning point

(𝑥,𝑦) to the right of (𝑥𝑠,−, 𝑦𝑠,−) where 𝑥 ≤ 0. Let 𝛼 = (𝑡, 1) be a direction for which (𝑥,𝑦) is the
maximizer. It must be the case that 𝛼𝑠,+ is to the right of 𝛼 , which is to the right of 𝛼𝑠,−. In other

words, at line 11, it must be the case that ℓ < 𝑡 < 𝑟 . Consider the slopes of the piece containing

(0, 𝑓𝑠 (0)), and the piece immediately to the left of that piece, and let 𝑘1 and 𝑘2 be the two slopes

respectively where 𝑘1 > 𝑘2. We must have −𝑟 ≤ 𝑘2 ≤ −𝑡 ≤ 𝑘1 ≤ −ℓ , which in particular implies

that 𝑟 − ℓ ≥ 𝑘1 − 𝑘2. Now by Lemma 3, the least common denominators of the two coordinates of
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all turning points are at most 2
𝑛𝐿

and 2
3𝑛2𝐿

respectively. Moreover, all 𝑥-coordinates are between

−𝑛 and 𝑛. So, the minimum possible difference between the slopes of two consecutive pieces is

at least 1/(2𝑛 · 2𝑛𝐿 · 23𝑛2𝐿) ≥ 2
−5𝑛2𝐿

. This means 𝑟 − ℓ ≥ 𝑘1 − 𝑘2 ≥ 2
−5𝑛2𝐿

, which contradicts the

stopping criterion of the binary search (line 3).

One final concern is that the initial 𝑟 (line 2) may not be large enough. But this is impossible,

because the smallest slope (which is negative) that we need to consider is −2𝑛 · 2𝑛𝐿 > −23𝑛𝐿 , so the

initial 𝑟 = 2
3𝑛𝐿

is in fact large enough. □

4 FUTURE RESEARCH
Throughout, we have considered a setting where the only decision the agent is able to make is to

quit, and the decision to quit is irreversible. As we argued at the outset, the case where the agent

only decides whether to enter (and this decision is irreversible) leads to the same problem. However,

we could consider richer models where an agent is able to quit, but then has an opportunity to

re-enter at certain later times, under certain conditions.

We have also assumed throughout that the agent has no private information. If the agent has

private information, for example about how the agent values different outcomes, we arrive in

a dynamic mechanism design context. As mentioned earlier, in general, in this context we face

NP-hardness results [14, 25]. Still, we may ask whether the techniques developed in this paper can

be generalized to that context, perhaps resulting in polynomial-time algorithms for special cases to

which the NP-hardness results do not apply.

One aspect of our approximation of the discounted infinite-horizon case is that it explicitly

optimizes only for the first𝑇 rounds, and consequently, it might, for example, unsustainably use up

all the world’s resources by round 𝑇 . Formally, this is not a problem because, due to the nature of

exponential discounting, the remaining rounds are simply not worth much. Still, one may wonder

whether this fails to value long-term sustainability appropriately. Of course, this issue is not at all

unique to our specific setting, but rather a fundamental aspect of exponential discounting.
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