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Abstract 

AI has the potential to revolutionize many areas of healthcare. Ra-
diology, dermatology, and ophthalmology are some of the areas 
most likely to be impacted in the near future, and they have re-
ceived significant attention from the broader research commu-
nity.  But AI techniques are now also starting to be used in in vitro 
fertilization (IVF), in particular for selecting which embryos to 
transfer to the woman.  The contribution of AI to IVF is potentially 
significant, but must be done carefully and transparently, as the 
ethical issues are significant, in part because this field involves cre-
ating new people. 

We first give a brief introduction to IVF and review the use of 
AI for embryo selection.  We discuss concerns with the interpreta-
tion of the reported results from scientific and practical perspec-
tives.  We then consider the broader ethical issues involved.  We 
discuss in detail the problems that result from the use of black-box 
methods in this context and advocate strongly for the use of inter-
pretable models.  Importantly there have been no trials of clinical 
effectiveness, a problem in both the AI and IVF communities, and 
argue against premature implementation. Finally, we discuss ways 
for the broader AI community to become involved to ensure scien-
tifically sound and ethically responsible development of AI in IVF. 

Introduction   
In vitro fertilization (IVF) is a clinical technique which has 
revolutionized the treatment of infertility. The process in-
volves fertilizing the egg in a laboratory and replacing the 
resultant embryo into the uterus. Natural fertilization and 
conception is an inefficient process, with low chances of a 
live birth for any particular embryo. The solution both in na-
ture and with medical treatment is to create many embryos, 
so that ultimately one will probably implant. In nature, the 
cost is time to pregnancy or, in the event of no embryos im-
planting, the pain of childlessness. In clinical practice, the 
cost is additionally measured in dollars and limited access 
to treatment. To increase the efficiency of clinical practice, 
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much attention has been given to selecting the embryo that 
is most likely to implant. A recent innovation in the labora-
tory is time-lapse imaging of the embryo in culture over a 
number of days. This gives rise to thousands of visual data 
points and with it the promise of augmenting the embryo se-
lection process with artificial intelligence (AI)-based mod-
els. In this paper, we provide an overview of the IVF pro-
cess, review current approaches to using AI in embryo se-
lection, discuss ethical issues of using AI in this specific 
field, and make proposals for the ethical implementation of 
this new technology. We finish with encouragement for AI 
researchers to collaborate with fertility clinicians to take this 
research forward in a meaningful and ethical way. 

The In Vitro  
Fertilization (IVF) Process 

Each year, millions of couples who suffer from infertility 
pin their hopes of starting or growing their family on IVF 
(European Society of Human Reproduction and Embryol-
ogy 2020). Heavily criticized by many at first as an unethi-
cal human experiment (Fauser and Edwards 2005), the tech-
nique has become one of the most successful therapeutic in-
novations of the past half-century, leading to over 9 million 
babies born since the first IVF birth in 1978 (European So-
ciety of Human Reproduction and Embryology 2020). The 
limit of IVF’s success, however, is reflected in the millions 
more whose hopes have not been fulfilled. Particularly for 
those with advancing age and comorbidities, but also for 
every couple who tries, success is not guaranteed. On aver-
age, across all age groups, the live birth rate per treatment 
cycle is 26.1% in the UK (Human Fertilisation and Embry-
ology Authority 2020). 

To maximize the chance of retrieving a good quality egg 
and subsequent embryo, women are given hormone treat-
ment to stimulate multiple egg development, a process 
known as controlled ovarian hyperstimulation. The doctor 

 



harvests a woman’s eggs at egg collection, a procedure per-
formed under sedation, in which they pass a needle under 
ultrasound guidance into an ovarian follicle to aspirate the 
follicular fluid which contains the egg. The embryologist in-
spects the follicular fluid under the microscope and identi-
fies the egg with its surrounding cells. They then add sperm 
to fertilize the egg, and culture the resultant embryos in the 
laboratory for 2-6 days, depending on the clinical situation. 
Although the number of eggs collected can range from 0 to 
>40, a typical number of eggs collected would be around 10, 
of which typically 6-8 would fertilize, and about 2-4 would 
typically reach the blastocyst stage around day 5 or 6. The 
embryologist will then select 1 or 2 embryos for transfer to 
the uterus; the patient is given hormonal support; and ap-
proximately 2 weeks later, a pregnancy test confirms if the 
patient is pregnant or not. This is known as a “fresh” cycle. 
Any unused embryos thought to be viable are then frozen 
for use later in case the fresh cycle is unsuccessful, or if suc-
cessful, for a future sibling (Centers for Disease Control and 
Prevention 2020). 

Early embryo development at the preimplantation stage is 
a very dynamic process. Hours after fertilisation, two pro-
nuclei are formed carrying DNA material contributed by the 
sperm and the egg. The pronuclear membrane breaks down 
shortly before the first cell division, leading to a 2-cell em-
bryo. As cells continue to divide, they become more com-
pact with increased cell-to-cell interaction from 3 days post-
fertilization. On day 4, the embryo reaches the “morula” 
stage, where borders between cells become invisible. Dur-
ing the next 1 to 2 days, cells separate into 2 layers, with a 
growing cavity formed between them; at this point, the em-
bryo is called a “blastocyst”. The outer layer of cells, also 
known as the trophectoderm, will become the placenta fol-
lowing implantation, while the inner layer (inner cell mass) 
will become the fetus. Both layers hatch out of the shell 
around the embryo (zona pellucida) before implantation into 
the endometrium. 

Traditional embryo selection is based on several snapshot 
observations of an embryo under a microscope, at specific 
time points during culture (Figures 1-6). Considering the dy-
namic nature of embryo development, the static nature of 
the information collected in this method limits the accuracy 
of embryo selection (Gardner et al. 2015). Recent clinical 
application of time-lapse videography has enabled addi-
tional novel measures for embryo selection (Liu et al. 2014, 
Liu et al. 2015). However, debate is still ongoing regarding 
the best approach of using such time-lapse images for em-
bryo selection (Liu et al. 2020). 

Embryo freezing has been revolutionized in the past 10 
years, as laboratories have adopted vitrification (rapid freez-
ing), with pregnancy and live birth rates now comparable 
between fresh and frozen transfers (Rienzi et al. 2017). As 
the age of the uterus is known to have little effect on live 
birth rates (Human Fertilisation and Embryology Authority 

2018), if all the embryos are replaced, albeit one at a time, 
embryo selection would not affect pregnancy or live birth 
rates per egg collection, as ultimately all embryos will be 
given the chance to implant. However, not all couples per-
sist with treatment even in the presence of remaining frozen 
embryos (Human Fertilisation and Embryology Authority 
2020 and Centers for Disease Control and Prevention 2020). 
For some couples, therefore, maximizing their chance of a 
live birth at an earlier transfer could raise their overall 
chances of having a baby. Other benefits of improving the 
embryo selection process might include a shorter time and 
lower cost to achieve a pregnancy because of fewer embryo 
transfers (Sunkara et al. 2020), thereby enabling more cou-
ples to have their baby when they had planned, possibly af-
fecting future family planning. Therefore, IVF clinics are 
keen to adopt new strategies for embryo selection that im-
prove on current success rates. 

Examples of developments to select embryos more likely 
to implant include (1) allowing embryos to self-deselect via 
extended culture in the laboratory (Gardner et al. 2000), or 
(2) adding extra genetic testing such as pre-implantation ge-
netic testing for aneuploidy (PGT-A) which is controversial 
because of its invasive nature and diagnostic imperfection 
(Kemper et al. 2020). These tools increase the birth rate per 
transfer from about 25% to 60% (Gardner et al. 2015), de-
spite safety and accuracy concerns over both approaches. 
 

 
Figure 1: The embryo hours after fertilisation with 2 pronuclei 



 

 
Figure 2: The 2-cell embryo 

 

 
Figure 3: The 4-cell embryo 

 
 

 
Figure 4:  The 8-cell embryo 

 

 
Figure 5: The “morula” 

 

 
Figure 6: The “blastocyst” with trophectoderm and inner cell 

mass 

 

AI as an Embryo Selection Tool 
to Improve the Success Rate Per Transfer 

The application of AI in IVF has the potential to provide 
more objective, more rapid, and potentially more accurate 
evaluation of key steps in the IVF process, to make it more 
reproducible and repeatable when compared with a purely 
human approach (Rosenwaks 2020). In particular AI for em-
bryo selection has attracted much interest, and potentially 
holds much promise (Fernandez et al. 2020). 

The recent innovation of Time Lapse Imaging (TLI) in 
embryology offers the potential to generate vast quantities 
of data (Meseguer et al. 2011, Liu et al. 2016), which em-
bryologists are still learning how to use (Liu et al. 2020). 
Computer Vision (CV) allows large amounts of image data 
to be automatically analysed by algorithms, and rapid recent 
advances in this field offer great promise to improve embryo 
selection. 

More generally, the type of AI that can help embryo se-
lection is Machine Learning (ML) – models that can 



automatically learn and adapt as they are exposed to more 
data (whether images or other data). This is particularly use-
ful when there is access to lots of data, but we do not know 
how to leverage it to make better predictions, or when we 
cannot manually process it all to generate meaningful 
knowledge. Potential variables include morphological fea-
tures, such as cleavage of the embryo cells (blastomeres), 
fragmentation; morphokinetic features, which include time 
intervals between certain features; as well as considering 
confounding factors such as age of the woman or cause of 
infertility (ESHRE Working group on Time-lapse technol-
ogy 2020). 

Current State of Research 
on the Use of AI to Select Embryos 

We searched MEDLINE and Embase for full-text studies 
evaluating AI to select embryos using the strategy included 
in the appendix. We checked the citations of papers we iden-
tified in the search for any publications we might have 
missed. 

Studies evaluating AI for embryo selection make impres-
sive accuracy claims for their ML models (Tran, Cooke and 
Illingworth 2019, Khosravi et al. 2019). One commonly re-
ported performance measure is the receiver operating char-
acteristic (ROC) curve which shows how a test’s sensitivity 
and specificity correlate at different thresholds. The area un-
der this curve (AUC) indicates the test’s performance. An 
AUC >0.9 usually indicates outstanding performance, and 
the ML models from the studies cited above surpass this 
benchmark. 

Studies which evaluate the efficacy of AI models for em-
bryo selection do so for 2 types of outcomes; a) outcomes 
meaningful to the patient, such as a live birth or a fetal heart-
beat positive pregnancy, or b) agreement with the existing 
standard, which in this case is assessment by embryologists. 

Tran, Cooke and Illingworth’s (2019) study belongs to the 
former category. They evaluated a model called IVY which 
rates how likely an embryo is to lead to a fetal heartbeat 
(FH) pregnancy on a confidence scale of 0 (definitely won’t 
implant) to 1 (definitely will implant). Their ROC curve’s 
AUC was 0.93. However, as Kan-Tor, Ben-Meir and 
Buxboim (2020) point out, the majority of the embryos on 
which the algorithm had been trained and tested were of 
such poor quality, that they would have been discarded in 
any event, thereby artificially inflating the AUC. As Kan-
Tor, Ben-Meir and Buxboim explain, the clinical need is to 
identify the embryo with the highest chance of success 
among a set of embryos that appear to be potentially viable, 
and not from embryos which embryologists readily discard. 

Khosravi et al.’s study on the other hand belongs to the 
latter category. They categorized their embryos into 3 
groups – good-, fair- and poor-quality embryos according to 

a consensus of multiple embryologists. They then evaluated 
their AI algorithm’s ability to identify the good- and the 
poor-quality embryos (but not the fair-quality embryos); for 
this task the algorithm achieved 96.94% accuracy (Khosravi 
et al.). This was better than the performance of individual 
embryologists. However, broad categorisations into “good” 
or “poor” quality are of limited benefit when trying to find 
the best embryo in a group of similar quality embryos. 

The above analyses of Khosravi et al. and Tran et al.’s 
studies demonstrate the importance of understanding ex-
actly how researchers test their algorithms before drawing 
conclusions from headline statistics. 

Miyagi et al.’s team are the only ones who have used live 
birth as their outcome. They find an AUC much lower for 
their model (0.661) which was itself not significantly differ-
ent from that of a prediction algorithm based on logistic re-
gression analysis (0.713) which included features independ-
ent of the embryo (such as mother’s age) as well as features 
dependent on the embryo (such as embryo diameter). There-
fore, their ML model may perform on par with a potentially 
useful logistic regression algorithm in predicting a truly 
meaningful outcome – live birth – which might be of clinical 
benefit. 

These studies are important steps to investigate efficacy 
(the ability to produce a specified outcome in experimental 
circumstances), to develop the tool, and establish proof of 
principle. However, they are only a prelude to testing in the 
clinic. When Curchoe et al. (2020) reviewed how the results 
of AI studies in reproductive medicine relate to real-life clin-
ical practice, they highlighted four pitfalls that are common 
throughout the literature: small sample sizes, imbalanced 
datasets, non-generalisable settings and limited performance 
metrics. 

Furthermore, to date, no AI studies for embryo selection 
have evaluated clinical effectiveness using the randomized 
controlled trial (RCT). The lack of RCTs appears to be typ-
ical of much of AI in medicine (Nagendran et al. 2020). The 
problem of lack of evidence before implementation is com-
pounded by the IVF industry which is notorious for aggres-
sively marketing unproven clinical and laboratory “add-
ons” (Afnan, Khan and Mol 2020, Wilkinson et al. 2019). 
Furthermore, clinicians who do not have expertise in AI will 
find it difficult to critically navigate the literature which con-
tains unfamiliar concepts and terminology. 

Uninterpretable (“black box”) machine learning models 
are either too complicated for any human to understand, or 
they are proprietary – in which case, comprehension of such 
a model is not possible for outsiders (Rudin 2019). Many 
studies in this field evaluate neural networks (Dirvanauskas 
et al. 2019) that are not interpretable, and not designed to be 
interpretable. Other approaches use interpretable features 
(whether they are labeled manually by doctors or labeled by 
neural networks whose output can be manually verified) but 
combine them in uninterpretable ways, such as using 



principal components analysis (PCA) pre-processing (which 
forces a dependence on all variables) followed by a machine 
learning method such as a neural network or random forest 
(Chavez-Badiola et al. 2020, Milewski et al. 2017, Leahy et 
al. 2020). The work of Leahy et al. is interesting because the 
model is decomposable into separate computer vision mod-
els that each extract different information that can be 
checked by an embryologist. These separate models are 
combined into an uninterpretable neural network model to 
form the final prediction. Leahy et al.’s model is close to 
what we will recommend; if their final combined model was 
more interpretable, then each piece of the system would be 
either directly checkable by an embryologist for correctness 
or built as an interpretable model. A third category of studies 
use fully interpretable features, but use older techniques that 
are not particularly accurate and do not explicitly optimize 
for interpretability (e.g., the models are not sparse). These 
works generally do not apply any computer vision tech-
niques, relying instead on humans to estimate measurements 
from the embryo images. Examples include the works of 
Raef, Maleki and Ferdousi (2019) and Morales et al. (2008), 
who created interpretable hand-calculated features and ap-
plied a variety of classical machine learning algorithms to 
them. The opaqueness or ‘black box’ nature of AI models is 
problematic for two main types of reasons: ethical, and ep-
istemic. 

Ethical Concerns with 
Black Box AI Models 

Failure to Perform Randomized Controlled Trials 
The most important ethical issue facing the adoption of AI 
assisted IVF is the need for careful randomized controlled 
trials against best current approaches. No matter how prom-
ising a new intervention appears to be, the gold standard for 
evaluation is the randomized controlled trial. Failing to do 
such trials risks harming patients, as does failing to perform 
systematic reviews of existing evidence and publish nega-
tive results (Savulescu, Chalmers and Blunt 1996). 

Compromised Shared Decision Making 
The second concern centers on the use of opaque AI models, 
potentially compromising shared decision-making and pa-
tient-centered medicine more broadly. Over the past few 
decades, the accepted model of clinical practice has shifted 
from a paternalistic one, where the clinician’s opinion and 
recommendation is simply accepted by the patient, to one of 
shared decision-making where this power and informational 
asymmetry is reduced to the benefit of patient autonomy 
(Charles, Gafni and Whelan 1997). Clinical AI models 
which are opaque (and so medical explanations for a 
model’s recommendation are inaccessible) compromise this 

shared decision-making due to the inability of the clinician 
and the patient to understand the model’s decision (Bjerring, 
and Busch 2020). While there have been some counter-ar-
guments raised as to whether shared decision-making is 
truly compromised by opaque AI models (Mishra, 
Savulescu and Giubilini [forthcoming]), application of AI in 
embryo selection should be guided by an awareness of such 
potential dangers. It will be important to fully explain what 
is known about how the AI model comes to a “decision” 
(nature and size of dataset, reasons for confidence in predic-
tion, possible alternative lines of justification, etc.), and fur-
ther examine how interactions between clinicians and pa-
tients may change, both at the point of embryo selection as 
well as at the point of implantation failure. Even if only one 
embryo is transferred, clinicians should explain the basis of 
this decision, whether it is clinical or AI-assisted. If infor-
mation that is traditionally conveyed to the patient as to why 
a particular embryo is selected – for example the number 
and symmetry of the cells, or if the cells are fragmented, and 
therefore what the chances of implantation are, and why im-
plantation may fail – are no longer accessible, shared deci-
sion-making might indeed be compromised. Existing 
measures of shared decision-making and decision quality, 
such as the Decision Conflict Scale (Garvelink et al. 2019), 
the OPTION Scale (Elwyn et al. 2003), and the SURE Test 
(Légaré et al. 2010) (among other patient-reported 
measures) can be used to guide such an evaluation. 

It is important, however, not to overstate this concern. 
Firstly, AI-assisted decision-making should be compared to 
the status quo. Current expert judgment is based on biologi-
cally meaningful measures, which although are more 
broadly communicable than decisions of opaque models, are 
not very accurate for predicting a live birth. AI-assisted de-
cision making may not be worse. More importantly, auton-
omy requires understanding information relevant and mean-
ingful to one’s values. Knowing the basis of a prediction 
(cleavage rate, symmetry, etc) is not relevant: what is rele-
vant are the risks, side-effects and benefits, and the confi-
dence attached to these assessments. 

Misrepresentation of Patient-Values 
Another ethical issue concerns potential harms from a mis-
representation of patient-values in the decision process. For 
example, there are reported differences between early mor-
phokinetic profiles between male and female embryos 
(Wang et al. 2018, Tarín et al. 2014) (and other traits might 
be similarly differentially represented at this early 
stage).  Models for embryo selection run the risk of system-
atically selecting for these traits if they are perceived by the 
model to be correlated with implantation success. For exam-
ple, if a patient prefers that sex be randomly selected, this 
model may run counter to those values. If such models are 
opaque, this systematic favoring of particular traits may not 



be detected at the time of decision-making. Further, if some 
of these traits are ethically salient ones for the patient, then 
this creates a scenario where the patient’s values may not be 
sufficiently represented to guide the decision-making pro-
cess for embryo selection. Such concerns have also been 
raised for other clinical models (McDougall 2019), calling 
for the design of such systems to be ‘value-flexible’ so that 
in clinical settings, both clinicians and patients are (1) aware 
of what metrics are driving a model’s recommendations (ei-
ther directly or as a proxy for some other medical fact/trait), 
and (2) able to appropriately reflect the patient’s values in 
the decision process either directly through the model, or in 
subsequently adjusting the recommendation. 

Again, it is important not to overstate this concern. The 
patient’s own values could be inserted into AI algorithms 
(e.g., preference for sex and other non-disease characteris-
tics) and AI might bring to the surface the importance of 
these values in decision making. Of course, valuing and se-
lecting non-disease traits (such as sex or intelligence) raises 
the debate around designer babies, but some have argued 
that such selection is permissible (Agar 2004) or even a 
moral obligation when it relates to the well-being of a future 
child (Savulescu 2001; Savulescu and Kahane 2009; 
Savulescu and Kahane 2016). 

Health and Well-Being of Future Children 
Such potential biasing of AI-selection might also have im-
pacts on the health or well-being of future children. For ex-
ample, it is possible that some disadvantageous trait (such 
as increased risk of cancer or mental disorder) correlates 
with higher chance of implantation. However, this risk 
might be present unknowingly in ordinary clinical decision 
making. This also underscores the importance of clinical tri-
als not merely measuring implantation or even healthy live 
birth but long term well-being of the child created by IVF 
through long term (decades) follow up. 

Reproduction is also unique because selection determines 
who will come into existence. This creates the so-called 
“non-identity problem” which has spawned decades of un-
resolved philosophical debate, sparked by Derek Parfit 
(1984). Imagine Embryo A has a higher chance of implan-
tation but unknowingly a higher chance of cancer later in 
life than embryo B. AI selects A. A is born but gets cancer 
at the age of 30. Was A harmed by the decision to select A 
rather than B? No, a different person (B) would have been 
selected. Provided that the disadvantageous trait or genes do 
not make A’s life so bad as to have been not worth living, 
then A cannot be harmed by selection. On this ground, 
greater risks can be taken in embryo selection than with in-
terventions on a specific embryo (such as A) which do risk 
harm to a specific individual (Savulescu et al. 2006). None-
theless, some have argued that parents (and clinicians) still 
have a moral obligation to select the embryo with the best 

chance of the best life (Savulescu 2001, Savulescu and Ka-
hane 2009; Savulescu and Kahane 2016). 

Implications of Disvaluing Disability 
There is a general problem with embryo selection raised by 
disability activists: any kind of selection based on predicted 
health or well-being discriminates against the disabled and 
expresses a negative message about the value of their lives - 
the expressivist objection (Buchanan et al. 2000). For exam-
ple, screening for Down Syndrome has been said to express 
a negative view about the value of people with Down Syn-
drome (Hofmann 2017). This applies not only to AI selec-
tion but clinical selection and there are numerous responses 
(Buchanan et al. 2000). However, AI might considerably ex-
pand the scope of this objection: any trait which lowers 
chance of implantation might result in selection against that 
group, sex being an example we have discussed. The best 
response to these concerns would be to monitor such effects 
and ensure social responses that reinforce the equality of all 
people, including people with disabilities. Thus, rather than 
forgoing selection, it is better to ensure there are sufficient 
social resources so that all existing people have a reasonable 
chance of a good life (Savulescu and Kahane 2016). 

Societal Implications of Bias in Embryo Selection 
Successful AI models might be deployed at scale, and if 
such models systematically favor certain traits represented 
in early morphokinetic profiles, this might impact society. 
Even if would-be parents might not care about the sex of 
their future child and might be willing to accept a higher 
likelihood of one sex for a higher likelihood of implantation 
success, this will still have societal ramifications through a 
skewed population ratio. The scale of these ramifications 
will correlate with rates of IVF use in the future; the more 
individuals opt for IVF, the greater the impact. While such 
possibilities are at this stage mostly speculative, they repre-
sent a scale of impact that is significant and should therefore 
be considered. 

Black Box Models Pose a Responsibility Gap 
The final ethical issue concerns a potential erosion of ethical 
and legal accountability through the use of opaque AI mod-
els. If it is so determined that clinicians can't be held respon-
sible for injuries sustained by the patient due to a reliance 
on opaque AI models, the responsibility for this class of er-
rors would need to be borne by another agent. In the absence 
of institutionalized accountability mechanisms that hold 
other agents, such as model developers, responsible, this 
creates a 'responsibility gap' when it comes to the use of AI 
models. 

The most straightforward case in which accountability is 
required would be repeated implantation failure or low suc-
cess rates due to suboptimal embryo selection processes, 



and/or injury being sustained by the patient as a result of 
implementation of a model recommendation (either to the 
mother through surgical complications or the child when 
he/she is born - wrongful life or birth). Under such circum-
stances, if the patient seeks an account of what happened or 
advances a charge of negligence against the clinician, the 
decision-making process needs to be explicable. Tradition-
ally, if a charge of negligence is advanced, experts assess 
the clinician’s decision-making process, and depending on 
whether they deem this to be medically reasonable the clini-
cian is either acquitted or held culpable. If AI models used 
for embryo selection reason in uninterpretable ways, it is un-
clear how a court might evaluate the doctor’s decision-mak-
ing, and subsequently unclear how responsibility for injury 
may be adjudicated (Schönberger 2019, Price, Gerke and 
Cohen 2019). 

Black box models may also have accountability implica-
tions for poor outcomes in research settings, for instance in 
randomized control trials. If an RCT of a black box fails and 
the model causes harm to the treatment group, it becomes 
similarly difficult to ascertain through existing accountabil-
ity mechanisms who ought to be held responsible. 

Epistemic Concerns with 
Black Box AI Models 

There are technical challenges posed by black box or opaque 
systems; it is unclear how we might assess the reliability of 
the model’s predictions, eliminate potentially confounding 
factors at the decision-making point, and assess to what ex-
tent the model’s accuracy is representative in a given use-
case. In a field where ‘add-on’ clinical offerings are already 
widespread despite inadequate evidence of effectiveness, 
this epistemic problem is especially troubling (Wilkinson et 
al 2019). 

Black Box Models Create Information Asymme-
tries 
The use of black box models creates an information asym-
metry between the company selling the tool and the clini-
cians having to make daily decisions as to which embryo to 
transfer. Using such models would force the embryologist 
to abrogate decision making to programs they themselves do 
not understand. It is not possible to fully evaluate whether 
to trust these complex models without an understanding of 
their reasoning processes. 

Confounders are Rampant 
If we do not understand what a black box model is doing, it 
is entirely possible that its predictions are based on con-
founders that should not be used as predictors. Confounders 
are often difficult to detect and cause models not to 

generalize. When coupled with a poor choice for evaluation 
metric, the confounding might not be noticed.  

Let us construct a simple example where an obvious con-
founder and a standard (but ill-chosen) evaluation metric 
provide a situation where a useless model would appear to 
be excellent. In this example, the confounder is the mother’s 
age, and the metric is overall AUC (not the AUC for an in-
dividual couple). It is largely possible that the mother’s age 
is a major factor in predictions; what if it were the sole fac-
tor, so that a model based on an image of the embryo is pre-
dictive of mother’s age only? If the model were a mere 
proxy for age, it would be entirely useless in discriminating 
between embryos from the same couple, yet it may still 
score highly on AUC because age alone is predictive of suc-
cess in implantation. Here there are two problems that com-
bine to be worse than either alone: a mismatched evaluation 
metric, and an inscrutable model that does not reveal the 
problem with either the predictions or the metric. 

Real-Time Error-Checking is Harder with Black 
Box Models 
The two problems discussed above (information asymmetry 
and the possibility of confounders) lead to a third problem, 
namely difficulty of error-checking the model in real-time 
as it makes predictions in the clinic. We would want the cli-
nician to be able to determine whether the model is reason-
ing in a way that is obviously wrong and catch new problems 
immediately should they arise. For instance, after a change 
in camera setting, an algorithm might suddenly start think-
ing that the shape of a current embryo looks like an embryo 
from the training set with a completely different shape. A 
clinician could catch that problem immediately if they knew 
the reasoning process of the model. 

The Economics of “Buying In” to a Brittle Model 
Does Not Favor Clinicians or Patients 
A potential consequence of the problems of information 
asymmetry and confounders listed above would be that 
black box model performance may be brittle to changes 
from the system it was trained on, and thus would likely be 
limited to the ecosystem in which it has been shown to work. 
This means that a clinic using this model would need to buy 
into that ecosystem, ovarian stimulation regimens, use of in-
cubators and culture medium amongst other potential varia-
bles. This gives AI companies a great deal of economic 
power over clinics, potentially increasing the cost of treat-
ment. 

Overall Troubleshooting is Difficult for Black Box 
Models 
If the model were more interpretable, it might be easier to 
troubleshoot broad problems in the model (beyond serious 



issues that might be noticed in real-time usage). This in-
cludes ethical concerns such as racial or sex bias, as well as 
epistemic issues with accuracy or subtle confounding. If in-
terpretability reveals flawed reasoning processes, the de-
signer would be forced to alter the model to use correct rea-
soning, leading potentially to more robustness across eco-
systems. 

Interpretable ML as the 
Way Forward in Embryo Selection 

An interpretable ML model is a predictive model that is con-
strained so that a human can better understand its reasoning 
process (Rudin 2019). Interpretable ML is a field that dates 
to the beginning of AI, back to the days of expert systems. 
The benefits of interpretable models are clear: by under-
standing the reasoning processes of predictive models, phy-
sicians can troubleshoot them and justify their decisions (to 
patients, other physicians, and during lawsuits). Physicians 
can combine the reasoning process of an interpretable model 
with information that is not in a database. They would not 
need to place blind trust in a black box model. And patient 
values (chance of disability, sex, single vs. double embryo 
transfer and chance of implantation) can be more easily ac-
commodated by interpretable models. 

Focusing on increasing the use of interpretable AI models 
is an elegant approach to both the epistemic and ethical con-
cerns, by dispelling the opaqueness and allowing precise ex-
planations of model predictions. For instance, models that 
are not opaque have an advantage because their use pre-
serves existing mechanisms of accountability to a greater 
extent. For models that are opaque, revisions to such mech-
anisms are necessary. While this gap might eventually be 
filled by revisions in existing mechanisms of accountability, 
interpretable models can be argued to offer the option to pre-
serve the status quo by allowing clinicians to understand 
model decisions better and thus retain the responsibility. 
This argument is far from resolved, but it is a promising rea-
son to favor interpretable models over black box ones. 

To the extent that there exists little or no trade-off be-
tween how interpretable a model is and how accurate it is 
when it comes to embryo selection, interpretable models are 
thus a promising solution. If it is the case that there is a sa-
lient difference in performance between interpretable and 
non-interpretable models, alternative solutions to both of the 
above epistemic and ethical concerns might have to be de-
veloped, so that we may benefit from the higher predictive 
accuracy of non-interpretable models. For now, there is no 
reason to believe that a salient performance difference be-
tween interpretable and non-interpretable models would ex-
ist. Interpretable models perform just as well even for 
benchmark datasets in computer vision. In fact, interpretable 
models are easier to troubleshoot (as domains change, as 

unusual cases arise, as racial bias cases need to be investi-
gated), and thus lead to overall better performance of the 
model. 

A major question in interpretable ML is what interpreta-
bility metric to use, as these metrics must (by definition of 
interpretability in that domain) be domain dependent. For 
computer vision for natural images, there have been major 
successful efforts by numerous groups of researchers to cre-
ate interpretable neural networks that do not lose accuracy 
over their black box counterparts. These neural models go 
well beyond modeling only the “attention” of the network 
(that is, where the network is looking within an image), and 
are particularly useful for computer vision problems. Such  
interpretable neural networks could use different types of 
logical reasoning processes, including: 
• Case-based reasoning (variations on k-nearest neigh-

bors): In this case, the network would point out which 
parts of a test image are similar to prototypical past cases. 
The prototypical cases are chosen by the network along 
with the ways in which images are similar to each other 
(e.g., Chen et al 2019). One could envision an embryolo-
gist looking at a test image of an embryo, with an inter-
pretable ML model pointing out how similar parts of it 
look to other prototypical known embryos whose out-
come is known. 

• Latent space disentanglement, where all information 
about a single concept (such as mother’s age, or embryo 
size, density or color) is forced to travel through a single 
node of a network. Another way to say this is that each 
axis of a latent space (where an axis corresponds to acti-
vation of a node) represents a concept. This helps to un-
derstand information flow through the network (e.g., 
Chen, Bei and Rudin 2020). These types of disentangled 
models could potentially be useful for separating out the 
type of equipment, the age of the mother, and other pieces 
of information that might be embedded within the image 
of the embryo. 

• Networks that are imbued with logical structure, such as 
probabilistic decision trees. By forcing the network to rea-
son logically, we may be better able to understand its rea-
soning process (e.g., Wu and Song 2019, Li, Song and 
Wu 2020). 
There are many challenges still in designing interpretable 

neural networks, particularly when the domain experts 
themselves do not know what constitutes interpretability; in 
other words, there are many directions for future research. 
Similar approaches to those discussed above apply to other 
data types, including sound signals or other types of medical 
images. 

For problems involving categorical or real data (“tabular” 
data, rather than image data, time sequence data, or text 
data), interpretable machine learning models can also be de-
veloped. These models can potentially take the form of a 
medical scoring system, which means a small number of in-
teger “point” values that sum, and translate into a risk (Ustun 



and Rudin, 2019). For tabular data, neural networks and 
other forms of black box models do not seem to provide ad-
ditional accuracy, which means that optimized medical scor-
ing systems might be as accurate as one could get (depend-
ing on the dataset) (Rudin and Ustun 2018, Lou et al. 2013). 

An interesting direction for future research is to combine 
interpretable neural networks for computer vision (to handle 
the visual data) with interpretable models for tabular data 
(rule lists or decision trees, for instance) to form a global 
interpretable model that handles these heterogeneous data 
types.  

One key point that has emerged from past research is that 
as long as one can design the interpretability metric carefully 
to match the domain, interpretable models tend not to lose 
accuracy relative to their black box counterparts (Rudin 
2019, Chen et al 2019). As far as we know, modern methods 
for interpretable ML have not yet been fully applied to the 
domain of IVF. 

In Table 1, we summarize the advantages of interpretable 
AI models over black box models. 

 
• Black box models might compromise shared decision 

making. 
• Biases may go unchecked in black box models poten-

tially leading to a misrepresentation of patient values, 
unintended health consequences for potential future 
people, and unintended consequences for society. 

• Black-box models pose a responsibility gap, whereas 
accountability in interpretable models lies mainly with 
the human decision-maker. 

• Black box models create information asymmetries, 
shifting power away from clinicians towards compa-
nies who create them. They prevent clinicians from ef-
fectively determining whether to trust their predic-
tions. Interpretable models permit the decision of trust. 

• Confounders are rampant and harder to detect in black 
box models. 

• Real-time error-checking is much easier with interpret-
able models than black box models. 

• Overall troubleshooting (e.g., for harmful bias) is dif-
ficult for black box models. 

• Economics of “buying into” a brittle model in an ex-
pensive black box ecosystem does not favor clinicians 
or patients. 

• Interpretable models do not seem to lose accuracy over 
their black box counterparts and might even perform 
better because they are easier to troubleshoot. 

Table 1: Summary box of reasons why interpretability gains an 
advantage over black box models 

 

Recommendations 

Rigorous Evaluation with RCTs 
Researchers must evaluate AI models to select embryos us-
ing the gold standard of RCTs against best clinical judge-
ment or black box AI, if these have been deployed into prac-
tice or show promising results. Key outcomes for evaluation 
include time to live birth, number of embryo transfers before 
live birth and associated cost analysis, as well as live birth 
per egg collection, and health of the baby. Researchers 
should monitor the effects of the new technology with post-
implementation surveillance. 

Interpretable AI 
Programmers should build interpretable machine learning 
models where biologically meaningful parameters guide 
embryo assessment, reducing the risk of hidden biases in al-
gorithms causing unintended harms to society, permitting 
better troubleshooting, and better enabling clinicians to 
counsel their patients on the thinking underlying their treat-
ment. 

Regulatory Oversight for Interpretable AI 
The importance of interpretability should be captured in 
mechanisms of regulatory oversight. Current regulatory ap-
proaches attempt to capture medical AI models as a type of 
medical device - they should further require either that AI 
model developers not produce black-box models if inter-
pretable models are shown to have similar performance, or 
that any black-box model must come with the next-best in-
terpretable model considered and trialed. Further, despite 
the fact that the field of assisted reproductive technology uti-
lizes ‘good practice’ regulation for many advancements 
(such that violations are not legally punished), this would 
not suit the many risks of AI in embryo selection as outlined 
above. A ‘hard’ regulatory stance that promotes interpreta-
ble models would be a more advisable approach. 

Access to Data and Code 
Data and code used to create ML models should be made 
publicly accessible. This would enable reproducible re-
search and the advancement of an exciting and important 
academic field. A high-quality public model would, at the 
very least, provide a performance baseline for other models. 

Respect for Patient Privacy and Autonomy 
Procedures should be put in place for securing patient pri-
vacy when data is shared, such as data anonymisation. All 
patients who use AI to select embryos should give fully in-
formed consent, including knowledge of limitations and un-
knowns, use of data and images, and harms and benefits as 
shown by RCTs. They should be informed of how a model 



arrives at a recommendation. Where possible, patient values 
should be inserted into the reasoning process of selection 
models. 

Involving the Broader AI Community 
Many young ML researchers are eager to get their hands on 
data to try out the latest techniques, and are passionate about 
using the technology to make the world a better place. Their 
participation should be encouraged. Currently, datasets for 
embryo selection are not broadly available. A naïve release 
of such data may do more harm than good, potentially invit-
ing simplistic evaluations of ML techniques that fall prey to 
many of the criticisms we have discussed. Releasing a da-
taset and suggesting evaluation criteria for it which reflects 
actual practice, and takes ethical concerns into account, will 
require a broader discussion between embryologists, ethi-
cists, and researchers in AI and statistics, and will also re-
quire addressing privacy concerns. This discussion ought to 
continue after the data are released. Nonetheless, allowing 
the broader AI community to see the data and get involved 
in their analysis will ensure that flawed and biased evalua-
tions do not easily fly under the radar. It will also likely 
bring other important issues into the open that we have not 
yet recognized. 

We summarize our recommendations in Table 2 below. 
 

• Use of replicable, interpretable machine learning 
 tools and data 

• Well designed and conducted RCTs 
• Post implementation surveillance 
• Regulatory oversight for interpretable AI 
• Funding for public institutions to transparently de-

velop and evaluate machine learning models, and 
 open access to code used in models 

• Procedures for maintaining security of patient/embryo 
data whilst permitting ethical data sharing 

• Fully informed consent to use AI 
• Inclusion of patient values into AI programmes where 

possible 
• Participation from the broader AI community 

 Table 2: Summary box of recommendations 

 

Conclusion 
Starting or growing a family is an immensely significant de-
cision; technology which could help individuals who make 
that decision realize their goal would be invaluable. We see 
potential for AI in IVF to help more couples have children, 
earlier in their treatment, and at a lower cost. However, re-
searchers, companies and clinics must ensure that the 

technology they promote or adopt brings real, measurable 
benefits to patients and, most importantly, does no harm. In 
this article, we highlighted limitations of current ML models 
and the studies which evaluate them, we drew specific at-
tention to the ethical concerns that this technology could in-
troduce in its current form, and suggested a path forward in 
terms of model design and evaluation. Most importantly, we 
hope to see interpretable machine learning models that cli-
nicians could understand, troubleshoot and explain to their 
patients, rigorously evaluated with RCTs. We believe these 
are essential for creating tools which are fit for use for real 
individuals, hoping to start or grow a family, in the clinical 
setting. 
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Appendices 
Search strategy for full-text studies evaluating AI to select 
embryos in MEDLINE and Embase: 
• MEDLINE: (exp Artificial Intelligence/ OR Artificial in-

telligence* OR AI OR exp Neural Networks, Computer/ 
OR Deep learning OR Neural network* OR machine 
learning OR support vector machine OR automatic clas-
sification) AND (exp Fertilization in Vitro/ OR IVF OR 
in vitro fertilization OR embryo*). 

• Embase: (exp artificial intelligence/ OR artificial intelli-
gence* OR AI OR exp machine learning/ or machine 
learning* OR exp artificial neural network/ OR neural 
network* OR deep learning* OR exp Deep Learning/ OR 
exp support vector machine/ OR support vector machine* 
OR automatic classification) AND (exp fertilization in 
vitro/ OR ivf OR embryo* OR in vitro fertilization OR 
exp in vitro fertilization/). 
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