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We study equilibrium computation with extensive-form correlation in two-player turn-taking stochastic

games. Our main results are two-fold: (1) We give an algorithm for computing a Stackelberg extensive-form

correlated equilibrium (SEFCE), which runs in time polynomial in the size of the game, as well as the number

of bits required to encode each input number. (2) We give an efficient algorithm for approximately computing

an optimal extensive-form correlated equilibrium (EFCE) up to machine precision, i.e., the algorithm achieves

approximation error 𝜀 in time polynomial in the size of the game, as well as log(1/𝜀).
Our algorithm for SEFCE is the first polynomial-time algorithm for equilibrium computation with com-

mitment in such a general class of stochastic games. Existing algorithms for SEFCE typically make stronger

assumptions such as no chance moves, and are designed for extensive-form games in the less succinct tree

form. Our algorithm for approximately optimal EFCE is, to our knowledge, the first algorithm that achieves 3

desiderata simultaneously: approximate optimality, polylogarithmic dependency on the approximation error,

and compatibility with stochastic games in the more succinct graph form. Existing algorithms achieve at most

2 of these desiderata, often also relying on additional technical assumptions.
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1 INTRODUCTION
Equilibrium computation is one of the most important topics in algorithmic game theory. Decades

of effort has painted a fairly complete landscape for the computational complexity of various

equilibrium concepts in normal-form games: Roughly speaking, computing an (optimal) equilibrium

is computationally tractable, if either correlation is allowed between both players’ actions, or one of

the two players has the power to commit to a strategy. In other words, in normal-form games, there

are polynomial-time algorithms for computing an optimal (i.e., maximizing a convex combination

of the two players’ utilities) correlated equilibrium, and for computing a Stackelberg equilibrium

(see, e.g., [Papadimitriou, 2007]).

The situation is subtler for games in dynamic environments, where the two players iteratively

take actions, each affecting the state of the world, and together determining the overall payoff

of each player. Such games are conventionally modeled as stochastic games or extensive-form

games (we will discuss the differences between the two formulations momentarily). In these games,

neither correlation nor commitment power guarantees tractability. In fact, it is NP-hard to compute

a Stackelberg equilibrium in these games, even if normal-form correlation — meaning a mediator

recommends a whole strategy, consisting of an action to be played in each possible information

set of the game, to each player at the beginning of the play — is allowed [Letchford and Conitzer,

2010]. In light of such hardness results, it has been argued that the right notion of correlation in

extensive-form games is extensive-form correlation, where the mediator reveals a recommended

action to be played in an information set only when a player has reached that information set.

The notion of extensive-form correlation leads to a number of natural solution concepts, which

generalize correlated equilibria in normal-form games and are computationally more tractable.

Among them, the most important and well-studied ones are extensive-form correlated equilibria

(henceforth EFCE) and Stackelberg extensive-form correlated equilibria (henceforth SEFCE) [von

Stengel and Forges, 2008]. While significant effort has been made on designing efficient algorithms

for computing (optimal) EFCE and SEFCE, most existing algorithms are designed for extensive-form

games in the tree form (for exceptions, see Section 1.2): The input to such an algorithm is by default

a tree capturing all possibilities in a game, where each leaf corresponds to a possible way for the

game to play out, and the time complexity of the algorithm is polynomial in the size of this game

tree. Such a game tree is often not the most succinct representation of a game. For example, consider

the following adapted version of the game Nim [Bouton, 1901]: Initially there are 𝑘 matches on

the table. Alice and Bob take turns removing matches, where in each turn, the acting player can

remove either 1 or 2 matches. The player who removes the last match wins. The natural state space

of the game is quite succinct: The state is fully determined by the number of matches left and the

identity of the player to act next, so the state space is of size 𝑂 (𝑘). However, the tree form of the

game must encode the entire history through which a state is reached (e.g., “Alice removes 1 match;

Bob removes 2 matches; Alice removes 2 matches; Bob removes 1 match; . . . ”), which means the

game tree has 2
Ω (𝑘 )

nodes. In such cases, an algorithm that runs in time polynomial in the size of

the game tree would not appear particularly efficient. In this paper, we address the above issue

by designing efficient algorithms for optimal EFCE and SEFCE that work with stochastic games,

which are by default represented in the graph form that succinctly encodes a game.

1.1 Our Results
Throughout the paper, we focus on two-player, finite-horizon, turn-taking stochastic games. Put in

different words, we focus on two-player, perfect-information extensive-form games in the graph

form. Our main results are twofold:
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• We give an algorithm for computing an SEFCE, which runs in time polynomial in the size of

the game, as well as the number of bits required to encode each input number.

• We give an efficient algorithm for computing an approximately optimal approximate EFCE up

to machine precision, i.e., the algorithm achieves approximation error 𝜀 in time polynomial

in the size of the game, as well as log(1/𝜀).

Our algorithm for SEFCE is, to our knowledge, the first polynomial-time algorithm for equilibrium

computation with commitment in such a general class of stochastic games (the main assumption

being that the game is turn-taking). As discussed in Section 1.2, existing algorithms for SEFCE

typically make stronger assumptions such as no chance moves, and are designed for extensive-form

games in the less succinct tree form. Our algorithm for approximately optimal EFCE is, to our

knowledge, the first algorithm that achieves 3 desiderata simultaneously: approximate optimality,

polylogarithmic dependency on the approximation error, and compatibility with stochastic games

in the graph form. As discussed in Section 1.2, existing algorithms typically achieve at most 2 of

these desiderata, often also relying on additional technical assumptions.

Technically, our algorithms are built on ideas fundamentally different from commonly seen

techniques in equilibrium computation, such as linear programming and no-regret dynamics. We

take a semi-combinatorial approach centered around the notion of Pareto frontier curves. Roughly

speaking, the Pareto frontier curve for a state-action pair captures the optimal tradeoff between

the two players’ onward utilities subject to equilibirum conditions, in the subgame induced by

the state-action pair. These curves can be viewed as a multidimensional generalization of the

𝑄-function commonly used in planning and reinforcement learning. Given the right equilibrium

conditions, computing an SEFCE or an optimal EFCE reduces to evaluating Pareto frontier curves,

which at first sight appears to be a numerical problem in nature. In order to perform the necessary

evaluations efficiently, we establish combinatorial properties of the Pareto frontier curves, including

recursive relations between curves for different state-action pairs, as well as lower bounds on the

numerical “resolution” of the curves (i.e., how close two turning points can be on a curve). The

curves for SEFCE exhibit particularly nice properties, based on which we are able to design an

essentially combinatorial procedure for evaluating the Pareto frontier curves recursively. This

involves binary searching over “directions of evaluation” up to a carefully chosen precision, as well

as a memorization technique that avoids redundant recursive calls. For EFCE, the Pareto frontier

curves are less structured, and in particular, the curves can be very (i.e., doubly exponentially) fine

in terms of their numerical resolution. It thus becomes infeasible to exactly evaluate the curves,

and our algorithm instead performs evaluations up to any desired precision in polylogarithmic

time. For a more detailed overview of our algorithms, see Section 3.1.

1.2 Further Related Work
Equilibrium computation in normal-form games has been extremely well-studied. For example,

without commitment, Daskalakis et al. [2009] and Chen et al. [2009] show that computing a Nash

equilibrium is PPAD-complete in two-player normal-form games, and computing optimal Nash

equilibria is generally NP-hard [Conitzer and Sandholm, 2008, Gilboa and Zemel, 1989]. In contrast,

when correlation is allowed, one can compute an optimal correlated equilibrium efficiently (see,

e.g., [Papadimitriou, 2007]). With commitment, Conitzer and Sandholm [2006] give an efficient

algorithm for computing a Stackelberg equilibrium in two-player normal-form games (see also von

Stengel and Zamir [2010]), and that this becomes hard with 3 players; however, if the committing

player can also send signals to the other players, thereby effectively taking over the role of the

mediator in correlated equilibrium, then the problem is again efficiently solvable with any number
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of players [Conitzer and Korzhyk, 2011]. So in short, efficient equilibrium computation is possible

if either correlation or commitment is allowed.

Equilibrium computation becomes more difficult in dynamic environments, such as extensive-

form games and stochastic games. There, commitment does not imply efficient computation any-

more: Letchford and Conitzer [2010] show that it is NP-hard to compute a Stackelberg equilibrium

in two-player extensive-form games, even with perfect information. Moreover, their hardness result

holds even if normal-form correlation (as opposed to extensive-form correlation to be discussed

momentarily) is allowed. Similar hardness results hold for various structured families of stochastic

games [Letchford et al., 2012]. To circumvent such hardness results, von Stengel and Forges [2008]

introduce the notion of extensive-form correlation, where conceptually, recommended actions

are revealed on the fly. They give an efficient algorithm for computing an optimal extensive-form

correlated equilibrium (EFCE) when the game has no chance moves, and show that with chance

moves, the same problem is NP-hard. Notably, their hardness result assumes imperfect information,

which turn-taking stochastic games do not have. In short, extensive-form correlation is generally

necessary for efficient computation in dynamic environments.

Subsequently, there has been a long line of research on the computation of optimal EFCE, as

well as its Stackelberg version, Stackelberg EFCE (henceforth SEFCE). However, as far as we know,

all existing positive results, i.e., efficient algorithms, are for extensive-form games in the tree form.

To name a few examples, Cermak et al. [2016] give a polynomial-time algorithm for computing

an SEFCE in extensive-form games without chance moves. Relatedly, Bošanskỳ et al. [2017] show,

among other results, that it is possible to compute an SEFCE in perfect-information extensive-form

games in polynomial time. Farina et al. [2019] give a saddle-point formulation for optimal EFCE

and design gradient-based algorithms that scale better in practice. Farina and Sandholm [2020]

give a polynomial-time algorithm for computing optimal EFCE when chance moves are public.

Zhang et al. [2022c] give fixed-parameter algorithms for computing optimal EFCE, as well as related

solution concepts. Zhang and Sandholm [2022] give a polynomial-time algorithm for a general

class of equilibrium computation problems that involve a mediator, which in particular recover the

results by Zhang et al. [2022c]. The type of computational problem considered in these results is

“easier” than ours, in the sense that the graph form that we consider can be much more succinct

(and never less succinct) than the tree form of the same game, and in such cases, an algorithm that

runs in time that is polynomial in the size of the graph form is much more efficient. Conversely,

an algorithm that runs in time that is polynomial in the size of the tree form is not necessarily

polynomial-time in the graph form.

Another line of research studies no-regret dynamics that converge to an arbitrary (i.e., not

necessarily optimal) EFCE. For example, Celli et al. [2020] and Farina et al. [2022] give algorithms

that converge to an EFCE with error polynomial in 1/𝑇 after 𝑇 iterations. This translates to

polynomial-time algorithms in 1/𝜀 for 𝜀-EFCE. Compared to these algorithms, our algorithm for

approximately optimal EFCE (1) guarantees approximate optimality, (2) runs in polynomial time in

log(1/𝜀) instead of 1/𝜀, and (3) works with the more succinct graph form of the game, instead of

the tree form. Huang and von Stengel [2008] show how to compute an arbitrary EFCE exactly in

polynomial time. However, their algorithm does not guarantee optimality, nor is it compatible with

the graph form.

Technically, computing optimal or Stackelberg equilibria generalizes the problem of planning

in Markov decision processes under constraints. Particularly related to our results is “planning

with participation constraints” [Zhang et al., 2022a,b]: Roughly speaking, in that problem, the

principal (corresponding to the leader in a Stackelberg game) chooses which action to take in each

state, subject to the constraint that the agent (corresponding to the follower) is always willing to

participate, i.e., the agent’s onward utility in each state is always nonnegative. This can be viewed
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as a highly restricted class of turn-taking stochastic games, where the agent’s (follower’s) only

actions in each state are to stay and to quit. Zhang et al. [2022a,b] show that even in these restricted

environments, an optimal policy (i.e., a Stackelberg equilibrium) may have to be history-dependent,

and give a polynomial-time algorithm for planning with participation constraints. However, their

algorithm is tailored to the essentially non-strategic setting where the agent’s power is extremely

limited. In contrast, we consider general game-theoretic settings where the two players are generally

equally powered, except that in the Stackelberg setting, one player in addition has commitment

power.

2 PRELIMINARIES
Stochastic games. We focus on two-player finite-horizon turn-taking stochastic games in this

paper. There is a finite set of states S = [𝑛], and a finite set of actions A = [𝑚]. 𝑠init = 1 amd

𝑠term = 𝑛 are the initial and terminal states, respectively. For each state 𝑠 ∈ S, there is an acting

player ap(𝑠) ∈ {1, 2}, who unilaterally decides which action to play in state 𝑠 . For each player

𝑖 ∈ {1, 2}, there is a reward function 𝑟𝑖 : S × A → R+, which specifies the immediate reward

𝑟𝑖 (𝑠, 𝑎) that player 𝑖 receives when action 𝑎 is played in state 𝑠 . We assume rewards are normalized,

i.e., 𝑟𝑖 (𝑠, 𝑎) ∈ [0, 1] for each 𝑖 ∈ {1, 2}, 𝑠 ∈ S and 𝑎 ∈ A. A transition operator 𝑃 : S × A → Δ(S)
specifies the distribution 𝑃 (𝑠, 𝑎) of the next state when action 𝑎 is played in state 𝑠 , where for each

𝑠′, 𝑃 (𝑠, 𝑎, 𝑠′) is the probability that the next state is 𝑠′.
Unless otherwise specified, we assume the transition operator is acyclic, i.e., 𝑃 (𝑠, 𝑎, 𝑠′) > 0 only

if 𝑠′ > 𝑠 or 𝑠 = 𝑠′ = 𝑛. For the terminal state 𝑠term = 𝑛 in particular, we assume 𝑟𝑖 (𝑛, 𝑎) = 0 and

𝑃 (𝑛, 𝑎, 𝑛) = 1 for each action 𝑎 ∈ A. In other words, there is no meaningful action in the terminal

state 𝑠term = 𝑛. These assumptions essentially mean the game is finite-horizon (we will also discuss

extensions of our results to the infinite-horizon case). In particular, note that in the finite-horizon

case, the acyclicity assumption is without loss of generality, as the state could include the index of

the current period.

Histories, strategies, and utilities. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). A history ℎ of length 𝑡

is a sequence of 𝑡 states and 𝑡 actions ℎ = (𝑠1, 𝑎1, 𝑠2, 𝑎2, . . . , 𝑠𝑡 , 𝑎𝑡 ) which fully describes 𝑡 consecutive

steps of a play. LetH be the collection of all histories of all lengths not exceeding 𝑛 (soH is finite).

For brevity, we also let |ℎ | denote the length of ℎ, and ℎ+ (𝑠, 𝑎) be the history obtained by appending
(𝑠, 𝑎) to the end of ℎ.

A deterministic (history-dependent) strategy 𝜋 : H × S → A maps each history-state pair

(ℎ, 𝑠) to the action to be played in 𝑠 given history ℎ. Note that we do not explicitly partition a

strategy into two parts corresponding to the two players, since such a partition is induced by

the mapping ap from each state to the corresponding acting player. A randomized strategy Π is

a distribution over deterministic strategies. For any deterministic strategy 𝜋 , we say a history

ℎ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ) is admissible if the action played in each step is the one specified by 𝜋 , i.e., for

each 𝑡 ′ ∈ [𝑡], 𝜋 ((𝑠1, 𝑎1, . . . , 𝑠𝑡 ′−1, 𝑎𝑡 ′−1), 𝑠𝑡 ′ ) = 𝑎𝑡 ′ . For any randomized strategy Π, we say a history

ℎ is admissible under Π if ℎ is admissible under some 𝜋 in the support of Π. LetH𝜋
(resp.HΠ

) be

the set of admissible histories under 𝜋 (resp. Π). For a randomized strategy Π and an admissible

history ℎ ∈ HΠ
under Π, let Π | ℎ denote the conditional version of Π given that the states reached

and actions played in the first |ℎ | steps are ℎ.
For each 𝑖 ∈ {1, 2}, the onward utility 𝑢𝜋

𝑖
(ℎ, 𝑠) of a player 𝑖 , under a deterministic strategy 𝜋 , in

state 𝑠 , given history ℎ, is

𝑢𝜋𝑖 (ℎ, 𝑠) = E
{𝑠𝑡 }𝑡


∑︁
𝑡 ∈[𝑛]

𝑟𝑖 (𝑠𝑡 , 𝑎𝑡 )
 ,
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where 𝑠1 = 𝑠 , ℎ1 = ℎ, 𝑎𝑡 = 𝜋 (ℎ𝑡 , 𝑠𝑡 ) for each 𝑡 ∈ [𝑛], ℎ𝑡 = ℎ𝑡−1 + (𝑠𝑡−1, 𝑎𝑡−1) for each 𝑡 ∈ {2, . . . , 𝑛},
and 𝑠𝑡 ∼ 𝑃 (𝑠𝑡−1, 𝑎𝑡−1) for each 𝑡 ∈ {2, . . . , 𝑛}. Here we only need to consider 𝑛 steps, since the

maximum meaningful length of a play is 𝑛 — after 𝑛 steps, we must have reached the state 𝑛, and

any extra steps would give reward 0 to both players. The unconditional onward utility 𝑣Π𝑖 (ℎ, 𝑠) of
player 𝑖 , under a randomized strategy Π, in state 𝑠 , given history ℎ, is

𝑣Π𝑖 (ℎ, 𝑠) = E
𝜋∼Π
[𝑢𝜋𝑖 (ℎ, 𝑠)] .

Note that this unconditional onward utility is not the actual expected onward utility; we need it

mostly for notational simplicity. Conceptually, it is the utility that player 𝑖 expects to receive in the

future if they believe the posterior strategy is Π. Given the unconditional onward utility, for each

𝑖 ∈ {1, 2}, the actual onward utility 𝑢Π
𝑖 (ℎ, 𝑠) of player 𝑖 , under strategy Π, in state 𝑠 , given history ℎ,

is simply

𝑢Π
𝑖 (ℎ, 𝑠) = 𝑣

Π |ℎ
𝑖
(ℎ, 𝑠).

Extensive-form correlated equilibria. Extensive-form correlated equilibria (EFCE) and their Stack-

elberg version (Stackelberg EFCE, or SEFCE) are the natural generalizations of correlated equilibria

and Stackelberg equilibria to dynamic settings such as stochastic games and extensive-form games.

In the original definition of EFCE for extensive-form games by von Stengel and Forges [2008], a

mediator specifies a distribution over deterministic strategies (i.e., a randomized strategy according

to our definition above), where each deterministic strategy specifies a recommended action in each

node of the game tree (corresponding to a history-state pair in our formulation). A deterministic

strategy is drawn and fixed at the beginning of the play, but the recommended action in each node

given by this strategy is revealed to the acting player only when the node is actually reached. If

a player decides to not follow a recommended action, that player will not receive recommended

actions in the rest of the play.

For any 𝜀 ≥ 0, we say a player is 𝜀-best responding under a randomized strategy if that player

cannot increase their onward utility by more than 𝜀 by deviating from the recommended action

at any point of a recommended path of play, i.e., an admissible history. A randomized strategy is

an 𝜀-EFCE if both players are 𝜀-best responding. Moreover, consider a Stackelberg setting where

player 1 is the leader and player 2 is the follower. Then, a randomized strategy is an SEFCE if player

1’s utility is maximized subject to the constraint that player 2 is 0-best responding (or simply best

responding).

Put in our language, a player 𝑖 ∈ {1, 2} is 𝜀-best responding under a randomized strategy Π iff

for any admissible history ℎ ∈ HΠ
, state 𝑠 where ap(𝑠) = 𝑖 , action 𝑎 where ℎ + (𝑠, 𝑎) ∈ HΠ

, and

deterministic strategy 𝜋 ′ where 𝜋 ′ (ℎ, 𝑠) ≠ 𝑎:

𝑣
Π | (ℎ+(𝑠,𝑎) )
𝑖

(ℎ, 𝑠) ≥ 𝜀 + E
𝜋∼Π | (ℎ+(𝑠,𝑎) )

[
𝑢
(𝑖:𝜋 ′,3−𝑖:𝜋 )
𝑖

(ℎ, 𝑠)
]
.

Here, (𝑖 : 𝜋 ′, 3 − 𝑖 : 𝜋) denotes a strategy obtained by combining 𝜋 ′ restricted to player 𝑖’s actions

and 𝜋 restricted to (3 − 𝑖)’s actions (note that 3 − 𝑖 = 2 when 𝑖 = 1, and vice versa; 3 − 𝑖 simply

means the other player than 𝑖). That is,

(𝑖 : 𝜋 ′, 3 − 𝑖 : 𝜋) (ℎ, 𝑠) =
{
𝜋 ′ (ℎ, 𝑠), if ap(𝑠) = 𝑖

𝜋 (ℎ, 𝑠), otherwise.

We will use this notation repeatedly in the rest of the paper. The left hand side is the utility 𝑖 expects

to receive if both players keep following the recommendations, where in particular, 𝑖’s belief for

the strategy is Π | (ℎ + (𝑠, 𝑎)) because 𝑖 has already received the recommended action 𝑎. The right

hand side is the utility 𝑖 expects to receive if 𝑖 unilaterally deviates to 𝜋 ′ and the other player keeps
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following the recommendations, which should never be larger than the left hand side. Recall that

a randomized strategy Π is an 𝜀-EFCE iff both players are 𝜀-best responding under Π. One can
check this is in fact equivalent to the definition by von Stengel and Forges [2008] when 𝜀 = 0. A

randomized strategy Π is an SEFCE (with player 1 being the leader) iff

Π ∈ argmax

player 2 is best responding under Π
𝑢Π
1
(∅, 𝑠init).

3 STACKELBERG EXTENSIVE-FORM CORRELATED EQUILIBRIA
3.1 Overview of Our Approach
Maximum punishment without loss of generality. Our algorithm is based on the standard obser-

vation that in an SEFCE, it is without loss of generality to maximally punish the follower when

they deviate from the prescribed path of play, regardless of how that would affect the leader’s

utility at that point. In fact, for any SEFCE, there exists an effectively equivalent SEFCE where

deviation always immediately triggers maximum punishment, so once the follower deviates, the

game immediately becomes effectively zero-sum. This is because intuitively, the sole purpose of the

leader’s equilibrium strategy in parts of the game where the follower has deviated is to threaten

the follower and cancel out any potential incentive to deviate. In particular, such a threat would

never be actually executed, because in equilibrium no player would deviate in the first place. As

such, it never hurts to threaten with the worst punishment possible. This greatly simplifies the

problem from a computational perspective, since computing a strategy for maximum punishment

is no harder than solving turn-taking zero-sum stochastic games, which can be done by simple

backward induction.

Reducing to constrained planning. Once the punishment strategy is fixed, we only need to optimize

over strategies where the follower never facesworse utility thanwhat theywould face after deviating

in the optimal way and being maximally punished thereafter. One key observation here is that

in any state, regardless of the recommended action, the optimal way to deviate is always the

same. So, to prevent the follower from deviating, we only need to guarantee that conditioned on

the recommended action, the onward utility of the follower is at least the utility resulting from

deviating optimally. In particular, the latter utility depends only on the state (which is only true in

turn-taking stochastic games). Given this observation, the problem becomes a constrained planning

problem, where we want to find an optimal strategy subject to the constraint that in each state

where the follower is the acting player, the onward utility of the follower (conditioned on the

recommended action) is at least some state-dependent quantity that can be efficiently pre-computed.

This is very similar to planning in constrained MDPs, except for one key difference: In constrained

MDPs, typically there are a constant number of feasibility constraints over the cumulative reward

vector, whereas in our constrained planning problem, there are separate feasibility constraints on

the follower’s onward utility in each state of the game where the follower is the acting player.

Pareto frontier curves and pivotal points. The way we approach the constrained planning problem

is by considering the Pareto frontier curves for each state-action pair. Roughly speaking, the Pareto

frontier curve 𝑓𝑠,𝑎 for a state-action pair (𝑠, 𝑎) captures the Pareto-optimal way to trade off between

the two players’ onward utilities after the acting player takes action 𝑎 in state 𝑠 , subject to feasibility

constraints in the future. This can be viewed as a generalization of the𝑄-function that is commonly

considered in reinforcement learning that captures the tradeoff between the two players’ utilities.

For technical reasons, we intentionally disregard the constraint (if there is one) in the (current) state

𝑠 . With this definition, the problem of constrained planning (or at least, the problem of computing

the maximum objective value therein) becomes the problem of evaluating the Pareto frontier curves
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Fig. 1. Illustration of Pareto frontier curves.

subject to feasibility constraints. In particular, as illustrated in Figure 1, given an objective direction

(which can be any combination of the two player’s utilities), the maximum objective value onward

for each state-action pair is simply the farthest point on (the feasible part of) the Pareto frontier

curve along that direction.

Observe that under our definition, Pareto frontier curves are always concave, since from each

state-action pair onward, the convex combination of two feasible strategies is also feasible — this is

true because we consider extensive-form correlation, so when we take a convex combination

through randomization, players are not allowed to know the realization before reaching the

state where the randomization happens. Given this observation, finding this point involves two

conceptual steps: One first finds the unconstrained optimum on the curve. If that point turns out

to be infeasible, then one “rounds” that point to the nearest feasible point, which is always the

pivotal point (hollow points in Figure 1), i.e., the unique point on the curve where the feasibility

constraint is binding. This highlights the importance of pivotal points, which play a central role in

our algorithm.

Evaluating Pareto frontier curves. Now the problem becomes efficiently evaluating Pareto frontier

curves subject to feasibility constraints. At a high level, this can be done in a recursive fashion:

Suppose we want to evaluate the curve 𝑓𝑠,𝑎 for (𝑠, 𝑎) in a certain direction 𝛼 ∈ R2, subject to the

feasibility constraint in state 𝑠 . Moreover, suppose we can efficiently evaluate the constrained

curves for all later state-action pairs. Then we can perform the evaluation using the following

procedure:

(1) For each later state 𝑠′ > 𝑠:

(a) For each action 𝑎′, evaluate the constrained curve 𝑓𝑠′,𝑎′ along direction 𝛼 .

(b) Let the farthest point along 𝛼 found in the above evaluation be the partial result for state 𝑠′.
(2) Aggregate the partial results for all later states 𝑠′ according to the transition probabilities

𝑃 (𝑠, 𝑎, 𝑠′), and shift the aggregated result by the immediate rewards (𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎)) induced
by (𝑠, 𝑎).

(3) If the shifted result above is feasible, return it; otherwise, return the pivotal point on 𝑓𝑠,𝑎 .

There is one gap in the above procedure: In step 3, when we “round” an infeasible shifted result, it

is assumed that we already know the pivotal point on the curve 𝑓𝑠,𝑎 — in fact, without this rounding

step, we would be evaluating the curve 𝑓𝑠,𝑎 without the feasibility constraint in 𝑠 . In reality we

need to compute this pivotal point efficiently. In what follows we discuss how this can be done up

to machine precision.
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Again assume we can evaluate the curves for all later state-action pairs. To approximate the

pivotal point, we only need to find two points on 𝑓𝑠,𝑎 that are close enough, to the left and the

right of the pivotal point respectively. Then a particular convex combination of the two points will

be a good approximation of the pivotal point. Suppose we want to find a point to the left of the

pivotal point that is close enough, and for concreteness, suppose the acting player is player 2, as

in the left subfigure in Figure 1. There, a point is to the left of the pivotal point if and only if it is

feasible. Conceptually, the pivotal point can be found using a “moving direction” procedure: We

start with direction (0, 1), and perform an evaluation of 𝑓𝑠,𝑎 in that direction without the feasibility

constraint in 𝑠 . Such an unconstrained evaluation can be done recursively without knowing the

pivotal point (using the procedure above without step 3). If the evaluation returns a point to the

left of the pivotal point (i.e., a feasible point), we rotate the direction of evaluation to the right,

and evaluate the unconstrained curve again. The rotation stops as soon as the point found makes

the feasibility constraint binding, which means we have found the pivotal point. To make this

conceptual procedure practical, we replace the rotation with a binary search, which finds a point

to the left of the pivotal point that is at most 𝜀 away (in terms of the polar angle) in 𝑂 (log(1/𝜀))
iterations. When the constrained planning problem corresponds to the computation of SEFCE,

we show that any two turning points on a Pareto frontier curve must be well separated, by some

quantity that is at most exponentially small in the size of the game. So, if we make 𝜀 exponentially

small (which means there are polynomially many iterations in the binary search), the binary search

is guaranteed to find the closest turning point to the left of the pivotal point. We can then compute

the pivotal point by finding the closest point to the right in the same way, and taking a convex

combination of the two points found.

Bounding the number of evaluations. The above gives a recursive algorithm for evaluating Pareto

frontier curves, but executed in the naïve way, the procedure may take exponential time in the

size of the game. We need one final observation to make the algorithm polynomial time in these

parameters: For each (𝑠, 𝑎) pair, the pivotal point on the curve 𝑓𝑠,𝑎 only needs to be evaluated once.

Given this, the total number of recursive evaluations triggered must be polynomial in the size of

the game. This is because new directions of evaluation emerge only when we binary search for

a pivotal point. Each binary search may create polynomially many new directions, and since we

binary search for each pivotal point only once, there are 𝑂 (𝑚𝑛) binary searches in total, which

means the total number of relevant directions is polynomial. Moreover, each direction can only

appear in 𝑂 (𝑚𝑛) evaluations (one for each state-action pair), since we never need to perform the

same evaluation twice. This means the total number of evaluations for all relevant directions is

polynomial.

3.2 Reduction to Constrained Planning
We first provide a formal reduction from computing an SEFCE to the constrained planning problem.

The punishment amplifier. Fixing a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃), our reduction involves the
punishment amplifier pa, whichmaps each deterministic strategy to its maximally punishing version

against a subset of players — for SEFCE this subset is {2}, and as we will see later, for EFCE this

subset is {1, 2}. For each player 𝑖 ∈ {1, 2}, consider the zero-sum stochastic game (S,A, ap, 𝑟 ′
1
, 𝑟 ′

2
, 𝑃),

where 𝑟 ′𝑖 = 𝑟𝑖 and 𝑟
′
3−𝑖 = −𝑟𝑖 . Let 𝜋𝑖 be a deterministic subgame-perfect equilibrium strategy in this

zero-sum game — here, 𝑖 is the player being punished, but note that 𝜋𝑖 comprises both players’

actions. Such a strategy can be found by backward induction. Note that without loss of generality,

𝜋𝑖 is history-independent, so we write 𝜋𝑖 (𝑠) for simplicity. If there are multiple candidates for 𝜋𝑖 ,

we pick an arbitrary one among them (the choice does not affect our results).
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Given a deterministic strategy 𝜋 and a subset of players 𝑆 ⊆ {1, 2}, the punishment-amplified

version 𝜋 ′ = pa(𝜋, 𝑆) of 𝜋 is given by: For each ℎ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ) ∈ H and 𝑠 ∈ S,
• If ℎ ∈ H𝜋

(i.e., ℎ is feasible under 𝜋 ), then 𝜋 ′ (ℎ, 𝑠) = 𝜋 (ℎ, 𝑠).
• If ap(𝑠) ∉ 𝑆 , then 𝜋 ′ (ℎ, 𝑠) = 𝜋 (ℎ, 𝑠).
• Otherwise, 𝜋 ′ (ℎ, 𝑠) = 𝜋𝑖 (𝑠), where ℎ′ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 ′ ) is the longest feasible prefix of ℎ, and
𝑖 = ap(𝑠𝑡 ′ ) (i.e., 𝑖 is the first player who deviated, in state 𝑠𝑡 ′ ).

The punishment amplifier can be naturally extended to randomized strategies: For a randomized

strategy Π and a subset of players 𝑆 , pa(Π, 𝑆) is obtained by mapping every deterministic strategy

𝜋 in the support of Π to pa(𝜋, 𝑆), and assign the latter the same probability mass in Π′ as 𝜋 has in

Π.
We first prove maximum punishment is without loss of generality, which is formally captured

by the following lemma:

Lemma 1. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any Π under which the follower is best
responding, the follower is also best responding under pa(Π, {2}), and moreover,

𝑢Π
1
(∅, 𝑠init) = 𝑢

pa(Π,{2})
1

(∅, 𝑠init).

We defer the proof of Lemma 1, as well as all other missing proofs, to Appendix A. The lemma

suggests that when optimizing over strategies where the follower is best responding, we can focus

on those with the maximum punishment structure as described above. Next we show this gives us

a reduction to the constrained planning problem.

Lemma 2. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any randomized strategy Π, the follower is
best responding under pa(Π, {2}) if the following condition holds: For each admissible history ℎ ∈ HΠ ,
state 𝑠 ∈ S where ap(𝑠) = 2, and action 𝑎 ∈ A such that ℎ + (𝑠, 𝑎) ∈ HΠ ,

𝑣
Π | (ℎ+(𝑠,𝑎) )
2

(ℎ, 𝑠) ≥ max𝑎′∈A

(
𝑟2 (𝑠, 𝑎′) + E

𝑠′∼𝑃 (𝑠,𝑎′ )
[𝑢𝜋2

2
(ℎ + (𝑠, 𝑎′), 𝑠′)]

)
,

where 𝜋2 is the subgame perfect equilibrium when the leader tries to minimize the follower’s utility, as
defined above.

Observe that in the above lemma, the right-hand side of the inequality does not depend on Π.
Moreover, since 𝜋𝑖 is history-independent, it does not depend on ℎ either. So the right hand-side is

a constant that depends only on the state 𝑠 . From now on, we call this quantity the utility under

punishment in state 𝑠 , defined as

𝑢𝑝 (𝑠) = max𝑎′∈A

(
𝑟𝑖 (𝑠, 𝑎′) + E

𝑠′∼𝑃 (𝑠,𝑎′ )
[𝑢𝜋𝑖

𝑖
(ℎ + (𝑠, 𝑎′), 𝑠′)]

)
,

where 𝑖 = ap(𝑠) (note that although we define the utility under punishment for both players, for

SEFCE we only need it for the follower, i.e., player 2). The utility under punishment 𝑢𝑝 (𝑠) can be

efficiently computed in all states.

Lemmas 1 and 2 together imply the following claim, which states that finding an SEFCE is

equivalent to constrained planning.

Theorem 1. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any 𝑥 ≥ 0, there exists a strategy Π
under which the follower is best responding such that 𝑢Π

1
(∅, 𝑠init) ≥ 𝑥 , if and only if there exists a

strategy Π′ such that 𝑢Π′
1
(∅, 𝑠init) ≥ 𝑥 , and for each adimissible history ℎ ∈ HΠ′ , state 𝑠 ∈ S where

ap(𝑠) = 2, and action 𝑎 ∈ A such that ℎ + (𝑠, 𝑎) ∈ HΠ′ ,

𝑣
Π′ | (ℎ+(𝑠,𝑎) )
2

(ℎ, 𝑠) ≥ 𝑢𝑝 (𝑠).
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Feasible strategies. We say a strategy Π is feasible if it satisfies the condition in the theorem

which involves the utility under punishment, i.e., for each ℎ ∈ HΠ
, 𝑠 ∈ S where ap(𝑠) = 2, and

𝑎 ∈ A such that ℎ + (𝑠, 𝑎) ∈ HΠ
,

𝑣
Π | (ℎ+(𝑠,𝑎) )
2

(ℎ, 𝑠) ≥ 𝑢𝑝 (𝑠).
We say a strategy Π is feasible after state 𝑠 , if for each ℎ ∈ HΠ

, 𝑠′ > 𝑠 where ap(𝑠′) = 2, and 𝑎 ∈ A
such that ℎ + (𝑠′, 𝑎) ∈ HΠ

,

𝑣
Π | (ℎ+(𝑠′,𝑎) )
2

(ℎ, 𝑠′) ≥ 𝑢𝑝 (𝑠′).
Our problem now becomes finding a feasible strategy that maximizes player 1’s utility.

3.3 Pareto Frontier Curves
Before proceeding to the full description of our algorithm, we first quickly (and somewhat infor-

mally) define Pareto frontier curves and discuss some useful properties. Intuitively, the Pareto

frontier curve 𝑓𝑠,𝑎 for a state-action pair (𝑠, 𝑎) is the curve capturing all Pareto-optimal pairs of

onward utilities (assuming an empty history) for both players after playing action 𝑎 in state 𝑠 ,

induced by strategies that are feasible after 𝑠 . Another way to view 𝑓𝑠,𝑎 is it is the top right boundary

of the region of pairs of onward utilities (say 𝐹𝑠,𝑎) induced by strategies that are feasible after 𝑠 . We

call 𝐹𝑠,𝑎 the feasible region for (𝑠, 𝑎), which can be defined in the following way:

𝐹𝑠,𝑎 =

{
(𝑣Π | (𝑠,𝑎)

1
(∅, 𝑠), 𝑣Π | (𝑠,𝑎)

2
(∅, 𝑠))

���Π is feasible after 𝑠, (𝑠, 𝑎) ∈ HΠ
}
.

We first argue that both 𝐹𝑠,𝑎 and 𝑓𝑠,𝑎 are well behaved:

Lemma 3. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any state 𝑠 ∈ S and action 𝑎 ∈ A, 𝐹𝑠,𝑎 is
always a convex region and 𝑓𝑠,𝑎 is always a concave curve.

Given Lemma 3, 𝑓𝑠,𝑎 in fact specifies a bijection between the two players’ utilities under feasible

strategies, corresponding to the two coordinates of a point. In the rest of the paper, we will abuse

notation, and use 𝑓𝑠,𝑎 in 4 ways:

• For 𝑥 ∈ R+, 𝑓𝑠,𝑎 (𝑥) ∈ R+ denotes the 𝑦-coordinate of the point on 𝑓𝑠,𝑎 whose 𝑥-coordinate is

𝑥 . When used in this way, the argument to 𝑓𝑠,𝑎 will always be 𝑥 , possibly with subscripts or

superscripts.

• For 𝑦 ∈ R+, 𝑓𝑠,𝑎 (𝑦) ∈ R+ denotes the 𝑥-coordinate of the point on 𝑓𝑠,𝑎 whose 𝑦-coordinate is

𝑦. When used in this way, the argument to 𝑓𝑠,𝑎 will always be 𝑦, possibly with subscripts or

superscripts.

• For 𝑝 ∈ R2+, we say 𝑝 ∈ 𝑓𝑠,𝑎 if 𝑝 is in 𝑓𝑠,𝑎 as a set of points (i.e., the graph of 𝑓𝑠,𝑎 as a mapping).

• For 𝛼 ∈ R2+, 𝑓𝑠,𝑎 (𝛼) ∈ R2+ denotes the farthest point on 𝑓𝑠,𝑎 along direction 𝛼 . That is,

𝑓𝑠,𝑎 (𝛼) = argmax

𝑝∈ 𝑓𝑠,𝑎
𝛼 · 𝑝.

3.4 Evaluating the Pareto Frontier Curves
Observe that if we can evaluate 𝑓𝑠init,𝑎 for each 𝑎 ∈ A, then it is not hard to find the optimal utilities

of the two players induced by a feasible strategy, given a particular objective direction 𝛼 ∈ R2+ (for
an SEFCE in particular, we want 𝛼 = (1, 0)): Without loss of generality, an optimal strategy picks a

deterministic action in the initial state 𝑠init, so we only need to try every one of the actions. For

each action 𝑎 ∈ A, the optimal utilities induced by a strategy that is feasible after 𝑠init is 𝑓𝑠,𝑎 (𝛼). If
ap(𝑠init) = 1 or 𝑓𝑠,𝑎 (𝛼)ap(𝑠init ) ≥ 𝑢𝑝 (𝑠init), then this strategy is a feasible strategy, and 𝑓𝑠,𝑎 (𝛼) gives
the optimal utilities if the first action is 𝑎. Otherwise, since 𝑓𝑠,𝑎 is concave, the optimal utilities

induced by a feasible strategy must correspond to the point on 𝑓𝑠,𝑎 where the constraint in 𝑠init is
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binding. More specifically, suppose ap(𝑠init) = 2, and let 𝑦𝑠init = 𝑢𝑝 (𝑠init). Then the optimal utilities

when the first action is 𝑎 must be (𝑓𝑠,𝑎 (𝑦𝑠init ), 𝑦𝑠init ).

Pivotal points. The above discussion suggests that the point (𝑓𝑠,𝑎 (𝑦𝑠init ), 𝑦𝑠init ) plays a particularly
important role in finding the optimal utilities. More generally, we define the pivotal point pp(𝑠, 𝑎)
on 𝑓𝑠,𝑎 for each (𝑠, 𝑎) where ap(𝑠) = 2 to be the rightmost point (if there is one) on 𝑓𝑠,𝑎 such that

pp(𝑠, 𝑎)ap(𝑠 ) ≥ 𝑢𝑝 (𝑠). If such a point does not exist, then we let pp(𝑠, 𝑎) = (−𝑛,−𝑛) (here, −𝑛 is

without loss of generality — any quantity that is small enough would be consistent with our results).

For notational convenience, if ap(𝑠) = 1, we let pp(𝑠, 𝑎) = 𝑓𝑠,𝑎 ((1, 0)). Below we demonstrate how

to evaluate the Pareto frontier curves recursively with the help of the pivotal points.

Lemma 4. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any 𝑠 ∈ S, 𝑎 ∈ A, and 𝛼 ∈ R2+,
𝑓𝑠,𝑎 (𝛼) = (𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎)) + E

𝑠′∼𝑃 (𝑠,𝑎)
[𝑝𝑠′ ] ,

where for each 𝑠′ > 𝑠 and 𝑎′ ∈ A,

𝑝𝑠′,𝑎′ =

{
𝑓𝑠′,𝑎′ (𝛼), if ap(𝑠′) = 1 or 𝑓𝑠′,𝑎′ (𝛼)2 ≥ 𝑢𝑝 (𝑠′)
pp(𝑠′, 𝑎′), otherwise,

and for each 𝑠′ > 𝑠 ,
𝑝𝑠′ = argmax

𝑝∈{𝑝𝑠′,𝑎′ }𝑎′ ∈A
𝑝 · 𝛼.

In words, the lemma says that once the pivotal points for all later state-action pairs have been

computed, evaluating 𝑓𝑠,𝑎 can be reduced to at most𝑚𝑛 evaluations of curves for later state-action

pairs. This reduction plays a central role in our algorithm. Moreover, it also provides a way for

bounding the numerical resolution of the Pareto frontier curves, which is captured by the following

lemma.

Lemma 5. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). Suppose all parameters of the game can be
encoded using 𝐿 bits, i.e., for each 𝑠, 𝑠′ ∈ S and 𝑎 ∈ A, 𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎) and 𝑃 (𝑠, 𝑎, 𝑠′) are all multiples
of 2−𝐿 . Then for each 𝑠 ∈ S \ {𝑠term} = [𝑛 − 1], there exists some integer 𝐶𝑠 ≤ 2

(𝑛−𝑠 ) (𝑛+1)𝐿 , such that
for each 𝑎 ∈ A:
• For any 𝛼 ∈ R2+, the 𝑦-coordinate of 𝑓𝑠,𝑎 (𝛼) is a multiple of 2−(𝑛−𝑠 )𝐿 , and the 𝑥-coordinate is a
multiple of 1/𝐶𝑠 .
• If ap(𝑠) = 2, then the 𝑦-coordinate of pp(𝑠, 𝑎) is a multiple of 2−(𝑛−𝑠 )𝐿 , and the 𝑥-coordinate is
a multiple of 1/𝐶𝑠 .

Moreover, for each 𝑠 ∈ [𝑛 − 2], 𝐶𝑠 is a multiple of 𝐶𝑠+1.

We will use the following direct corollary of Lemma 5:

Corollary 1. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). Suppose all parameters of the game can
be encoded using 𝐿 bits. Then there exists an integer 𝐶 ≤ 2

𝑛2𝐿 such that for each 𝑠 ∈ S and 𝑎 ∈ A,
both coordinates of pp(𝑠, 𝑎) are multiples of 1/𝐶 , and for each 𝛼 ∈ R2+, both coordinates of 𝑓𝑠,𝑎 (𝛼) are
multiples of 1/𝐶 .

3.5 Algorithm and Analysis
Now we are ready to formally describe and analyze our full algorithm, Algorithm 1, which calls

Algorithm 2 as a subroutine.

Below we analyze our algorithm. First we show that the binary search in Algorithm 1 is exact, in

the sense that in line 18, 𝑞ℓ and 𝑞𝑟 are adjacent turning points to each other on 𝑓𝑠,𝑎 .
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ALGORITHM 1: A polynomial-time algorithm for computing an SEFCE in turn-taking stochastic games.

Input: a turn-taking stochastic game (S = [𝑛],A, ap, 𝑟1, 𝑟2, 𝑃).
Output: the leader’s utility under an SEFCE, together with an implicit representation of an SEFCE in the

input game.

1 create a data structure D that stores the results of all evaluations (used by eval);

2 for each state 𝑠 = 𝑛 − 1, 𝑛 − 2, . . . , 1 do
3 if ap(𝑠) = 1 then
4 for each action 𝑎 ∈ A do
5 let 𝑝𝑠,𝑎 ← eval(𝑠, 𝑎, (1, 0));
6 end
7 end
8 else
9 for each action 𝑎 ∈ A do
10 let ℓ ← (0, 1), 𝑟 ← (1, 0), 𝑞ℓ ← eval(𝑠, 𝑎, ℓ), 𝑞𝑟 ← eval(𝑠, 𝑎, 𝑟 );
11 if (𝑞ℓ )2 < 𝑢𝑝 (𝑠), let 𝑝𝑠,𝑎 ← (−𝑛,−𝑛);
12 if (𝑞𝑟 )2 ≥ 𝑢𝑝 (𝑠), let 𝑝𝑠,𝑎 ← 𝑞𝑟 ;

13 if (𝑞ℓ )2 ≥ 𝑢𝑝 (𝑠) and (𝑞𝑟 )2 < 𝑢𝑝 (𝑠) then
14 while ∥ℓ − 𝑟 ∥1 ≥ 1

3𝑛 ·22𝑛2𝐿
do

15 let 𝑞 ← eval(𝑠, 𝑎, (ℓ + 𝑟 )/2) (see Algorithm 2);

16 let ℓ ← (ℓ + 𝑟 )/2 if 𝑞2 ≥ 𝑢𝑝 (𝑠), and 𝑟 ← (ℓ + 𝑟 )/2 otherwise;
17 end
18 let 𝑞ℓ ← eval(𝑠, 𝑎, ℓ), 𝑞𝑟 ← eval(𝑠, 𝑎, 𝑟 ), ℓ𝑠,𝑎 ← ℓ , 𝑟𝑠,𝑎 ← 𝑟 ;

19 let 𝑝𝑠,𝑎 ←
(
(𝑞ℓ )2−𝑢𝑝 (𝑠 )
(𝑞ℓ )2−(𝑞𝑟 )2 · (𝑞𝑟 )1 +

𝑢𝑝 (𝑠 )−(𝑞𝑟 )2
(𝑞ℓ )2−(𝑞𝑟 )2 · (𝑞ℓ )1, 𝑢

𝑝 (𝑠)
)
;

20 end
21 end
22 end
23 end
24 let opt← max𝑎∈A (𝑝𝑠init,𝑎)1;
25 return opt, {𝑝𝑠,𝑎}𝑠,𝑎 {ℓ𝑠,𝑎}𝑠,𝑎 , {𝑟𝑠,𝑎}𝑠,𝑎 , and D;

Lemma 6. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃), where all parameters of the game can be encoded
using 𝐿 bits. In every execution of line 18 of Algorithm 1, assuming 𝑞ℓ = 𝑓𝑠,𝑎 (ℓ) and 𝑞𝑟 = 𝑓𝑠,𝑎 (𝑟 ) (we
will prove this later), 𝑞ℓ and 𝑞𝑟 are adjacent turning points to each other on 𝑓𝑠,𝑎 .

Now we are ready to prove the key property of the algorithm, which is captured by the following

lemma.

Lemma 7. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃), where all parameters of the game can be
encoded using 𝐿 bits. The following statements regarding Algorithms 1 and 2 hold:
• For each 𝑠 ∈ S, 𝑎 ∈ A and 𝛼 ∈ R2+, if (𝑠, 𝑎, 𝛼) ∈ D then D(𝑠, 𝑎, 𝛼) = 𝑓𝑠,𝑎 (𝛼).
• For each 𝑠 ∈ S and 𝑎 ∈ A, 𝑝𝑠,𝑎 computed in Algorithm 1 is the same as pp(𝑠, 𝑎).

Proof. Apply induction on 𝑠 . When 𝑠 = 𝑛 − 1, it is easy to check 𝑝𝑠,𝑎 = pp(𝑠, 𝑎) and D(𝑠, 𝑎, 𝛼) =
𝑓𝑠,𝑎 (𝛼). Now suppose the statements hold for all 𝑠′ > 𝑠 . Consider the first bullet point. For each

𝑎 ∈ A and 𝛼 ∈ R2+, observe that if (𝑠, 𝑎, 𝛼) ∈ D, then it is computed precisely in the way given in

Lemma 4. Given the induction hypothesis, this implies D(𝑠, 𝑎, 𝛼) = 𝑓𝑠,𝑎 (𝛼).
As for the second bullet point, consider 4 cases:

• ap(𝑠) = 1. The first bullet point immediately implies 𝑝𝑠,𝑎 = pp(𝑠, 𝑎).
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ALGORITHM 2: eval: A subroutine of Algorithm 1 that performs recursive evaluations as needed.

Input: a state 𝑠 , an action 𝑎, a direction of evaluation 𝛼 , all variables in Algorthm 1.

Output: 𝑓𝑠,𝑎 (𝛼).
1 if 𝑠 = 𝑠term = 𝑛 then return (0, 0);
2 if (𝑠, 𝑎, 𝛼) ∉ D (i.e., if D(𝑠, 𝑎, 𝛼) does not exist) then
3 for 𝑠′ = 𝑠 + 1, . . . , 𝑛 do
4 for 𝑎′ ∈ A do
5 let 𝑞𝑠′,𝑎′ ← eval(𝑠′, 𝑎′, 𝛼);
6 if ap(𝑠′) = 2 and (𝑞𝑠′,𝑎′ )2 < 𝑢𝑝 (𝑠′) then
7 let 𝑞𝑠′,𝑎′ ← 𝑝𝑠′,𝑎′ ;

8 end
9 end

10 let 𝑞𝑠′ ← argmax𝑞∈{𝑞𝑠′,𝑎′ }𝑎′ ∈A 𝛼 · 𝑞;
11 end
12 let D(𝑠, 𝑎, 𝛼) ← (𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎)) + E𝑠′∼𝑃 (𝑠,𝑎) [𝑞𝑠′ ];
13 end
14 return D(𝑠, 𝑎, 𝛼);

• ap(𝑠) = 2 and (𝑞ℓ )2 < 𝑢𝑝 (𝑠) in line 11. Given the first bullet point, this means there is no point

on 𝑓𝑠,𝑎 whose 𝑦-coordinate is at least 𝑢
𝑝 (𝑠), and by definition, pp(𝑠, 𝑎) = (−𝑛,−𝑛) = 𝑝𝑠,𝑎 .

• ap(𝑠) = 2 and (𝑞𝑟 )2 ≥ 𝑢𝑝 (𝑠) in line 12. Given the first bullet point, this means the entire 𝑓𝑠,𝑎
is above 𝑦 = 𝑢𝑝 (𝑠), and by definition, pp(𝑠, 𝑎) = 𝑓𝑠,𝑎 (0, 1) = 𝑝𝑠,𝑎 .

• ap(𝑠) = 2, (𝑞ℓ )2 ≥ 𝑢𝑝 (𝑠), and (𝑞𝑟 )2 < 𝑢𝑝 (𝑠). This is the case where the binary search is

executed. By Lemma 6 (and also given the first bullet point), 𝑞ℓ and 𝑞𝑟 are adjacent turning

points on 𝑓𝑠,𝑎 . Moreover, (𝑞ℓ )2 ≥ 𝑢𝑝 (𝑠) and (𝑞𝑟 )2 < 𝑢𝑝 (𝑠). Then pp(𝑠) must be the unique

convex combination of𝑞ℓ and𝑞𝑟 whose𝑦-coordinate is precisely𝑢
𝑝 (𝑠), which is 𝑝𝑠,𝑎 computed

in line 19.

□

Now we can put everything together and prove the correctness and efficiency of Algorithm 1

(we will discuss how to decode the output of Algorithm 1 momentarily).

Theorem 2. Algorithm 1 computes the leader’s (player 1’s) utility in an SEFCE in time polynomial
in 𝑛,𝑚, and 𝐿.

Proof. For correctness: By Lemma 7, for each𝑎 ∈ A, 𝑝𝑠init,𝑎 = pp(𝑠init, 𝑎), so opt = max𝑎 (𝑝𝑠init,𝑎)1 =
max𝑎 pp(𝑠init, 𝑎)1 is player 1’s optimal utility induced by a feasible strategy (where player 2 is best

responding), which is player 1’s utility in an SEFEC.

For efficiency: We only need to bound the number of times that eval is called. Observe that

the number of times that eval is called in Algorithm 1 is 𝑂 (𝑛𝑚 log(𝑛2𝑛2𝐿)) = 𝑂 (𝑛2𝑚𝐿 log𝑛) =
poly(𝑛,𝑚, 𝐿). As for recursive calls, observe that eval makes 𝑂 (𝑛𝑚) recursive calls only when

(𝑠, 𝑎, 𝛼) is not inD yet. So each tuple (𝑠, 𝑎, 𝛼) may trigger𝑂 (𝑛𝑚) calls in eval(𝑠, 𝑎, 𝛼). Let 𝐴 = {𝛼 |
(𝑠, 𝑎, 𝛼) ∈ D}. Then the total number of recursive calls is at most |{(𝑠, 𝑎, 𝛼) | 𝑠 ∈ S, 𝑎 ∈ A, 𝛼 ∈
𝐴}| = 𝑂 (𝑛𝑚 |𝐴|), so we only need to bound |𝐴|. To this end, observe that for each 𝛼 ∈ 𝐴, there
must be some 𝑠 ∈ S and 𝑎 ∈ A such that the binary search for (𝑠, 𝑎) involves 𝛼 . Each binary search

involves 𝑂 (log(𝑛2𝑛2𝐿)) = poly(𝑛, 𝐿) directions, so the total number of directions involved in these

binary searches is poly(𝑛,𝑚, 𝐿). The latter is an upper bound of |𝐴|. □
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3.6 Decoding the Output Strategy
Now we discuss the final missing piece of our algorithm: extracting the strategy encoded in the

output of Algorithm 1. We present a procedure, Algorithm 3, which, given the output of Algorithm 1,

computes a random action for any given history-state pair. We will prove that the strategy implicitly

given by Algorithm 3 is the one encoded in the output of Algorithm 1. In particular, it is feasible,

and achieves the leader’s utility in an SEFCE computed by Algorithm 1.

ALGORITHM 3: A procedure that decodes the output of Algorithm 1.

Input: A turn-taking stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃), the output of Algorithm 1, a history

ℎ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ), and a state 𝑠 .

Output: 𝜋 (ℎ, 𝑠), where 𝜋 ∼ Π | ℎ, and Π is the strategy encoded in the output of Algorithm 1; −1 if ℎ is

not an admissible history under Π.
1 let 𝑎 ← argmax𝑎′∈A (𝑝𝑠,𝑎′ )1, 𝛼 ← (1, 0), 𝑞 ← 𝑝𝑠,𝑎 ;

2 if |ℎ | = 0 return 𝑎;

3 if 𝑎1 ≠ 𝑎, return −1;
4 for 𝑖 = 1, 2, . . . , 𝑡 − 1 do
5 if ap(𝑠𝑖 ) = 2 and 𝑞 = 𝑝𝑠𝑖 ,𝑎𝑖 then
6 let ℓ ← ℓ𝑠𝑖 ,𝑎𝑖 , 𝑟 ← 𝑟𝑠𝑖 ,𝑎𝑖 , 𝑎ℓ ← argmax𝑎′∈A ℓ ·max

2{𝑝𝑠𝑖+1,𝑎′ ,D(𝑠𝑖+1, 𝑎′, ℓ)},
𝑎𝑟 ← argmax𝑎′∈A 𝑟 ·max

2{𝑝𝑠𝑖+1,𝑎′ ,D(𝑠𝑖+1, 𝑎′, ℓ)};
/* for two points 𝑞1 and 𝑞2, max

𝑘 {𝑞1, 𝑞2} denotes the point with the larger 𝑘-th

coordinate between the two */

7 let 𝛼 ← ℓ if 𝑎𝑖+1 = 𝑎ℓ ;

8 let 𝛼 ← 𝑟 if 𝑎𝑖+1 = 𝑎𝑟 ;

9 if 𝑎𝑖+1 ∉ {𝑎ℓ , 𝑎𝑟 }, return −1;
10 end
11 else
12 let 𝑎 ← argmax𝑎′∈A 𝛼 ·max

2{𝑝𝑠𝑖+1,𝑎′ ,D(𝑠𝑖+1, 𝑎′, 𝛼)};
13 if 𝑎𝑖+1 ≠ 𝑎 return −1;
14 end
15 let 𝑞 ← max

2{𝑝𝑠𝑖+1,𝑎𝑖+1 ,D(𝑠𝑖+1, 𝑎𝑖+1, 𝛼)};
16 end
17 if ap(𝑠𝑡 ) = 2 and 𝑞 = 𝑝𝑠𝑡 ,𝑎𝑡 then
18 let ℓ ← ℓ𝑠𝑖 ,𝑎𝑖 , 𝑎ℓ ← argmax𝑎′∈A ℓ ·max

2{𝑝𝑠,𝑎′ ,D(𝑠, 𝑎′, ℓ)}, 𝑞ℓ ← max
2{𝑝𝑠,𝑎ℓ ,D(𝑠, 𝑎ℓ , ℓ)}; let

𝑟 ← 𝑟𝑠𝑖 ,𝑎𝑖 , 𝑎𝑟 ← argmax𝑎′∈A 𝑟 ·max
2{𝑝𝑠,𝑎′ ,D(𝑠, 𝑎′, 𝑟 )}, 𝑞𝑟 ← max

2{𝑝𝑠,𝑎𝑟 ,D(𝑠, 𝑎𝑟 , 𝑟 )};
19 let 𝑎 ← 𝑎ℓ with probability

𝑞𝑟 −𝑞
𝑞𝑟 −𝑞ℓ , 𝑎 ← 𝑎𝑟 with probability

𝑞−𝑞ℓ
𝑞𝑟 −𝑞ℓ ;

20 end
21 else
22 let 𝑎 ← argmax𝑎′∈A 𝛼 ·max

2{𝑝𝑠,𝑎′ ,D(𝑠, 𝑎′, 𝛼)};
23 end
24 return 𝑎;

Theorem 3. Algorithm 3 outputs a feasible strategy Π (restricted to admissible histories), which
satisfies 𝑢Π

1
(∅, 𝑠init) = opt, where opt is the leader’s utility in an SEFCE computed by Algorithm 1.

Proof. First observe that Algorithm 3 does output a strategy restricted to admissible histories.

In fact, it specifies a random action for each history-state pair, which can be viewed as a Bayesian

description of a randomized strategy Π. We need to show that 𝑢Π
1
(∅, 𝑠init) = opt, and for each
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ℎ ∈ HΠ
, 𝑠 ∈ S where ap(𝑠) = 2, and 𝑎 such that ℎ + (𝑠, 𝑎) ∈ HΠ

,

𝑣
Π |ℎ+(𝑠,𝑎)
2

(ℎ, 𝑠) ≥ 𝑢𝑝 (𝑠).
To this end, observe that the output strategy faithfully implements the corresponding point on the

corresponding Pareto frontier curve. That is, for each 𝑖 ∈ {1, 2}, ℎ ∈ HΠ
, 𝑠 ∈ S where ap(𝑠) = 2,

and 𝑎 such that ℎ + (𝑠, 𝑎) ∈ HΠ
,

𝑣
Π |ℎ+(𝑠,𝑎)
𝑖

(ℎ, 𝑠) = max
2{𝑝𝑠,𝑎,D(𝑠, 𝑎, 𝛼)} = max

2{pp(𝑠, 𝑎), 𝑓𝑠,𝑎 (𝛼)}.
(Recall that for two points 𝑞1 and 𝑞2, max

2{𝑞1, 𝑞2} denotes the point with the larger 𝑦-coordinate

between the two.) This can be proved inductively, and we omit the details (which are already quite

repetitive at this point). Given the above correspondemce, for the first condition, 𝑢Π
1
(∅, 𝑠init) =

max𝑎′∈A (𝑝𝑠,𝑎′ )1, which is equal to opt. For the second condition, observe thatmax
2{pp(𝑠, 𝑎), 𝑓𝑠,𝑎 (𝛼)}

is always a feasible point whose 𝑦-coordinate is at least 𝑢𝑝 (𝑠), whenever ap(𝑠) = 2. This completes

the proof. □

Finally, note that Algorithm 3 only specifies actions for admissible histories. For inadmissible

histories, both players should follow the equilibrium 𝜋2 that maximally punishes player 2 defined

earlier.

4 APPROXIMATELY OPTIMAL EXTENSIVE-FORM CORRELATED EQUILIBRIA
Now we proceed to the computation of approximately optimal EFCE. We present a bi-criteria

algorithm that, given an objective direction (i.e., a combination of the two players’ utilities),

computes an 𝜀-EFCE whose objective value is at least that of the optimal EFCE minus 𝜀, in time

log(1/𝜀). The idea and structure of our algorithm for approximately optimal EFCE is overall quite

similar to that for SEFCE. There are two key differences:

• Recall that for SEFCE, we optimize over strategies where player 2 is best responding. This

reduces to optimizing over feasible strategies, where feasibility means that when player 2

is the acting player, their onward utility must be at least the utility under punishment. For

𝜀-EFCE, both players need to be 𝜀-best responding, which leads to a different definition for

feasible strategies. The definition and structural properties of Pareto frontier curves also

need to be modified accordingly. Such modifications lead to minor changes in the proofs of

the structural properties and the algorithm.

• A more substantial difference is in the numerical resolution of the Pareto frontier curves.

For SEFCE, the feasibility constraints are all in the same direction, i.e., parallel to the 𝑥-axis.

This is no longer true for 𝜀-EFCE, where the direction of the feasibility constraint in a state

depends on the acting player. Such alternating constraints break the asymmetry between

the two axes, which was crucial in the analysis of the numerical resolution of the Pareto

frontier curves. As a result, a binary search with polynomially many iterations is no longer

guaranteed to find the pivotal point exactly. Instead, the guarantee we have is that the error

diminishes exponentially fast as the number of iterations grows. Importantly, this means

inaccuracy in terms of both the objective value and the feasibility constraints. A careful

analysis shows that the inaccuracy does not blow up too much as we approximately evaluate

the Pareto frontier curves recursively.

4.1 Useful Facts
Before stating the full algorithm, we quickly state the new reduction from 𝜀-EFCE to constrained

planning, as well as modified definitions and properties of Pareto frontier curves. The proofs of

these properties are similar to those of their counterparts for SEFCE.
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Reduction to constrained planning.

Lemma 8. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any 𝜀 ≥ 0 and Π under which both players
are 𝜀-best responding, both players are also 𝜀-best responding under pa(Π, {1, 2}), and moreover, for
each 𝑖 ∈ {1, 2},

𝑢Π
𝑖 (∅, 𝑠init) = 𝑢

pa(Π,{1,2})
𝑖

(∅, 𝑠init).

Lemma 9. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any 𝜀 ≥ 0 and randomized strategy Π, both
players are 𝜀-best responding under pa(Π, {1, 2}) if the following condition holds: For each admissible
history ℎ ∈ HΠ , state 𝑠 ∈ S, and action 𝑎 ∈ A such that ℎ + (𝑠, 𝑎) ∈ HΠ ,

𝑣
Π | (ℎ+(𝑠,𝑎) )
ap(𝑠 ) (ℎ, 𝑠) ≥ max𝑎′∈A

(
𝑟ap(𝑠 ) (𝑠, 𝑎′) + E

𝑠′∼𝑃 (𝑠,𝑎′ )
[𝑢𝜋ap(𝑠 )

ap(𝑠 ) (ℎ + (𝑠, 𝑎
′), 𝑠′)]

)
− 𝜀,

where 𝜋ap(𝑠 ) is the subgame perfect equilibrium when player 3− ap(𝑠) tries to minimize player ap(𝑠)’s
utility, as defined above.

Theorem 4. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any 𝜀 ≥ 0 and (𝑥,𝑦) ∈ R2+, there
exists a strategy Π under which both players are 𝜀-best responding such that 𝑢Π

1
(∅, 𝑠init) ≥ 𝑥 and

𝑢Π
2
(∅, 𝑠init) ≥ 𝑦, if and only if there exists a strategy Π′ such that 𝑢Π′

1
(∅, 𝑠init) ≥ 𝑥 , 𝑢Π′

2
(∅, 𝑠init) ≥ 𝑦,

and for each admissible history ℎ ∈ HΠ′ , state 𝑠 ∈ S, and action 𝑎 ∈ A such that ℎ + (𝑠, 𝑎) ∈ HΠ′ ,

𝑣
Π′ | (ℎ+(𝑠,𝑎) )
ap(𝑠 ) (ℎ, 𝑠) ≥ 𝑢𝑝 (𝑠) − 𝜀.

Feasible strategies. We say a strategy Π is 𝜀-feasible (we will omit 𝜀 when it is clear from the

context) if it satisfies the condition in the corollary which involves the utility under punishment,

i.e., for each ℎ ∈ HΠ
, 𝑠 ∈ S, and 𝑎 ∈ A such that ℎ + (𝑠, 𝑎) ∈ HΠ

,

𝑣
Π | (ℎ+(𝑠,𝑎) )
ap(𝑠 ) (ℎ, 𝑠) ≥ 𝑢𝑝 (𝑠) − 𝜀.

We say a strategy Π is 𝜀-feasible after state 𝑠 , if for each ℎ ∈ HΠ
, 𝑠′ > 𝑠 , and 𝑎 ∈ A such that

ℎ + (𝑠′, 𝑎) ∈ HΠ
,

𝑣
Π | (ℎ+(𝑠′,𝑎) )
ap(𝑠′ ) (ℎ, 𝑠′) ≥ 𝑢𝑝 (𝑠′) − 𝜀.

Pareto frontier curves. Again, we define the Pareto frontier curve 𝑓𝑠,𝑎 (dependence on 𝜀 omitted)

for a state-action pair (𝑠, 𝑎) to be the curve capturing all Pareto-optimal pairs of onward utilities

(assuming an empty history) for both players after playing action 𝑎 in state 𝑠 , induced by strategies

that are feasible after 𝑠 .

Lemma 10. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any state 𝑠 ∈ S and action 𝑎 ∈ A, 𝑓𝑠,𝑎 is
always a concave curve.

Pivotal points. Given an objective direction 𝛼obj, we define the pivotal point pp(𝑠, 𝑎) on 𝑓𝑠,𝑎 for

each (𝑠, 𝑎) to be the farthest point (if there is one) along 𝛼obj on 𝑓𝑠,𝑎 such that pp(𝑠, 𝑎)ap(𝑠 ) ≥ 𝑢𝑝 (𝑠).
If such a point does not exist, then we let pp(𝑠, 𝑎) = (−𝑛,−𝑛) (again, −𝑛 is without loss of generality,

and any quantity that is small enough would be consistent with our results).

Lemma 11. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any 𝑠 ∈ S, 𝑎 ∈ A, and 𝛼 ∈ R2+,
𝑓𝑠,𝑎 (𝛼) = (𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎)) + E

𝑠′∼𝑃 (𝑠,𝑎)
[𝑝𝑠′ ] ,

where for each 𝑠′ > 𝑠 and 𝑎′ ∈ A,

𝑝𝑠′,𝑎′ =

{
𝑓𝑠′,𝑎′ (𝛼), if 𝑓𝑠′,𝑎′ (𝛼)ap(𝑠′ ) ≥ 𝑢𝑝 (𝑠′)
pp(𝑠′, 𝑎′), otherwise,
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and for each 𝑠′ > 𝑠 ,
𝑝𝑠′ = argmax

𝑝∈{𝑝𝑠′,𝑎′ }𝑎′ ∈A
𝑝 · 𝛼.

For EFCE, we need an approximate version of Lemma 11, which roughly says if we can approxi-

mately compute the pivotal points for all later state-action pairs, then approximately evaluating

𝑓𝑠,𝑎 can be reduced to at most𝑚𝑛 evaluations of curves for later state-action pairs. This is captured

by the following the claim, which is a direct corollary of Lemma 11.

Corollary 2. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). For any 𝑠 ∈ S, 𝑎 ∈ A, and 𝛼 ∈ R2+,

𝛼 · 𝑓𝑠,𝑎 (𝛼) ≤ 𝛼 ·
(
(𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎)) + E

𝑠′∼𝑃 (𝑠,𝑎)
[𝑞𝑠′ ]

)
+ 𝜀,

where for each 𝑠′ > 𝑠 , 𝑞𝑠′ satisfies
𝛼 · 𝑝𝑠′ ≤ 𝛼 · 𝑞𝑠′ + 𝜀.

Here, 𝑝𝑠′ is defined in the same way as in Lemma 11.

4.2 Algorithm and Analysis
Now we are ready to present and analyze our algorithm for approximately optimal EFCE, Al-

gorithm 4, which uses Algorithm 5 as a subroutine. We defer both these algorithms, as well as

Algorithm 6 to be mentioned later, to Appendix B, since these algorithms are similar to their

counterparts in Section 3.

The key differences between Algorithms 4 and 5, and Algorithms 1 and 2, are:

• Now we need to satisfy feasibility constraints in all states, whereas for SEFCE constraints

exist only in states where the acting player is the follower.

• The binary search stops when the two directions are 𝜀/𝑛-close to each other, and in general,

it only finds an approximate pivotal point as opposed to an exact one. Accordingly, we also

allow inaccuracy in the feasibility constraints.

In order to analyze the algorithm, we first show that the binary search finds a point that is close

to the actual pivotal point. We defer the proof of Lemma 12, as well as that of Lemma 13 below, to

Appendix B. For an illustration of the proof of Lemma 12, see Figure 2.

Lemma 12. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃), where all parameters of the game can be
encoded using 𝐿 bits. In Algorithm 4, assuming for each 𝑠 ∈ S, 𝑎 ∈ A and 𝛼 ∈ R2+ where ∥𝛼 ∥1 ≤ 1,
D(𝑠, 𝑎, 𝛼) satisfies 𝛼 ·D(𝑠, 𝑎, 𝛼) ≥ 𝛼 · 𝑓𝑠,𝑎 (𝛼)− 𝑛−𝑠−1

𝑛
·𝜀, 𝑝𝑠,𝑎 computed in line 15 satisfies (𝑝𝑠,𝑎)3−ap(𝑠 ) ≥

pp(𝑠, 𝑎)3−ap(𝑠 ) − 𝑛−𝑠
𝑛
(𝑠).

We then establish the key properties of Algorithm 4 — essentially an approximate version of

Lemma 7.

Lemma 13. Fix a stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃). The following statements regarding Algo-
rithms 4 and 5 hold: For each 𝑠 ∈ S, 𝑎 ∈ A and 𝛼 ∈ R2+ where ∥𝛼 ∥1 = 1,
• if (𝑠, 𝑎, 𝛼) ∈ D, then 𝛼 · D(𝑠, 𝑎, 𝛼) ≥ 𝛼 · 𝑓𝑠,𝑎 (𝛼) − 𝑛−𝑠−1

𝑛
· 𝜀;

• 𝛼 · (𝑝𝑠,𝑎) ≥ 𝛼 · pp(𝑠, 𝑎) − 𝑛−𝑠
𝑛
· 𝜀.

Given Lemma 13, it is not hard to prove the correctness and efficiency of Algorithm 4.

Theorem 5. Algorithm 4 runs in time polynomial in 𝑛,𝑚, and log(1/𝜀), and the output opt satisfies:
• opt is smaller than the optimal objective value of any EFCE by at most 𝜀, i.e.,

opt ≥ maxΠ is an EFCE 𝛼obj · (𝑢Π
1
(∅, 𝑠init), 𝑢Π

2
(∅, 𝑠init)) − 𝜀.
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Fig. 2. Illustration of the proof of Lemma 12.

• There exists an 𝜀-EFCE whose objective value is opt.

The proof of the above theorem is similar to that of Theorem 2, with one exception: We prove

the second bullet point by giving an algorithm that constructs an 𝜀-EFCE whose objective value is

opt. The algorithm (Algorithm 6 in Appendix B) is overall quite similar to Algorithm 3. As such,

Algorithm 6 only specifies actions for admissible histories. For inadmissible histories, both players

should follow the equilibrium 𝜋𝑖 that maximally punishes player 𝑖 defined earlier, where 𝑖 is the

player who first deviates. The proof of the following claim is similar to that of Theorem 3.

Theorem 6. Algorithm 6 outputs a feasible strategy Π (restricted to admissible histories), which
satisfies 𝛼obj · (𝑢Π

1
(∅, 𝑠init), 𝑢Π

2
(∅, 𝑠init)) = opt, where opt is the approximately optimal objective value

computed by Algorithm 4.
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A OMITTED PROOFS IN SECTION 3
Proof of Lemma 1. For brevity let Π′ = pa(Π, {2}). We first prove Π and Π′ induce the same

utility for the leader. Observe thatΠ andΠ′ share the same set of admissible histories, i.e.,HΠ = HΠ′
.

Moreover, for any ℎ ∈ HΠ
, pa(Π | ℎ, {2}) = Π′ | ℎ. Given the above, we have a stronger claim: For

each 𝑖 ∈ {1, 2}, ℎ and ℎ′ ∈ HΠ
, and 𝑠 ∈ S,

𝑣
Π |ℎ
𝑖
(ℎ′, 𝑠) = 𝑣

Π′ |ℎ
𝑖
(ℎ′, 𝑠).

This can be verified by expanding both sides using the definition of 𝑣𝑖 , coupling 𝜋 ∼ Π | ℎ with

𝜋 ′ = pa(𝜋, {2}) ∼ Π′ | ℎ, and checking 𝜋 and 𝜋 ′ always induce the same play given ℎ′ and 𝑠 since
ℎ′ is admissible. Setting ℎ = ℎ′ = ∅ and 𝑠 = 𝑠init, this immediately implies that both players have

the same utilities under Π and Π′.
We now prove that the follower is best responding under Π′. Consider any admissible history

ℎ ∈ HΠ
, state 𝑠 where ap(𝑠) = 2, action 𝑎 where ℎ + (𝑠, 𝑎) ∈ HΠ

, and deterministic strategy 𝜋 ′′

where 𝜋 ′′ (ℎ, 𝑠) ≠ 𝑎 (we reserve 𝜋 ′ for later use). Since player 2 is best responding under Π, by
definition we have

𝑣
Π | (ℎ+(𝑠,𝑎) )
2

(ℎ, 𝑠) ≥ E
𝜋∼Π | (ℎ+(𝑠,𝑎) )

[
𝑢
(2:𝜋 ′′,1:𝜋 )
2

(ℎ, 𝑠)
]
.

We already know that

𝑣
Π | (ℎ+(𝑠,𝑎) )
2

(ℎ, 𝑠) = 𝑣
Π′ | (ℎ+(𝑠,𝑎) )
2

(ℎ, 𝑠).
So we only need to prove that

E
𝜋∼Π | (ℎ+(𝑠,𝑎) )

[
𝑢
(2:𝜋 ′′,1:𝜋 )
2

(ℎ, 𝑠)
]
≥ E

𝜋 ′∼Π′ | (ℎ+(𝑠,𝑎) )

[
𝑢
(2:𝜋 ′′,1:𝜋 ′ )
2

(ℎ, 𝑠)
]
.

Again we couple 𝜋 ∼ Π | (ℎ + (𝑠, 𝑎)) with 𝜋 ′ = pa(𝜋) ∼ Π′ | (ℎ + (𝑠, 𝑎)), so we only need to

compare 𝑢
(2:𝜋 ′′,1:𝜋 )
2

(ℎ, 𝑠) and 𝑢 (2:𝜋
′′,:𝜋 ′ )

2
(ℎ, 𝑠). Both quantities involve summing over the rewards in

up to 𝑛 steps and taking expectations over random transitions. To this end, observe that the first

steps in both quantities are always the same (player 2 playing 𝜋 ′′ (ℎ, 𝑠)), so we further couple them.

Now we only need to prove in the subgame induced by ℎ + (𝑠, 𝜋 ′′ (ℎ, 𝑠)) and 𝑠′ ∼ 𝑃 (𝑠, 𝜋 ′′ (ℎ, 𝑠)),
player 2’s utility when the other player follows 𝜋 is at least player 2’s utility when the other player
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follows 𝜋 ′. This follows almost directly from the definition of 𝜋 ′: Restricted to this subgame and

player 1, 𝜋 ′ behaves identically as 𝜋2, which is a subgame-perfect equilibrium when the other

player tries to minimize player 2’s utility. In other words, fixing player 2’s strategy (which is 𝜋 ′′),
player 2’s utility in this subgame against 𝜋 is no smaller than player 2’s utility against 𝜋 ′. Now
taking the expectations over 𝜋 , 𝜋 ′, and 𝑠′ gives the desired inequality. □

Proof of Lemma 2. Let Π′ = ap(Π, {2}). We only need to verify that if Π satisfies the condition

in the lemma, then for any admissible history ℎ ∈ HΠ′
, state 𝑠 where ap(𝑠) = 2, action 𝑎 where

ℎ + (𝑠, 𝑎) ∈ HΠ′
, and deterministic strategy 𝜋 ′′ where 𝜋 ′′ (ℎ, 𝑠) ≠ 𝑎,

𝑣
Π | (ℎ+(𝑠,𝑎) )
2

(ℎ, 𝑠) ≥ E
𝜋 ′∼Π′ | (ℎ+(𝑠,𝑎) )

[
𝑢
(2:𝜋 ′′,1:𝜋 ′ )
2

(ℎ, 𝑠)
]
.

In particular, we only need to show that the right hand side of the above inequality is upper bounded

by

max𝑎′∈A

(
𝑟2 (𝑠, 𝑎′) + E

𝑠′∼𝑃 (𝑠,𝑎′ )
[𝑢𝜋2

2
(ℎ + (𝑠, 𝑎′), 𝑠′)]

)
.

Again, this follows almost directly from the definition of 𝜋 ′: Restricted to this subgame and player

1, 𝜋 ′ behaves identically as 𝜋2, which is a subgame-perfect equilibrium when the other player tries

to minimize player 2’s utility. In other words, player 2’s utility in this subgame against 𝜋 ′ is at most

𝑟2 (𝑠, 𝑎′′) + E
𝑠′′∼𝑃 (𝑠,𝑎′′ )

[𝑢𝜋2

2
(ℎ + (𝑠, 𝑎′′), 𝑠′′)],

where 𝑎′′ = 𝜋 ′′ (ℎ, 𝑠). This is clearly upper bounded by

max𝑎′∈A

(
𝑟2 (𝑠, 𝑎′) + E

𝑠′∼𝑃 (𝑠,𝑎′ )
[𝑣𝜋2

2
(ℎ + (𝑠, 𝑎′), 𝑠′)]

)
,

since the latter is obtained by taking the maximum over 𝑎′. This finishes the proof. □

Proof of Lemma 3. We only need to prove 𝐹𝑠,𝑎 is convex. Consider any two points (𝑥1, 𝑦1) and
(𝑥2, 𝑦2) in the feasible region 𝐹𝑠,𝑎 , and feasible-after-𝑠 strategies Π1 and Π2 that induced these

points. Without loss of generality, suppose Π1 = Π1 | (𝑠, 𝑎) (otherwise let Π1 ← Π1 | (𝑠, 𝑎)) and
Π2 = Π2 | (𝑠, 𝑎). For any 𝛼 ∈ (0, 1), the strategy Π = 𝛼 · Π1 + (1 − 𝛼) · Π2 obtained by running Π1

with probability 𝛼 and Π2 with probability 1−𝛼 gives utilities 𝛼 · (𝑥1, 𝑦1) + (1−𝛼) · (𝑥2, 𝑦2) in state

𝑠 after playing action 𝑎. We only need to argue that Π = 𝛼 · Π1 + (1 − 𝛼) · Π2 is feasible after 𝑠 .

Consider any ℎ ∈ HΠ = HΠ1 ∪HΠ2
, 𝑠′ > 𝑠 where ap(𝑠′) = 2, and 𝑎′ ∈ A such that ℎ + (𝑠′, 𝑎′) ∈

HΠ = HΠ1 ∪HΠ2
. We only need to show

𝑣
Π | (ℎ+(𝑠′,𝑎′ ) )
2

(ℎ, 𝑠′) ≥ 𝑢𝑝 (𝑠′) .

Observe that there is some 𝛽 ∈ [0, 1] such that

Π | (ℎ + (𝑠′, 𝑎′)) = 𝛽 · (Π1 | (ℎ + (𝑠′, 𝑎′))) + (1 − 𝛽) · (Π2 | (ℎ + (𝑠′, 𝑎′))),

where 𝛽 is not necessarily equal to 𝛼 due to conditioning. This means

𝑣
Π | (ℎ+(𝑠′,𝑎′ ) )
2

(ℎ, 𝑠′) = 𝛽 · 𝑣Π1 | (ℎ+(𝑠′,𝑎′ ) )
2

(ℎ, 𝑠′) + (1 − 𝛽) · 𝑣Π2 | (ℎ+(𝑠′,𝑎′ ) )
2

(ℎ, 𝑠′).

Since Π1 and Π2 are both feasible after 𝑠 , we have

𝛽 · 𝑣Π1 | (ℎ+(𝑠′,𝑎′ ) )
2

(ℎ, 𝑠′) + (1 − 𝛽) · 𝑣Π1 | (ℎ+(𝑠′,𝑎′ ) )
2

(ℎ, 𝑠′) ≥ 𝛽 · 𝑢𝑝 (𝑠′) + (1 − 𝛽) · 𝑢𝑝 (𝑠′) = 𝑢𝑝 (𝑠′).

This finishes the proof. □
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Proof of Lemma 4. We first prove E𝑠′∼𝑃 (𝑠,𝑎) [𝑝𝑠′ ] ∈ 𝑓𝑠,𝑎 , and

𝛼 · 𝑓𝑠,𝑎 (𝛼) ≥ 𝛼 ·
(
(𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎)) + E

𝑠′∼𝑃 (𝑠,𝑎)
[𝑝𝑠′ ]

)
.

Let Π𝑠′ and 𝑎𝑠′ be the strategy and action corresponding to 𝑝𝑠′ for each 𝑠
′ > 𝑠 , respectively. Clearly

Π𝑠′ is feasible after 𝑠
′
, and by construction the constraint in 𝑠′ (if there is one) is also satisfied by

Π𝑠′ . Moreover, for each 𝑖 ∈ {1, 2},

𝑢
Π𝑠′ | (𝑠′,𝑎𝑠′ )
𝑖

(∅, 𝑠′) = (𝑝𝑠′ )𝑖 .

Now we only need to construct a strategy Π satisfying: (1) Π is feasible after 𝑠 , and (2) for each

𝑖 ∈ {1, 2},
𝑢
Π | (𝑠,𝑎)
𝑖

(∅, 𝑠) = E
𝑠′∼𝑃 (𝑠,𝑎)

[(𝑝𝑠′ )𝑖 ] .

This is achieved by the following construction: Draw 𝜋𝑠′ ∼ Π𝑠′ | (𝑠′, 𝑎𝑠′ ) for each 𝑠′ > 𝑠 . Let

𝜋 (∅, 𝑠) = 𝑎. For each (ℎ, 𝑠′′) where ℎ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ), let

𝜋 (ℎ, 𝑠) = 𝜋𝑠1 ((𝑠2, 𝑎2, . . . , 𝑠𝑡 , 𝑎𝑡 ), 𝑠′′).

Let Π be the distribution of 𝜋 . One can check Π satisfies the two desired conditions.

Now we prove

𝛼 · 𝑓𝑠,𝑎 (𝛼) ≤ 𝛼 ·
(
(𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎)) + E

𝑠′∼𝑃 (𝑠,𝑎)
[𝑝𝑠′ ]

)
.

Suppose otherwise. Let Π be a strategy that is feasible after 𝑠 that implements 𝑓𝑠,𝑎 (𝛼). There must

be some 𝑠′ > 𝑠 such that

𝛼 · (𝑣Π | (𝑠,𝑎)
1

(∅, 𝑠′), 𝑣Π | (𝑠,𝑎)
2

(∅, 𝑠′)) > 𝛼 · 𝑝𝑠′ .

This means there exists a strategy Π𝑠′ = Π | (𝑠, 𝑎) such that

𝛼 · E
𝜋𝑠′∼Π𝑠′

[
(𝑣Π𝑠′ | (𝑠′,𝜋𝑠′ (∅,𝑠′ ) )

1
(∅, 𝑠′), 𝑣Π𝑠′ | (𝑠′,𝜋𝑠′ (∅,𝑠′ ) )

2
(∅, 𝑠′))

]
> 𝛼 · 𝑝𝑠′ ,

which means there exists some 𝑎′ such that

𝛼 · (𝑣Π𝑠′ | (𝑠′,𝑎′ )
1

(∅, 𝑠′), 𝑣Π𝑠′ | (𝑠′,𝑎′ )
2

(∅, 𝑠′)) > 𝛼 · 𝑝𝑠′,𝑎′ .

This contradicts the definition of 𝑝𝑠′,𝑎′ , since Π𝑠′ is feasible after 𝑠 . □

Proof of Lemma 5. We prove the claim inductively. Consider 𝑠 = 𝑛 − 1 first. For each 𝑎 ∈ A,

𝑓𝑠,𝑎 consists of a single point (𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎), so the claim holds trivially.

Now fix some 𝑠 ∈ [𝑛 − 1] and suppose the claim holds for all 𝑠′ > 𝑠 . Fix an action 𝑎 ∈ A and

consider the first bullet point. By Lemma 4, for any 𝛼 ∈ R2+,

𝑓𝑠,𝑎 (𝛼) = (𝑟1 (𝑠, 𝑎) + 𝑟2 (𝑠, 𝑎)) + E
𝑠′∼𝑃 (𝑠,𝑎)

[𝑝𝑠′ ] = (𝑟1 (𝑠, 𝑎) + 𝑟2 (𝑠, 𝑎)) +
∑︁
𝑠′>𝑠

𝑃 (𝑠, 𝑎, 𝑠′) · 𝑝𝑠′ .

Here, for each 𝑠′ > 𝑠 , (𝑝𝑠′ )2 is a multiple of 2
−(𝑛−𝑠−1)𝐿

, and (𝑝𝑠′ )1 is a multiple of 𝐶𝑠+1 because of
the induction hypothesis. Since 𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎) and 𝑃 (𝑠, 𝑎, 𝑠′) are multiples of 2

−𝐿
, (𝑓𝑠,𝑎 (𝛼))2 must

be a multiple of 2
−(𝑛−𝑠 )𝐿

, and (𝑓𝑠,𝑎 (𝛼))1 must be a multiple of 1/(2𝐿𝐶𝑠+1).
Now if ap(𝑠) = 2, we need to further consider the second bullet point. When there is no point on

𝑓𝑠,𝑎 whose 𝑦-axis is precisely 𝑢
𝑝 (𝑠), we know pp(𝑠, 𝑎) is either (−𝑛,−𝑛) or some turning point on

𝑓𝑠,𝑎 . In both cases, (pp(𝑠, 𝑎))2 is a multiple of 2
−(𝑛−𝑠 )𝐿

, and (pp(𝑠, 𝑎))1 is a multiple of 1/(2𝐿𝐶𝑠+1).
Alternatively, when there is a point on 𝑓𝑠,𝑎 whose 𝑦-axis is precisely 𝑢𝑝 (𝑠), this point must be
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pp(𝑠, 𝑎). Moreover, there exist two turning points 𝑝1 and 𝑝2 on 𝑓𝑠,𝑎 such that pp(𝑠, 𝑎) is the unique
convex combination of 𝑝1 and 𝑝2 whose 𝑦-axis is 𝑢

𝑝 (𝑠). That is,

pp(𝑠, 𝑎) =
(
(𝑝1)2 − 𝑢𝑝 (𝑠)
(𝑝1)2 − (𝑝2)2

· (𝑝2)1 +
𝑢𝑝 (𝑠) − (𝑝2)2
(𝑝1)2 − (𝑝2)2

· (𝑝1)1, 𝑢𝑝 (𝑠)
)
.

Here,𝑢𝑝 (𝑠) is a multiple of 2
−(𝑛−𝑠 )𝐿

(we will prove this later), so (pp(𝑠, 𝑎))2) is a multiple of 2
−(𝑛−𝑠 )𝐿

.

(𝑝1)1 and (𝑝2)1 are multiples of 1/(2𝐿𝐶𝑠+1). As for the coefficients of (𝑝1)1 and (𝑝2)1, observe that
(𝑝1)2 and (𝑝2)2 are multiples of 2

−(𝑛−𝑠 )𝐿
, and they are between 0 and 𝑛 − 𝑠 . So there must be some

integer 𝑘 ≤ 2
(𝑛−𝑠 )𝐿 · (𝑛 − 𝑠) such that both coefficients are multiples of 1/𝑘 . As a result, (pp(𝑠, 𝑎))1

is a multiple of 1/(2𝐿𝐶𝑠+1𝑘), and we can let 𝐶𝑠 = 2
𝐿𝐶𝑠+1𝑘 , which satisfies

𝐶𝑠 ≤ 2
𝐿 · 2(𝑛−𝑠−1) (𝑛+1)𝐿 · 2(𝑛−𝑠 )𝐿 · (𝑛 − 𝑠) ≤ 2

(𝑛−𝑠−1) (𝑛+1)𝐿 · 2(𝑛+1)𝐿 ≤ 2
(𝑛−𝑠 ) (𝑛+1)𝐿 .

Finally we quickly argue that when ap(𝑠) = 2, 𝑢𝑝 (𝑠) is a multiple of 2
−(𝑛−𝑠 )𝐿

. Recall that 𝑢𝑝 (𝑠) is
player 2’s maximum onward utility in the subgame induced by 𝑠 when the other player tries to

minimize player 2’s utility. Without loss of generality, the equilibrium strategy is deterministic

and history-independent (such a strategy can be computed by backward induction, for example).

Again we can bound player 2’s onward utility inductively. In state 𝑛 − 1, player 2’s onward utility

must be 𝑟2 (𝑛 − 1, 𝑎) for some action 𝑎, which means it is a multiple of 2
−𝐿
. In state 𝑛 − 2, player

2’s onward utility can be written as the sum of 𝑟2 (𝑛 − 2, 𝑎) for some action 𝑎, and the product

of 𝑃 (𝑛 − 2, 𝑎, 𝑛 − 1) and player 2’s utility in state 𝑛 − 1. So this utility must be a multiple of 2
−2𝐿

.

Repeating this argument for each 𝑠 , we can show that player 2’s utility in each state 𝑠 is a multiple

of 2
(𝑛−𝑠 )𝐿

. This concludes the proof. □

Proof of Lemma 6. Without loss of generality suppose ℓ1 ≤ 1

2
(otherwise we can flip the two

axes and apply the same argument). Since ∥ℓ − 𝑟 ∥1 < 1/(3𝑛 · 22𝑛2𝐿), we also have 𝑟1 ≤ 2

3
. Suppose

otherwise, i.e., there is another point 𝑞 ∈ 𝑓𝑠,𝑎 between 𝑞ℓ and 𝑞𝑟 , such that 𝑞 is strictly above the

line defined by 𝑞ℓ and 𝑞𝑟 , i.e.,

𝑞2 − (𝑞ℓ )2
𝑞1 − (𝑞ℓ )1

>
(𝑞𝑟 )2 − 𝑞2
(𝑞𝑟 )1 − 𝑞1

.

Recall that max{|𝑞ℓ |, |𝑞𝑟 |, |𝑞 |} ≤ 𝑛. Moreover, by Corollary 1, all quantities in the above inequality

are multiples of 1/𝐶 , where 𝐶 ≤ 2
𝑛2𝐿

. Observe that

𝑞2 − (𝑞ℓ )2
𝑞1 − (𝑞ℓ )1

− (𝑞𝑟 )2 − 𝑞2(𝑞𝑟 )1 − 𝑞1
=
𝐶2 ((𝑞2 − (𝑞ℓ )2) ((𝑞𝑟 )1 − 𝑞1) − ((𝑞𝑟 )2 − 𝑞2) (𝑞1 − (𝑞ℓ )1))

𝐶2 (𝑞1 − (𝑞ℓ )1) ((𝑞𝑟 )1 − 𝑞1)
.

Here, both the numerator and the denominator are integers, and the denominator is no larger than

𝐶2 · 𝑛 ≤ 𝑛 · 22𝑛2𝐿
. Since the fraction is strictly positive, we must have

𝑞2 − (𝑞ℓ )2
𝑞1 − (𝑞ℓ )1

− (𝑞𝑟 )2 − 𝑞2(𝑞𝑟 )1 − 𝑞1
≥ 1

𝑛 · 22𝑛2𝐿
.

On the other hand, since 𝑞ℓ = 𝑓𝑠,𝑎 (ℓ) and 𝑞𝑟 = 𝑓𝑠,𝑎 (𝑟 ), we have

− ℓ1
ℓ2
≥ 𝑞2 − (𝑞ℓ )2

𝑞1 − (𝑞ℓ )1
and − 𝑟1

𝑟2
≤ (𝑞𝑟 )2 − 𝑞2(𝑞𝑟 )1 − 𝑞1

.

This implies

𝑟1

𝑟2
− ℓ1

ℓ2
≥ 1

𝑛 · 22𝑛2𝐿
.
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So we have

∥ℓ − 𝑟 ∥1 = 2(𝑟1 − ℓ1) ≥ 2𝑟2 ·
𝑟1 − ℓ1
𝑟2

≥ 2𝑟2 ·
𝑟1

𝑟2
− 2ℓ2 ·

ℓ1

ℓ2

= 2ℓ2 ·
𝑟1

𝑟2
+ 2(𝑟2 − ℓ2) ·

𝑟1

𝑟2
− 2ℓ2 ·

ℓ1

ℓ2

≥ 2ℓ2

𝑛 · 22𝑛2𝐿
− ∥ℓ − 𝑟 ∥1 ·

𝑟1

𝑟2
.

Recall that without loss of generality, ℓ1 ≤ 1

2
(so ℓ2 ≥ 1

2
) and 𝑟1 ≤ 2

3
(so 𝑟2 ≥ 1

3
). Plugging these in

and rearranging terms, the above inequality implies

3∥ℓ − 𝑟 ∥1 ≥ ∥ℓ − 𝑟 ∥1 +
𝑟1

𝑟2
· ∥ℓ − 𝑟 ∥1 ≥

2ℓ2

𝑛 · 22𝑛2𝐿
≥ 1

𝑛 · 22𝑛2𝐿
=⇒ ∥ℓ − 𝑟 ∥1 ≥

1

3𝑛 · 22𝑛2𝐿
,

a contradiction. □

B OMITTED ALGORITHMS AND PROOFS IN SECTION 4
Proof of Lemma 12. Without loss of generality suppose ap(𝑠) = 1. We show this in two steps.

First imagine the “minimum” curve possible given approximate evaluations satisfying the condition

stated in the lemma. This is the curve that the binary search actually operates on in the worst case.

As illustrated in the left subfigure of Figure 2, this minimum curve is the blue one, which is lower

than the actual (black) curve at most by
𝑛−𝑠−1

𝑛
· 𝜀 in every direction. Also recall that the blue dashed

line is obtained by shifting the black dashed line to the left by
𝑛−𝑠−1

𝑛
· 𝜀. These facts imply that the

𝑥-coordinate of the blue hollow point is smaller than that of the pivotal point (the black hollow

point) by at most
𝑛−𝑠−1

𝑛
· 𝜀.

Now consider how well the binary search approximates the blue hollow point. Suppose ℓ , 𝑟 , 𝑞ℓ
and 𝑞𝑟 are as illustrated in the right subfigure of Figure 2. We need to bound the distance between

the blue hollow point and the red one. Recall that ∥ℓ −𝑟 ∥1 < 𝜀
10𝑛2

, which means the angle 𝜃 between

ℓ and 𝑟 is smaller than
𝜀
2𝑛2

. Moreover, observe that 𝜃 upper bounds the sum of the two acute angles

in the triangle containing the red segment, so the angle at 𝑞ℓ is at most 𝜃 ≤ 𝜀
2𝑛2

. This implies that the

distance between the two points we care about is at most the length of the segment to the left of 𝑞ℓ ,

times sin𝜃 . The length of the segment is at most

√
2·𝑛, and sin𝜃 ≤ 𝜃 ≤ 𝜀

2𝑛2
, so the distance is at most

𝜀/𝑛. Putting the two parts together, we conclude that (𝑝𝑠,𝑎)3−ap(𝑠 ) ≥ pp(𝑠, 𝑎)3−ap(𝑠 ) − 𝑛−𝑠
𝑛
(𝑠). □

Proof of Lemma 13. Apply induction on 𝑠 = 𝑛 − 1, . . . , 1. When 𝑠 = 𝑛 − 1, the first bullet

point holds because eval(𝑠, 𝑎, 𝛼) is alwaus exact. Lemma 12 then implies the second bullet point.

Now fix some 𝑠 and suppose the two bullet points hold for all 𝑠′ > 𝑠 . Consider lines 3-12 in

Algorithm 5, where D(𝑠, 𝑎, 𝛼) is recursively computed. Let 𝑞∗
𝑠′,𝑎′ = argmax𝑞∈ 𝑓𝑠′,𝑎′ :𝑞ap(𝑠′ ) ≥𝑢𝑝 (𝑠′ ) 𝛼 · 𝑞,

and 𝑞∗
𝑠′ = argmax𝑞∈{𝑞∗

𝑠′,𝑎′ }𝑎′
𝛼 · 𝑞. By the induction hypothesis, we have

𝛼 · 𝑞𝑠′,𝑎′ ≥ 𝛼 · 𝑞∗𝑠′,𝑎′ −
𝑛 − 𝑠′
𝑛
· 𝜀 ≥ 𝛼 · 𝑞∗𝑠′,𝑎′ −

𝑛 − 𝑠 − 1
𝑛

· 𝜀.

As a result, we have 𝛼 · 𝑞𝑠′ ≥ 𝛼 · 𝑞∗
𝑠′ −

𝑛−𝑠−1
𝑛
· 𝜀, and therefore 𝛼 · D(𝑠, 𝑎, 𝛼) ≥ 𝛼 · 𝑓𝑠,𝑎 (𝛼) − 𝑛−𝑠−1

𝑛
· 𝜀.

Lemma 12 then implies the second bullet point. □
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ALGORITHM 4: An algorithm for computing an approximately optimal 𝜀-EFCE in turn-taking stochastic

games, in time poly(𝑛,𝑚, log(1/𝜀)).
Input: a turn-taking stochastic game (S = [𝑛],A, ap, 𝑟1, 𝑟2, 𝑃), an objective direction 𝛼

obj
where

∥𝛼
obj
∥1 ≤ 1, a desired accuracy 𝜀.

Output: an approximately optimal objective value under EFCE, together with an implicit representation

of an 𝜀-EFCE achieving the approximate objective value in the input game.

1 create a data structure D that stores the results of all evaluations (used by eval);

2 for each state 𝑠 ∈ S, let ˆ𝑢𝑝 (𝑠) ← 𝑢𝑝 (𝑠) − 𝑛−𝑠−1
𝑛 · 𝜀;

3 for each state 𝑠 = 𝑛 − 1, 𝑛 − 2, . . . , 1 do
4 for each action 𝑎 ∈ A do
5 let (ℓ, 𝑟 ) ← ((1, 0), 𝛼

obj
) if ap(𝑠) = 1, and (ℓ, 𝑟 ) ← ((0, 1), 𝛼

obj
) if ap(𝑠) = 2;

6 let 𝑞ℓ ← eval(𝑠, 𝑎, ℓ), 𝑞𝑟 ← eval(𝑠, 𝑎, 𝑟 );
7 if (𝑞ℓ )ap(𝑠 ) < ˆ𝑢𝑝 (𝑠), let 𝑝𝑠,𝑎 ← (−𝑛,−𝑛);
8 if (𝑞𝑟 )ap(𝑠 ) ≥ ˆ𝑢𝑝 (𝑠), let 𝑝𝑠,𝑎 ← 𝑞𝑟 ;

9 if (𝑞ℓ )ap(𝑠 ) ≥ ˆ𝑢𝑝 (𝑠) and (𝑞𝑟 )ap(𝑠 ) < ˆ𝑢𝑝 (𝑠) then
10 while ∥ℓ − 𝑟 ∥1 ≥ 𝜀

10𝑛2
do

11 let 𝑞 ← eval(𝑠, 𝑎, (ℓ + 𝑟 )/2) (see Algorithm 5);

12 let ℓ ← (ℓ + 𝑟 )/2 if 𝑞ap(𝑠 ) ≥ ˆ𝑢𝑝 (𝑠), and 𝑟 ← (ℓ + 𝑟 )/2 otherwise;
13 end
14 let 𝑞ℓ ← eval(𝑠, 𝑎, ℓ), 𝑞𝑟 ← eval(𝑠, 𝑎, 𝑟 ), ℓ𝑠,𝑎 ← ℓ , 𝑟𝑠,𝑎 ← 𝑟 ;

15 let 𝑝𝑠,𝑎 ←
(𝑞ℓ )ap(𝑠 )− ˆ𝑢𝑝 (𝑠 )
(𝑞ℓ )ap(𝑠 )−(𝑞𝑟 )ap(𝑠 ) · 𝑞𝑟 +

ˆ𝑢𝑝 (𝑠 )−(𝑞𝑟 )ap(𝑠 )
(𝑞ℓ )ap(𝑠 )−(𝑞𝑟 )ap(𝑠 ) · 𝑞ℓ ;

16 end
17 end
18 end
19 let opt← max𝑎∈A (𝑝𝑠init,𝑎)1;
20 return opt, {𝑝𝑠,𝑎}𝑠,𝑎 {ℓ𝑠,𝑎}𝑠,𝑎 , {𝑟𝑠,𝑎}𝑠,𝑎 , and D;

ALGORITHM 5: eval: A subroutine of Algorithm 4 that performs approximate recursive evaluations as

needed.

Input: a state 𝑠 , an action 𝑎, a direction of evaluation 𝛼 , all variables in Algorthm 4.

Output: an approximation of 𝑓𝑠,𝑎 (𝛼).
1 if 𝑠 = 𝑠term = 𝑛 then return (0, 0);
2 if (𝑠, 𝑎, 𝛼) ∉ D (i.e., if D(𝑠, 𝑎, 𝛼) does not exist) then
3 for 𝑠′ = 𝑠 + 1, . . . , 𝑛 do
4 for 𝑎′ ∈ A do
5 let 𝑞𝑠′,𝑎′ ← eval(𝑠′, 𝑎′, 𝛼);
6 if (𝑞𝑠′,𝑎′ )ap(𝑠′ ) < (𝑝𝑠′,𝑎′ )ap(𝑠′ ) then
7 let 𝑞𝑠′,𝑎′ ← 𝑝𝑠′,𝑎′ ;

8 end
9 end

10 let 𝑞𝑠′ ← argmax𝑞∈{𝑞𝑠′,𝑎′ }𝑎′ ∈A 𝛼 · 𝑞;
11 end
12 let D(𝑠, 𝑎, 𝛼) ← (𝑟1 (𝑠, 𝑎), 𝑟2 (𝑠, 𝑎)) + E𝑠′∼𝑃 (𝑠,𝑎) [𝑞𝑠′ ];
13 end
14 return D(𝑠, 𝑎, 𝛼);
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ALGORITHM 6: A procedure that decodes the output of Algorithm 4.

Input: A turn-taking stochastic game (S,A, ap, 𝑟1, 𝑟2, 𝑃), an objective direction 𝛼
obj

, the output of

Algorithm 4, a history ℎ = (𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ), and a state 𝑠 .

Output: 𝜋 (ℎ, 𝑠), where 𝜋 ∼ Π | ℎ, and Π is the strategy encoded in the output of Algorithm 4; −1 if ℎ is

not an admissible history under Π.
1 let 𝛼 ← 𝛼

obj
, 𝑎 ← argmax𝑎′∈A 𝛼 · 𝑝𝑠,𝑎′ , 𝑞 ← 𝑝𝑠,𝑎 ;

2 if |ℎ | = 0 return 𝑎;

3 if 𝑎1 ≠ 𝑎, return −1;
4 for 𝑖 = 1, 2, . . . , 𝑡 − 1 do
5 if 𝑞 = 𝑝𝑠𝑖 ,𝑎𝑖 then
6 let ℓ ← ℓ𝑠𝑖 ,𝑎𝑖 , 𝑟 ← 𝑟𝑠𝑖 ,𝑎𝑖 , 𝑎ℓ ← argmax𝑎′∈A ℓ ·max

ap(𝑠𝑖+1 ) {𝑝𝑠𝑖+1,𝑎′ ,D(𝑠𝑖+1, 𝑎′, ℓ)},
𝑎𝑟 ← argmax𝑎′∈A 𝑟 ·max

ap(𝑠𝑖+1 ) {𝑝𝑠𝑖+1,𝑎′ ,D(𝑠𝑖+1, 𝑎′, ℓ)};
/* for two points 𝑞1 and 𝑞2, max

𝑘 {𝑞1, 𝑞2} denotes the point with the larger 𝑘-th

coordinate between the two */

7 let 𝛼 ← ℓ if 𝑎𝑖+1 = 𝑎ℓ ;

8 let 𝛼 ← 𝑟 if 𝑎𝑖+1 = 𝑎𝑟 ;

9 if 𝑎𝑖+1 ∉ {𝑎ℓ , 𝑎𝑟 }, return −1;
10 end
11 else
12 let 𝑎 ← argmax𝑎′∈A 𝛼 ·max

ap(𝑠𝑖+1 ) {𝑝𝑠𝑖+1,𝑎′ ,D(𝑠𝑖+1, 𝑎′, 𝛼)};
13 if 𝑎𝑖+1 ≠ 𝑎 return −1;
14 end
15 let 𝑞 ← max

ap(𝑠𝑖+1 ) {𝑝𝑠𝑖+1,𝑎𝑖+1 ,D(𝑠𝑖+1, 𝑎𝑖+1, 𝛼)};
16 end
17 if 𝑞 = 𝑝𝑠𝑡 ,𝑎𝑡 then
18 let ℓ ← ℓ𝑠𝑖 ,𝑎𝑖 , 𝑎ℓ ← argmax𝑎′∈A ℓ ·max

ap(𝑠 ) {𝑝𝑠,𝑎′ ,D(𝑠, 𝑎′, ℓ)}, 𝑞ℓ ← max
ap(𝑠 ) {𝑝𝑠,𝑎ℓ ,D(𝑠, 𝑎ℓ , ℓ)};

let 𝑟 ← 𝑟𝑠𝑖 ,𝑎𝑖 , 𝑎𝑟 ← argmax𝑎′∈A 𝑟 ·max
ap(𝑠 ) {𝑝𝑠,𝑎′ ,D(𝑠, 𝑎′, 𝑟 )}, 𝑞𝑟 ← max

ap(𝑠 ) {𝑝𝑠,𝑎𝑟 ,D(𝑠, 𝑎𝑟 , 𝑟 )};
19 let 𝑎 ← 𝑎ℓ with probability

𝑞𝑟 −𝑞
𝑞𝑟 −𝑞ℓ , 𝑎 ← 𝑎𝑟 with probability

𝑞−𝑞ℓ
𝑞𝑟 −𝑞ℓ ;

20 end
21 else
22 let 𝑎 ← argmax𝑎′∈A 𝛼 ·max

ap(𝑠 ) {𝑝𝑠,𝑎′ ,D(𝑠, 𝑎′, 𝛼)};
23 end
24 return 𝑎;
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