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ABSTRACT

Computing optimal strategies to commit to in general normal-form
or Bayesian games is a topic that has recently been gaining atten-
tion, in part due to the application of such algorithms in various se-
curity and law enforcement scenarios. In this paper, we extend this
line of work to the more general case of commitment in extensive-
form games. We show that in some cases, the optimal strategy can
be computed in polynomial time; in others, computing it is NP-
hard.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
J.4 [Social and Behavioral Sciences]: Economics; K.4.4 [Computers

and Society]: Electronic Commerce

General Terms

Algorithms, Economics, Theory

Keywords

noncooperative game theory, commitment, Stackelberg, extensive-
form games

1. INTRODUCTION
Game theory defines solution concepts for strategic situations,

in which multiple self-interested agents interact in the same envi-
ronment. Perhaps the best-known solution concept is that of Nash

equilibrium [13]. A Nash equilibrium prescribes a strategy for ev-
ery player, in such a way that no individual player has an incentive
to change her strategy. If strategies are allowed to be mixed—a
mixed strategy is a probability distribution over pure strategies—
then it is known that every finite game has at least one Nash equi-
librium. Some games have more than one equilibrium, leading to
the equilibrium selection problem.

Perhaps the most basic representation of a game is the normal

form. In the normal-form representation, every player’s pure strate-
gies are explicitly listed, and for every combination of pure strate-
gies, every player’s utility is explicitly listed.
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The problem of computing Nash equilibria of a normal-form
game has received a large amount of attention in recent years. Find-
ing a Nash equilibrium is PPAD-complete [5, 1]. Finding an opti-
mal equilibrium (for just about any reasonable definition of
“optimal”—for instance, maximizing the sum of the players’ util-
ities) is NP-hard [6, 3]; moreover, it is not even possible to find
an equilibrium that is approximately optimal in polynomial time,
unless P=NP [3]. This holds even for two-player games.

However, one can argue about whether Nash equilibrium is al-
ways the right solution concept. In some settings, one player can
credibly commit to a strategy, and communicate this to the other
player, before the other player can make a decision. To see how
this can affect the outcome of a game, consider the following game
(which is often used as an example of this).

EXAMPLE 1 (KNOWN). Consider the normal-form game in

Figure 1. For the case where the players move simultaneously

(no ability to commit), the unique Nash equilibrium is (U, L): U
strictly dominates D, so that the game is solvable by iterated strict

dominance. So, player 1 (the row player) receives utility 1. How-

ever, now suppose that player 1 has the ability to commit. Then,

she is better off committing to play D, which will incentivize player

2 to play R, resulting in a utility of 2 for player 1. The situation

gets even better for player 1 if she can commit to a mixed strategy:

in this case, she can commit to the mixed strategy (.5 − ǫ, .5 + ǫ),

which still incentivizes player 2 to play R, but now player 1 re-

ceives an expected utility of 2.5 − ǫ. To ensure the existence of

optimal strategies, we assume (as is commonly done and for which

good justifications can be given [2, 14]) that player 2 breaks ties

in player 1’s favor, so that the optimal strategy for player 1 to com-

mit to is (.5, .5), resulting in a utility of 2.5. (Note that there is

never a reason for player 2 to randomize, since he effectively faces

a single-agent decision problem.)

In fact, commitment to a mixed strategy can never hurt a player
(relative to Nash equilibrium in the game without commitment),
because at worst the player can just commit to her Nash equilibrium
strategy. This argument can be extended to show that it cannot even
hurt relative to correlated equilibrium [18]. In contrast, committing
to a pure strategy is not always beneficial; for example, consider
matching pennies.

One may argue that the normal form is not the correct represen-
tation for this game and other games with commitment. In game
theory, the time structure of games is usually represented in the ex-

tensive form. Indeed, the above game (with commitment to mixed
strategies) can be represented as the extensive-form game in Fig-
ure 1. While this is a conceptually useful representation, from a
computational perspective it is not helpful: player 1 has an infi-
nite number of strategies, hence (the naïve representation of) the
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Figure 1: A normal-form game, and the extensive-form representation of its commitment version.

tree has infinite size. Instead, from a computational perspective,
it is better to operate directly on the normal form (or some other
concise representation of the game).

An optimal strategy to commit to is usually called a Stackel-

berg strategy, after von Stackelberg, who showed that in Cournot’s
duopoly model [4], a firm that can commit to a production quan-
tity has a strategic advantage [17]. The computation of Stackelberg
strategies in general games has recently started to receive signif-
icant attention. The first paper on this topic [2] appeared in EC-
06 and studied Stackelberg strategies in normal-form and Bayesian
games, and showed, among other things, that the optimal mixed
strategy to commit to in a two-player normal-form game can be
found in polynomial time using linear programming,1 though this
becomes NP-hard in Bayesian games or with three players (a later
paper [12] proved inapproximability results for the Bayesian case).
Unfazed by the NP-hardness result, Paruchuri et al.[14] developed
a mixed-integer programming formulation for the Bayesian case,
and this algorithm has been implemented at the core of deployed
security applications, specifically the strategic random placement
of checkpoints and canine units at Los Angeles International Air-
port [7, 15]. Later work [8, 10] studied computing Stackelberg
strategies in settings where the normal form has exponential size,
for example, when player 1 has to allocate multiple resources to de-
fend multiple targets. One motivating domain for this line of work
is a new application: the scheduling of Federal Air Marshals [16].

Real-world applications to security and law enforcement are not
the only motivation for work on computing optimal strategies to
commit to; the notion of commitment plays a key role in many
game-theoretic settings. Notably, in mechanism design (or envi-
ronment design or principal-agent settings), the
designer/center/autioneer/principal is assumed to be able to com-
mit to a mechanism before the (other) agents move. For exam-
ple, if an auctioneer uses a Vickrey auction, it is generally assumed
that she will unambiguously commit to this mechanism, rather than
(for example) waiting for the bids to come in, and subsequently
backtracking on her promise of a Vickrey auction and attempting
to charge the winner her own bid (the first price) after all. Conse-
quently, research on computational aspects of commitment in game
theory has the potential to serve as a bridge between work by com-
puter scientists on game theory and work by computer scientists on
mechanism design.

Our contributions. All of the above work considers settings
where in the “original” game, the players move simultaneously—
and then we add the ability to commit for one player (which con-
ceptually results in an extensive-form game, though we have ar-
gued that that representation is generally not helpful computation-
ally). However, the original game may already have a time struc-
ture of its own. In this case, the original game is best represented as

1This algorithm was presented in [2], and then again in [18].

an extensive-form game. Perhaps unsurprisingly, commitment can
also be helpful in such games, as the following example shows.

EXAMPLE 2. Consider the game in Figure 2. (Note that player

1 moves second in this game; this is because in this paper, we insist

that player 1 be the player with the commitment advantage.)

Without any commitment advantage, this game can be solved by

backward induction: player 1 will move Left if player 2 moves Left,

and Right if player 2 moves Right; player 2 prefers the former, so

the resulting utilities are (1, 3).

Now, suppose that player 1 can commit to a pure strategy. Then,

she can commit to the strategy: Right if player 2 moves Left; Left

if player 2 moves Right. In this case, player 2 will prefer to move

Right, resulting in utilities (2, 2)—a better outcome for player 1.

Furthermore, suppose that player 1 can commit to a mixed be-

havioral strategy.2 Then, she can commit to the strategy: right if

player 2 moves left, 50% left and 50% right if player 2 moves right.

This leaves player 2 indifferent between going left and right; by the

tiebreaking assumption, he will move right, resulting in expected

utilities of (2.5, 1).
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Figure 2: Extensive-form game for example 2.

The focus of this paper is to determine for which extensive-form
games the Stackelberg solution can be found efficiently.

Of course, once again, we can incorporate the commitment stage
into the game form, resulting in an even larger extensive-form game.
This approach scales even more poorly for extensive-form games
than for normal-form games; not only is there still the problem of
an infinite-size tree when commitment to mixed strategies is al-
lowed, but now even commitment to pure strategies does not scale,
because if there are n information sets for player 1 (with, say, 2
actions each), then there are 2n possible pure strategies to which
player 1 can commit. That is, the size of the extensive-form repre-
sentation that incorporates the commitment stage is exponential in
the size of the original extensive-form representation.

Alternatively, we can convert the original extensive-form game
into normal form, and then apply the standard techniques for com-
puting Stackelberg strategies there. This approach runs into the
difficulty that the size of the normal form will be exponential.3

2We recall that a behavioral strategy gives a probability distribu-
tion over actions at each information set. In extensive-form games
of perfect recall, any mixed strategy is equivalent to a behavioral
strategy [11].

3It may be interesting to investigate whether sequence-form



The rest of this paper is laid out as follows. In Section 2, we lay
out the different variants of the problem. Section 3 contains our
positive results—those variants of extensive-form games where it
is possible to solve for a Stackelberg strategy in polynomial time.
Section 4 contains our negative results—those variants of extensive-
form games where solving for a Stackelberg strategy is NP-hard.
Section 5 concludes and gives a summary of our results in tree
form.

2. THE VARIANTS OF THE PROBLEM
We will refer to player 1 as the leader and the other player(s) as

the follower(s). An extensive-form game consists of a rooted tree
with additional information. Each leaf node of the tree specifies the
payoffs for all players. Each internal node of the tree is associated
with a player, who acts at that node, resulting in a move to one of
that node’s children. A player’s nodes are partitioned into infor-

mation sets, and the player cannot distinguish among nodes in an
information set (this implies that the player has the same set of pos-
sible actions at every node in the same information set). Let m be
the number of leaf nodes in the tree, and n the number of internal
nodes.

We will consider commitment to behavioral strategies: a be-
havioral strategy for a player associates with each information set
for that player a probability distribution over the actions associated
with that information set. A behavioral strategy is pure if all of its
probabilities are 0 or 1; in general, a behavioral strategy is mixed.

We examine how the following aspects affect the difficulty of
solving for a Stackelberg (behavioral) strategy in an extensive-form
game.

• Chance nodes (moves by Nature). Does the game include
moves by Nature? (Nature is a player that plays accord-
ing to a fixed behavioral strategy and has no stake in the
game; when we count the number of players, Nature is not
included.)

• Perfect or imperfect information. A game has perfect infor-
mation if all information sets have size 1.

• Commitment to pure strategies vs. mixed strategies. Is the
leader able to commit to a mixed behavioral strategy, or only
to a pure one?

• Tree or DAG. Conceptually, in extensive-form games, there
is no loss of generality in assuming that the game is repre-
sented as a tree: if two different paths of play both lead us
to the same state of the game, it is always possible to simply
have two copies of that state, corresponding to the differ-
ent paths that may have led us there. However, this dupli-
cation can result in an exponential blowup in representation
size. Moreover, when we consider commitment to behav-
ioral strategies, it may not be reasonable to allow a player to
commit to one action at one node, and another at a different
node that in reality represents the same state. For this rea-
son, we consider not only the standard representation of an
extensive-form game using a tree (and additional informa-
tion), but also using a directed acyclic graph (DAG). When a
game is represented using a DAG, the probabilities to which

techniques [9], which are used to solve extensive-form games effi-
ciently (without blowing them up to normal form), can be extended
to be useful in settings with a commitment advantage. In this pa-
per, however, we do not investigate this approach: we are primarily
interested in whether versions of our problem can be solved in poly-
nomial time or are NP-hard, and we manage to settle nearly all of
these questions.

a player commits at a node cannot depend on the path taken
to that node. Figure 3 shows an example a modified form of
matching pennies where the winner has a chance of winning
an additional unit of utility. This game is depicted as a DAG
in two different equivalent ways (in the second way(b), when
two nodes are both shown as parents of a subtree, for exam-
ple P1, this means that they are both parents of a single copy
of that subtree). The second way will be how DAGs will be
drawn for the rest of this paper.

• Number of players. Some of the variants will turn out to
become hard at two players, some at three players, and others
are easy for any number of players.

• Restricted or costly commitment. It may be the case that the
leader is able to commit only at some nodes. Alternatively,
it may be the case that for each node, there is a non-negative
cost associated with committing at that node, which will be
subtracted from the leader’s utility at the end of the game.
(Restricted commitment is the special case where all costs
are 0 or ∞; hence, a positive result for costs implies a posi-
tive result for restrictions, and vice versa for negative results.)
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(a) A depiction of a DAG.
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Figure 3: Example of DAG depiction methods.

One issue that deserves some discussion is the following: does the
leader commit at every information set, or can the leader selec-
tively choose to commit at some, but not other, information sets?
In many cases, it will be without loss of generality to assume that
the leader commits at every information set (assuming that there
are no restrictions or costs to doing so). To argue this, we first
need to consider what happens when the leader does not commit
everywhere. After the commitment phase, an extensive-form game
results, where every node at which the leader committed is replaced
by a move by Nature, in accordance with the mixture to which the
leader committed there. We assume that some Nash equilibrium
of this modified game will result; since we are only interested in
games of perfect recall, we can assume that the equilibrium is in be-
havioral strategies [11]. Moreover, we assume that if the extensive-
form game is one of perfect information, then a pure Nash equilib-
rium will be played.

With these assumptions, if commitment to mixed behavioral strate-
gies is possible, then it does not hurt the leader to commit to the



probabilities prescribed by the Nash equilibrium (of the modified
game) that is best for her; assuming ties are broken in the leader’s
favor, she will do no worse. Even if commitment to mixed behav-
ioral strategies is not allowed, then still, if the extensive-form game
is one of perfect information, since we assume that a pure Nash
equilibrium will be played, the leader can simply commit to the
actions prescribed by the best such equilibrium for her.

Nevertheless, in games of imperfect information where commit-
ment to mixed strategies is not allowed, we must admit that it can
be optimal to not commit everywhere (for example, matching pen-
nies; it is also easy to construct examples where the leader wants to
commit at some, but not all, information sets). Our hardness result
here assumes that the leader can choose to commit at a subset of the
information sets. Throughout, if there are multiple equilibria in the
game that results after the commitment stage, we assume that one
of the equilibria that is optimal for player 1 will be played (with the
caveat that if the game has perfect information, we assume that the
best pure equilibrium for player 1 will be played). This is consis-
tent with the common assumption that the follower breaks ties in
the leader’s favor.

A summary of our results is given in Figure 8 in the conclusion.

3. POSITIVE RESULTS
In this section we give polynomial-time algorithms for the fol-

lowing problems:
Case 1. Perfect-information games in tree form with no chance
nodes and no costs/restrictions on commitment, where we allow
for any number of players, but restrict the problem to pure strategy
commitment (Theorem 1).
Case 2. Perfect-information games in tree form with no chance
nodes and costs/restrictions on commitment, where we allow for
any number of players, but restrict the problem to pure strategy
commitment (Theorem 2).
Case 3. Perfect-information games in DAG form with no chance
nodes and no costs/restrictions on commitment, where we restrict
the problem to two players and pure strategy commitment (Theo-
rem 3).
Case 4. Perfect-information games in tree form with no chance
nodes and no costs/restrictions on commitment, where we restrict
the problem to two players but allow for mixed strategy commit-
ment (Theorem 4).

3.1 No chance, pure strategies, trees, no costs
or restrictions, perfect information

THEOREM 1. In perfect-information games in tree form with

no chance nodes and no costs/restrictions on commitment, the op-

timal pure strategy to commit to can be found in O(nm) time (for

any number of players).

PROOF. The algorithm contains two main steps. The first step
will be a bottom-up dynamic program for determining, for each
node v, a set Sv , which is the subset of v’s descendant leaf nodes
that can be achieved by an appropriate commitment by player 1.
We then choose the best outcome l∗ ∈ Sr for player 1, where r
is the root of the tree. Then, in the second (top-down) stage, we
determine the appropriate strategy to commit to to achieve l∗.
Dynamic programming step (upward pass)

For each leaf node l, Sl = {l}. For every internal node v at
which player 1 takes an action, 1 can achieve any leaf that can be
obtained from any of its children, by committing to the correspond-
ing child and committing appropriately from there on. Hence, Sv =
S

w child of v Sw.

The case of an internal node v at which player i 6= 1 takes
an action is slightly more complicated. Here, it will be true that
Sv ⊆

S

w child of v
Sw, but in general not all elements of this union

will be included, because it may not feasible to incentivize player
i to choose every one of them. For each child w of v, let m(w) ∈
arg minl∈Sw ui(l); this leaf corresponds to the most we can “pun-
ish” i for going to w. Then, Sv =

S

w child of v
{l ∈ Sw : maxw′ 6=w

ui(m(w′)) ≤ ui(l)}.
These recursive equalities allow us to use dynamic programming

to compute Sr; we can then choose l∗ ∈ arg maxl∈Sr u1(l).
Stackelberg strategy determination (downward pass)

We need a procedure strategy(v, l) that, given a node v and one
of its descendant leaves l ∈ Sv , specifies how to commit in the
subtree rooted at v so that the outcome l results. If player 1 acts at
v, then let w be the child of v that is an ancestor of l; simply com-
mit to going to w and recursively call strategy(w, l). (It does not
matter how 1 commits at other children of v since they will not be
reached.) If player i 6= 1 acts at v, then let w be the child of v that
is an ancestor of l. For w, recursively call strategy(w, l). For all
other children w′ 6= w of v, recursively call strategy(w′, m(w′)).
Runtime analysis

We recall that there are m leaves and n internal nodes. Each time
we reach an internal node, we require a constant number of opera-
tions on a subset of the leaves; each of these operations requires at
most linear time; we reach every internal node twice (once on the
upward and once on the downward pass).

3.2 No chance, pure strategies, trees, perfect
information

In this subsection, we extend Theorem 1 to the case where com-
mitment at an information set can come at a cost (or where there
are restrictions on commitment at some information sets, which is
the special case where the cost is ∞). This comes at the cost of an
additional factor m in the runtime.

THEOREM 2. In perfect-information games in tree form with

no chance nodes, the optimal pure strategy to commit to can be

found in O(nm2) time (with any number of players, and with costs

or restrictions on commitment).

The main difference between the algorithm for this case from the
one used in the proof of Theorem 1 is that, in the upward pass, we
now compute the optimal cost to achieve each outcome for each
subtree. Furthermore, we now need to take into account that, for a
subtree in which player 1 moves first, the cheapest way to obtain a
given outcome may not be to commit at the root of that subtree, but
rather to use commitments further down to make the desired move
at the root optimal. Due to space constraints, the detailed proof for
Theorem 2 appears only in the full version of the paper.

3.3 No chance, pure strategies, two players,
no costs or restrictions, perfect informa-
tion

So far, we have focused on commitment to pure strategies in
perfect-information games of no chance, represented in tree form.
The following result extends this to DAG games, though here we
must restrict to the two-player case without costs and restrictions
(our later hardness results show that we cannot hope for more, un-
less P=NP).

THEOREM 3. In two-player perfect-information games in DAG

form with no chance nodes and no costs/restrictions on commit-

ment, the optimal pure strategy to commit to can be found in time

O(mn(m + n)).



The algorithm for this case revolves around determining whether
a given outcome is feasible to achieve, by minimizing player 2’s
utility at nodes that do not lead to the desired outcome. Due to
space constraints, the detailed proof for Theorem 3 appears only in
the full version of the paper.

3.4 No chance, trees, two-player, no costs or
restrictions, perfect information

So far, we have focused on commitment to pure strategies in
perfect-information games of no chance. We now give a positive
result for commitment to mixed behavioral strategies, although this
requires that there be only two players and that the game be repre-
sented in tree form. (Again, our later hardness results show that we
cannot hope for more, unless P=NP.) Our next result also assumes
that there are no costs or restrictions.

THEOREM 4. In two-player perfect-information games in tree

form with no chance nodes and no costs/restrictions on commit-

ment, the optimal mixed strategy to commit to can be found in time

O(nm2).

PROOF. The algorithm contains two main steps. First, we will
determine through a bottom-up dynamic program, for each node
v, a set Sv , which is the set of all mixtures over v’s descendant
leaf nodes that can be achieved by an appropriate commitment by
player 1. To aid in visualizing Sv , we picture each leaf node l
as a point p in two-dimensional space, where the x-dimension is
player 2’s utility and the y-dimension is player 1’s utility. Since
the goal is a commitment strategy that maximizes utility for player
1, we need only maintain the upper envelope of Sv , which we can
represent as a set of line segments, each of which can be stored
compactly as pairs of two points (p, p′). Let S1

v be the set of line
segments that we maintain. (In fact, for computational simplicity,
we will maintain more than just the line segments corresponding
to the upper envelope, but the upper envelope of the line segments
in S1

v will correspond to the upper envelope of Sv .) Finally, for
computational reasons, we maintain a set S2

v , which is always a
subset of the endpoints of the line segments in S1

v (but excludes
some that we will not need).
Dynamic programming step (upward pass)

For each leaf node l, S2
l = {l} and S1

l = {(l, l)}. At a node
v where player 1 acts, for any child w of v, any point in Sw is
also in Sv . Moreover, if we take one point from Sw for every child
w, every mixture over these points is also in Sv . However, be-
cause there are only two players, it will never be helpful to mix
over points from more than two children (for any point obtained
that way, there will be a point in Sv that is obtained by mixing over
points from only two children that has the same utility for player 2
and at least the same utility for player 1). This allows us to com-
pute the set of endpoints: S2

v =
S

w child of v
S2

w. The line segments
in S1

v will come from two different sources. First, some line seg-
ments will come directly from S1

w for some child w, via a pure
commitment to w. The second source is by generating segments
by mixing between any two children of v, w and w′ 6= w; in this
case, we can restrict attention to mixing over one end point from
S2

w and one from S2
w′ (points obtained by mixing over other points

will be dominated). We can define the set resulting from this sec-
ond source as Ŝ1

v =
S

p∈S2
w,p′∈S2

w′
s.t. w<w′{(p, p′)} (we define an

arbitrary order < over the child nodes to avoid duplication). Thus,
we get that S1

v = (
S

w child of v
S1

w) ∪ Ŝ1
v .

For a node v at which player 2 acts, it can happen that, for at
least one child w of v, there are values in Sw that it is impossible to
incentivize player 2 to play. Let mw′ ∈ arg minp∈S2

w′

u2(p); this

point corresponds to the most we can “punish” player 2 for going

to w′. Let i(w) = maxw′ 6=w u2(mw′); this value corresponds to
the smallest utility that player 2 will accept when going to w.

Based on i(w), we will shrink S1
w into a set Ŝ1

w, so that S1
v =

S

w child of v
Ŝ1

w. For every (p, p′) ∈ S1
w, we do the following:

• If u2(p) ≥ i(w) and u2(p
′) ≥ i(w), add (p, p′) to Ŝ1

w.

• If u2(p) < i(w) and u2(p
′) < i(w), do not add (p, p′) to

Ŝ1
w.

• If u2(p) < i(w) and u2(p
′) ≥ i(w), find the point p′′ where

u2(p
′′) = i(w) and p′′ = (αp + (1 − α)p′) for some α ∈

[0, 1]. Then, add (p′′, p′) to Ŝ1
w and add p′′ to a set of new

potential endpoints Ŝ2
w. The case where u2(p) ≥ i(w) and

u2(p
′) < i(w) is similar.

To calculate S2
v , we include all points p that are in S2

w for some
child w and for which u2(p) ≥ i(w). Additionally, for each child

w, if Ŝ2
w is nonempty, we add one point p to S2

v , namely the point
in arg maxp∈Ŝ2

w
u1(p).

Finally, at the root node r, we calculate the solution
p∗ ∈ arg maxp∈S2

r
u1(p).

Commitment determination (downward pass)

We need a procedure strategy(v, p′′) that, given a node v and
a point p′′ that lies on one of the lines (p, p′) ∈ S1

v , specifies
how to commit in the subtree rooted at v so that the outcome p
results. If player 1 acts at v, we calculate α and (p, p′) where
p′′ = αp + (1 − α)p′, α ∈ [0, 1]. Then, we find w and w′ where
p ∈ S2

w and p′ ∈ S2
w′ . If w = w′, simply commit to going to w and

recursively call strategy(w, p′′). If w 6= w′, then at v commit to
the mixture αw and (1−α)w′, and recursively call strategy(w, p)
and strategy(w′, p′). (It does not matter how 1 commits at other
children of v since they will not be reached.) For a node v where
player 2 acts, find the descendant w that contains p′′ (more pre-
cisely, find w such that (p, p′) ∈ S1

w where p′′ = αp + (1 − α)p′

for some α ∈ [0, 1]). Then, recursively call strategy(w, p′′), and,
for all other children w′ 6= w, call strategy(w′, mw).
Runtime analysis

If we consider all the S2
v on a single level of the tree, we can

bound the sum of the sizes of these sets by m, because there are
only two types of points in these sets. First, any leaf node can
appear in them (but can appear only once at each level of the tree).
Second, at any player 2 node at or below this level, a new point can
be created, but if so, another point from below this node will be
removed.

Next, let us consider the potential sum of the sizes of all the
S1

v on a single level. New line segments can only be generated at
internal nodes v from some p ∈ S2

w and some p′ ∈ S2
w′ where w

and w′ 6= w are children of v, and thus at the same level. If the
only end points ever generated were leaf nodes (which is not true
in general), then there can be at most

`

m

2

´

line segments at a level
(since there will be no duplicates). More generally, if a new end
point is created at a player 2 node, it replaces another end point;
therefore, every end point corresponds to a leaf that it replaced (or
that was replaced by the end point it replaced, etc.). Therefore
the

`

m

2

´

bound on the number of line segments at a level holds
generally.

At a node v where player 1 acts, taking an existing line segment
from one of its children or generating a new one from two of its
children is a constant-time operation per line segment. Hence, this
step takes O(m2) time per node. At a node v where player 2 acts,
it also takes O(m2) time to evaluate all the line segments from all
of its children to see which have to be altered and which can be
included without change. Thus, the upward pass requires O(nm2)



time. The downward pass merely has to find, at each node v, which
line segment(s) intersects with the desired point, which can be done
in O(m2) time, as there are at most O(m2) line segments in its
children’s feasible sets. Again, because we are doing this for at
most O(n) nodes, this requires at most O(nm2) time in total.

4. NEGATIVE RESULTS
In this section we give NP-hardness results for the following

problems:
Case 1. It is NP-hard to solve for the optimal strategy to commit to
in a game with chance nodes, even if the game has only two play-
ers, it is in tree form, it is a game of perfect information with no
costs/restrictions, and regardless of whether commitment to mixed
strategies is allowed (Theorem 5).
Case 2. It is NP-hard to solve for the optimal mixed strategy to
commit to in a three-player game, even if the game is in tree form
and it is a game of perfect information with no costs/restrictions
or chance nodes (Theorem 6).
Case 3. It is NP-hard to solve for the optimal strategy to commit
to in a game with imperfect information, even if the game has only
two players, it is in tree form, it has no costs/restrictions or chance
nodes, and regardless of whether commitment to mixed strategies
is allowed (Theorem 7).
Case 4. It is NP-hard to solve for the optimal mixed strategy to
commit to in a game in DAG form, even if the game has only two
players and it is a game of perfect information with no costs/restrictions
or chance nodes (Theorem 8).
Case 5. It is NP-hard to solve for the optimal strategy to commit
to in a three-player game in DAG form, even if the game is a game
perfect information with no costs/restrictions or chance nodes, re-
gardless of whether commitment to mixed strategies is allowed
(Theorem 9).
Case 6. It is NP-hard to solve for the optimal strategy to commit
to in a game in DAG form with commitment restrictions, even if
the game has only two players, it is a game of perfect information
with no chance nodes and regardless of whether commitment to
mixed strategies is allowed (Theorem 10).

4.1 Chance nodes
Our first hardness result shows that when chance nodes are in-

volved, even the simplest of problems become NP-hard.
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Figure 4: Two-player game with chance nodes used in the hard-

ness reduction of Theorem 5.

THEOREM 5. It is NP-hard to solve for the optimal strategy to

commit to in a game with chance nodes, even if the game has only

two players, it is in tree form, it is a game of perfect information

with no costs/restrictions, and regardless of whether commitment

to mixed strategies is allowed.

PROOF. In the KNAPSACK problem, we are given a set of N
items, and for each of them, a value pi and a weight wi; addition-
ally, we are given a weight limit W . We are asked to find a subset
of the items with total weight at most W that maximizes the sum
of the pi in the subset. We reduce an arbitrary KNAPSACK in-
stance to an extensive-form game, in such a way that the maximal
utility obtainable by the leader with commitment (whether pure or
mixed) is equal to the optimal solution value in the KNAPSACK
instance. The extensive-form game is illustrated in Figure 4, and
defined formally below.
Top of the tree

The first move is by player 2, who chooses between an outcome
of (0,−W ), and a chance node which randomizes uniformly over
the item subtrees, defined next.
Item subtrees

Each item subtree ti has two levels. At the top level, there is a
node where player 2 acts. It has two children: one is a leaf node
with an outcome of (Npi,−Nwi), the other is a node where player
1 acts. The latter node also has two children: leaf nodes (0, 0) and
(0,−Nwi).
Proof of equivalence to KNAPSACK instance

If, at the lowest internal node of an item subtree, player 1 com-
mits to playing 100% Right, then player 2, breaking ties in 1’s fa-
vor, will move Left in this subtree, resulting in payoffs (Npi,−Nwi)
if this subtree is reached. Otherwise, player 2 will move Right, and
player 1 will get 0 (and player 2 at most 0). Because player 1 wants
player 2 to move to the chance node at the top, there is no benefit
to player 1 in moving Right with probability strictly between 0 and
100%, since this will only make the chance node less desirable to
player 2 without benefiting player 1, so we can assume without loss
of optimality that player 1 commits to a pure strategy.

Let S be the set of indices of subtrees where player 1 commits
to playing Right. Then, player 2’s expected utility for the chance
node is (1/N)

P

i∈S
−Nwi = −

P

i∈S
wi. Player 2 will choose

to move to the chance node if and only if
P

i∈S
wi ≤ W . Given

this, player 1’s expected utility is (1/N)
P

i∈S
Npi =

P

i∈S
pi.

Hence, finding player 1’s optimal strategy to commit to is equiva-
lent to solving the KNAPSACK instance.

4.2 Chance node gadget
Before we get to the next reduction, let us introduce a gadget that

we will use in two of the following reductions. This gadget allows
us to create a pseudo-chance node in games of no chance, when
commitment to mixed behavioral strategies is allowed. The con-
struction of a pseudo-chance node with N equally likely outcomes
requires 2(N − 1) internal nodes and is as pictured in Figure 5.
The outcomes of the pseudo-chance node correspond to the leaves
immediately following an action by player 1.

To illustrate how the construction works, let us solve for the op-
timal mixed behavioral strategy for player 1 to commit to.

PROPOSITION 1. The optimal mixed behavioral strategy for

player 1 to commit to in the game in Figure 5 is the following: At

the ith node for player 1 from the bottom, commit to the mixture

(1/(i +1), i/(i +1)). Given this, player 2 will always move right,

and each leaf node directly connected to a player 1 node is reached

with probability 1/n. Moreover, if the utilities for player 1 are per-

turbed by a sufficiently small amount, the optimal mixed behavioral

strategy for player 1 remains exactly the same.

PROOF. In an optimal solution, player 1 will incentivize player
2 to move Right everywhere, because player 1 gets 0 when player
2 moves Left. Let us consider player 1’s optimal commitment at
the bottom internal node of the tree. Player 1 needs to commit to
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Figure 5: Pseudo-chance node gadget used in Theorem 6 and

Theorem 8.

placing at least probability 1/2 on Left in order for player 2 to want
to move Right at the node before. An additional benefit for player 1
of putting probability on Left here is that it helps incentivize player
2 to move Right at higher nodes. However, player 1 will not want
to place more than probability 1/2 on Left, because incentives for
player 2 to move right higher up in the tree are “cheaper” at higher-
up player 1 nodes (because player 1 gets higher utility for moving
Left higher up in the tree, while player 2’s utility for this is always
1). Given this, at the next higher node for player 1, by similar rea-
soning, it is optimal for her to commit to going left with probability
1/3, etc. Given the optimal strategy, the probability that player 1
ends up moving Left at her ith node from the bottom (and not be-

fore) is 1
i+1

N−1
Q

j=i+1

j/(j + 1) = 1/N ; and the probability of player

1 never moving Left is
N−1
Q

j=1

j/(j + 1) = 1/N .

Thus, this construction allows us to generate a uniform distribu-
tion. This may at first appear not nearly as useful as being able to
use a true chance node, because we can only get a uniform distri-
bution over specially chosen leaves, rather than over any collection
of subtrees. Nevertheless, in the proofs below, we will be able to
modify some of these leaves into more interesting subtrees without
affecting the strategic result of a uniform distribution.

4.3 Three-player, mixed strategy commitment
We use the pseudo-chance node gadget to prove that optimal

commitment to a mixed behavioral strategy is NP-hard in three-
player games.

THEOREM 6. It is NP-hard to solve for the optimal mixed strat-

egy to commit to in a three-player game, even if the game is in tree

form and it is a game of perfect information with no costs/restrictions

or chance nodes.

PROOF. In the KNAPSACK problem, we are given a set of N
items, and for each of them, an integer value pi and an integer
weight wi; additionally, we are given an integer weight limit W .
(Without loss of generality, wi ≤ W for all i.) We are asked to
find a subset of the items with total weight at most W that maxi-
mizes the sum of the pi in the subset. Let p∗ = maxi pi. We reduce
an arbitrary KNAPSACK instance to a three-player extensive-form
game, in such a way that the maximum utility obtainable by the
leader with mixed strategy commitment corresponds to the maxi-
mum value obtainable in the KNAPSACK problem. The extensive-
form game is illustrated in Figure 6, and defined formally below.

Top of the tree

The first move is by player 3, who can choose either an out-
come of (0, 0,−W ), or to move to the pseudo-chance node. The
pseudo-chance node will (in the optimal mixed commitment solu-
tion) randomize uniformly over N item subtrees and an additional
outcome of (1, 0, 0). (In the representation of the tree in Figure 6,
the children of the pseudo-chance node PC correspond to all the
leaves of the tree in Figure 5 where player 1 moved last. The leaves
where player 2 moved last still need to be part of the game, but we
do not draw them in Figure 6 since they will not be reached in the
optimal solution—they are “hidden” as part of the pseudo-chance
node construction. This is the reason that player 2 does not occur
at all in Figure 6—he is “hidden in the pseudo-chance node.” Also
note that the use of the pseudo-chance node places restrictions on
the utilities below it: player 2’s utilities must be identical to those
in Figure 5 (that is, they must all equal 1), and player 1’s utilities
must be very close to those in Figure 5. Note that the N in Figure 5
equals N + 1 in Figure 6.)
Item subtrees

We define a subtree txi for each item. This subtree consists of
two levels. At the top node of the subtree, player 3 chooses between
two children: one is a leaf node with an outcome of ( i+1

(N+1)2
+

pi

2p∗W (N+1)2
, 1,−(N + 1)wi), the other is a node where player 1

acts. This latter node also has two children: leaf nodes ( i+1
(N+1)2

, 1, 0)

and ( i+1
(N+1)2

, 1,−(N + 1)wi).

Proof of equivalence to KNAPSACK instance

If at the lowest internal node of an item subtree, player 1 commits
to playing 100% Right, then player 3 will move Left in this subtree,
resulting in payoffs ( i+1

(N+1)2
+ pi

2p∗W (N+1)2
, 1,−N + 1wi). Oth-

erwise, player 3 will move Right, and player 1 will get i+1
(N+1)2

(and player 3 at most 0). Because player 1 wants player 3 to move
to the pseudo-chance node at the top, there is no benefit to player
1 in moving Right with probability strictly between 0 and 100%,
since this will only make the pseudo-chance node less desirable to
player 3, without benefiting player 1, so we can assume without
loss of optimality that player 1 commits to a pure strategy in each
item subtree.

Let us assume, for now, that in the optimal solution, the distri-
bution over the pseudo-chance node’s children is uniform. Let S
be the set of indices of subtrees where player 1 commits to play-
ing Right. Then, player 3’s expected utility for the chance node is
(1/(N + 1))

P

i∈S −(N + 1)wi = −
P

i∈S wi. Player 3 will
choose to move to the chance node if and only if

P

i∈S
wi ≤

W . Given this, player 1’s expected additional utility (relative to
the case where S = ∅) is (1/(N + 1))

P

i∈S

pi

2p∗W (N+1)2
=

1
(2p∗W (N+1)3)

P

i∈S pi. This quantity is maximized when
P

i∈S pi

is maximized (nothing else depends on S), so finding player 1’s
optimal mixed strategy to commit to is equivalent to solving the
KNAPSACK instance—under the assumption that the distribution
over the pseudo-chance node’s children is uniform.

Now, let us revisit that assumption—can player 1 obtain even
higher utility by committing inside the pseudo-chance node in a
way that results in the pseudo-chance node not mixing uniformly?

First, suppose that the choice of player 1’s commitment in the
item subtrees is fixed to a feasible solution S, that is,

P

i∈S
wi ≤

W . Then, by the analysis in the proof of Proposition 1, player
1 is best off committing in the pseudochance node in a way that
results in a uniform distribution, because player 1’s utilities are only
slightly perturbed relative to Figure 5.

The more difficult case is when player 1’s commitment in the
item subtrees is fixed to an infeasible solution S, with

P

i∈S
wi >
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Figure 6: Three-player tree with pseudo-chance node used in the hardness reduction of Theorem 6.

W . While this is clearly not beneficial for player 1 if the pseu-
dochance node results in a uniform distribution (because player 3
will move Right at the beginning), it may be possible for player 1
to commit to a different strategy in the pseudo-chance node so that
player 3 will in fact move Left at the beginning of the game. We
will show that player 1 cannot benefit from such an approach, in
the sense that in this case player 1 would be better off reducing S
to the point where it is feasible, and committing in a way such that
the pseudo-chance node results in a uniform distribution. Roughly,
the idea is the following. Suppose that

P

i∈S
wi > W . By in-

tegrality, we know that
P

i∈S wi ≥ W + 1, that is, the sum of
the included items’ weights is bounded away from W . Hence, in
order to make player 3 play Left at the root, player 1’s strategy at
the pseudo-chance node must be significantly different, so that the
resulting distribution over the children of the pseudo-chance node
must be signficantly different from the uniform distribution. We
then show that the cost of this difference to player 1 is larger than
what she could ever obtain from including more items.

Specifically, in any distribution over the pseudo-chance node’s
children that makes player 3 play Left when

P

i∈S
wi > W , at

least 1/W of the probability mass must have shifted relative to
the uniform distribution over the pseudo-chance node’s children.
This is because player 3’s expected utility for going Left must be
increased by at least 1 relative to the uniform distribution, but for
each unit of mass that is shifted, the expected utility of player 3 can
change by at most maxi wi ≤ W .

Moreover, player 1’s commitment in the pseudo-chance node
must still incentivize player 2 to always move Right, because player
1 gets 0 after player 2 moves Left. It is not difficult to show that in
order for this to be true, it must be the case that the first i children of
the pseudo-chance node receive probability at most i/N . Because
of this, if 1/W mass is shifted in the distribution over the pseudo-
chance node’s children, it must be the case that the expected in-
dex of the child chosen from the pseudo-chance node increases by
1/W . As a result, the expectation of the term (i + 1)/(N + 1)2 in
player 1’s payoff decreases by 1/(W (N+1)2). (Note that N+2−i
is the index of the child.) On the other hand, the expectation of the
term xi ·pi/(2p∗W (N+1)2) in player 1’s expected utility—where
xi ∈ {0, 1} indicates whether item i has been included in S, so that
this term corresponds to his utility from including items—can in-

crease by at most maxi pi/(2p∗W (N +1)2) = 1/(2W (N +1)2),
which is less than 1/(W (N + 1)2). Hence it follows that it is
never helpful to player 1 to change the distribution from the pseudo-
chance node in order to include items beyond the limit W . It fol-
lows that the problem of finding the optimal mixed strategy to com-
mit to in the game in Figure 6 is equivalent to the KNAPSACK
instance.

4.4 Two players, imperfect information, pure
or mixed strategy commitment

Next, we will show that the addition of imperfect information is
enough to make the problem NP-hard even with two players.

THEOREM 7. It is NP-hard to solve for the optimal strategy to

commit to in a game with imperfect information, even if the game

has only two players, it is in tree form, it has no costs/restrictions

or chance nodes, and regardless of whether commitment to mixed

strategies is allowed. This holds even if only player 1 has non-

singleton information sets.

PROOF. We will first consider the case of mixed-strategy com-
mitment. We reduce an arbitrary instance of 3SAT to an extensive-
form game such that the leader can obtain utility 1 if the 3SAT
instance is satisfiable and 0 otherwise. The 3SAT instance consists
of N variables x1,...,xN and M clauses, C1,...,CM . This game is
illustrated in Figure 7 and the details of its construction follow.
The top of the tree and the information sets

Connected to the root (at which player 2 acts), for each variable
xi, the game contains a subtree txi ; for each clause Ci, a subtree
tCj ; and finally, a “target” subtree t. Player 1’s objective is to in-
centivize player 2 to choose t, as this is the only subtree where she
can get positive utility. The roots of all of these subtrees belong to
player 1, and they are all in the same information set S. Thus, they
have the same possible actions for player 1, specifically, one action
for each variable xi. Furthermore, we have one information set Si

for each variable xi; the commitment decision here will correspond
to the choice of a literal (+xi or −xi).
Target subtree

The root of the t subtree has a child for each variable xi; each
of these corresponds to a simple coordination game, where 1 and 2
both receive 1 if and only if they choose the same action. There is



b
2 — [root]

b

...

tx1

b

txN

b

t

b

...

tC1

b

tCM

b
1 (S) — [t]

b

...x1
2

b

1 (S1)

b

(1,1)

b

(0,0)

b1 (S1)

b

(0,0)

b

(1,1)

b

xN
2

b

1 (SN )

b

(1,1)

b

(0,0)

b1 (SN )

b

(0,0)

b

(1,1)

b
1 (S) — [tCj ]

b

(0,0)

x1 ...

b

xi ...

1 (Si)

b

(0, N
2

)

b

(0,0)

b

(0,0)

xN

b
1 (S) — [txi ]

b

(0,0)

...x1

b

(0,N)

xi ...

b

(0,0)

xN
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indicates that the node is part of the information set X. In tCj , +xi appears in Cj .

one twist: player 1’s information set Si in the coordination game
for xi also includes some nodes from the clause subtrees.
Clause subtrees

The root of each tCj subtree also has a child for each variable
xi. If xi does not appear in Cj at all, then this child is a leaf node
with utilities (0, 0). If +xi or −xi appears in Cj , then the child
is part of the information set Si, and player 1 must move Left or
Right. Moving Right corresponds to setting the variable to true,
and results in utilities (0, N

2
) if −xi appears in Cj and utilities

(0, 0) if +xi appears in Cj . Moving Left corresponds to setting
the variable to false, and results in utilities (0, 0) if −xi appears in
Cj and utilities (0, N

2
) if +xi appears in Cj .

Variable subtrees

For each variable subtree txi , the action corresponding to xi

leads to a leaf node with a payoff of (0, N), and all other actions
lead to a leaf node with a payoff of (0, 0).
Proof of equivalence to 3SAT instance (with mixed-strategy com-

mitment)

First, in order for player 2 to choose t, player 1 must commit to
a mixed behavioral strategy that places equal ( 1

N
) probability on

each of the choices in the information set S. Otherwise, some xi

receives more than 1
N

probability, and as a result player 2 would
receive strictly more than 1 expected utility from txi , whereas t
can give player 2 at most 1. Given this, player 1 also must com-
mit to a pure strategy in each of the information sets Si. This is
because otherwise, player 2 would get expected utility strictly less
than 1 for t (because with some positive probability there would be
a coordination failure), causing him again to prefer some txi .

Thus, the only decision remaining for player 1 is whether to com-
mit to Left or Right at each Si (that is, whether to choose −x1 or
+xi, respectively). We now argue that player 2 will choose t rather
than one of the clause subtrees, if and only if player 1’s choices
correspond to a satisfying assignment. If, in information set Si,
player 1 has committed to going Right (+xi), then all clause sub-
trees tCj with +xi ∈ Cj will give player 2 a utility of at most 1.
This is because in this case there will be at most two subtrees of
the clause subtree where player 2 receives N/2, resulting in an ex-
pected utility of at most 1 for him for the clause subtree. The case
where player 1 has committed to going Left (−xi) has an identical
effect on the clause subtrees tCj with −xi ∈ Cj . However, if all
three literals of a clause Cj are set to false, then player 2 will prefer
this unsatisfied clause tree tCj to t, because his expected utility for
tCj is 3

2
> 1.

Thus, the only way in which player 1 can obtain a utility of 1
is by committing to a uniform distribution in information set S,
and a pure action at every information set Si, where these actions
correspond to a satisfying assignment for the 3SAT instance.

Commitment to pure actions only

We now argue that player 1 can still obtain utility 1 with a satis-
fying assignment even if she can only commit to pure actions (but is
free to not commit at some of the information sets). Commitment at
information sets (S1, . . . , SN ) is already restricted to pure actions
in order for player 1 to obtain utility 1. However, player 1 is now
unable to commit to a uniform distribution at information set S,
and we have already seen that commitment to anything other than
a uniform distribution here results in utility 0 for player 1. How-
ever, if player 1 chooses to not commit in information set S, it turns
out that player 1 playing a uniform distribution in information set S
and player 2 playing choosing t is part of a Nash equilibrium, if and
only player 1 plays in a way that satisfies all clauses in the lower
information sets. (In fact, player 1 does not need to commit in these
information sets either, in the sense that there is an equilibrium in
which she will play the satisfying assignment—of course, there are
many other equilibria as well.) Thus, even in the pure-strategy case
(where commitment is not required), player 1 can obtain a utility of
1 if and only if there is a satisfying assignment to the 3SAT prob-
lem.

4.5 DAG results
Due to space constraints, the proofs from this subsection appear

only in the full version of the paper. We again use the pseudo-
chance node gadget from Subsection 4.2 to prove that optimal com-
mitment to a mixed behavioral strategy is NP-hard in two-player
games on a DAG.

THEOREM 8. It is NP-hard to solve for the optimal mixed strat-

egy to commit to in a game in DAG form, even if the game has

only two players and it is a game of perfect information with no

costs/restrictions or chance nodes.

If we have more than two players, solving for the optimal strat-
egy to commit to in DAGs becomes NP-hard even when we only
allow for pure strategy commitment.

THEOREM 9. It is NP-hard to solve for the optimal strategy to

commit to in a three-player game in DAG form, even if the game

is a game perfect information with no costs/restrictions or chance

nodes, regardless of whether commitment to mixed strategies is al-

lowed.

Finally, if we allow for restrictions, solving for the optimal com-
mitment strategy in DAGs becomes NP-hard even in the two-player,
pure-strategy commitment case.



THEOREM 10. It is NP-hard to solve for the optimal strategy

to commit to in a game in DAG form with commitment restrictions,

even if the game has only two players, it is a game of perfect infor-

mation with no chance nodes and regardless of whether commit-

ment to mixed strategies is allowed.

5. CONCLUSIONS
A summary of our results appears in Figure 8, in the form of

a decision tree. (This is the only tree in this paper that does not
correspond to a game.)

b

b

No Chance

b

Perfect Info.

b

Pure

b

P

Tree

b

DAG

b

2 P.

b

P

No Rest.

b

NP-hard

b

NP-hard

3+ P.

b

Mixed

b

Tree

b

2 P.

b

P

No Rest.

b

?

b

NP-hard

3+ P.

b

NP-hard

DAG

b

NP-hard

Imperfect Info.

b

NP-hard

Chance

Figure 8: Summary of results. At any node, some of the aspects

of the problem are fixed, others are not. Every leaf node states

whether the problem is in P or NP-hard at that leaf; this result

then applies for any way of fixing the remaining aspects of the

problem.

We note that we have left one case open. Besides this, future
research can investigate questions such as the following. Are there
good approximation algorithms for the NP-hard cases? Are there
other restrictions on the games that allow for fast algorithms? Can
the runtime of the algorithms in this paper be improved, perhaps
through better use of data structures?
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