
Approximation Guarantees for Fictitious Play

Vincent Conitzer

Abstract—Fictitious play is a simple, well-known, and often-
used algorithm for playing (and, especially, learning to play)
games. However, in general it does not converge to equilibrium;
even when it does, we may not be able to run it to convergence.
Still, we may obtain an approximate equilibrium. In this
paper, we study the approximation properties that fictitious
play obtains when it is run for a limited number of rounds.
We show that if both players randomize uniformly over their
actions in the first r rounds of fictitious play, then the result
is an ǫ-equilibrium, where ǫ = (r + 1)/(2r). (Since we are
examining only a constant number of pure strategies, we know
that ǫ < 1/2 is impossible, due to a result of Feder et al.) We
show that this bound is tight in the worst case; however, with an
experiment on random games, we illustrate that fictitious play
usually obtains a much better approximation. We then consider
the possibility that the players fail to choose the same r. We
show how to obtain the optimal approximation guarantee when
both the opponent’s r and the game are adversarially chosen
(but there is an upper bound R on the opponent’s r), using a
linear program formulation. We show that if the action played
in the ith round of fictitious play is chosen with probability
proportional to: 1 for i = 1 and 1/(i−1) for all 2 ≤ i ≤ R+1,
this gives an approximation guarantee of 1− 1/(2 + ln R). We
also obtain a lower bound of 1 − 4/ ln R. This provides an
actionable prescription for how long to run fictitious play.

I. INTRODUCTION

Computing a Nash equilibrium of a given normal-form

game is one of the main computational problems in game

theory; in multiagent systems, it is a problem that strategic

agents often need to solve. Many related problems, such as

deciding whether a Nash equilibrium that obtains a certain

amount of welfare for the players exists, or whether a Nash

equilibrium that places positive probability on a particular

strategy exists, are NP-complete [18], [10]. The Lemke-

Howson algorithm [21], perhaps the best-known algorithm

for finding one Nash equilibrium, has been shown to require

exponential time on some instances [31]. (Other, search-

based algorithms obviously require exponential time on some

instances, although they often do well in practice [27], [30].)

The complexity of finding one Nash equilibrium remained

open until very recently, when in a breakthrough series of

papers [11], [7], [14], [8], it was finally shown that finding

one Nash equilibrium is PPAD-complete, even in the two-

player case. All of this is for the case where the normal form

of the game is explicitly given; however, often the normal

form is exponentially large, presenting additional difficulties.

A. Approximate Nash equilibrium

In light of this negative result, one approach is to try

to find an approximate Nash equilibrium. In recent years,

V. Conitzer is with the Department of Computer Science, Duke Unversity,
Durham, NC 27708, USA conitzer@cs.duke.edu

significant progress has been made in the computation of

approximate Nash equilibria. It has been shown that for any

ǫ, there is an ǫ-approximate equilibrium with support size

O((log n)/ǫ2) [1], [22], so that we can find approximate

equilibria by searching over all of these supports. More

recently, Daskalakis et al. gave a very simple algorithm

for finding a 1/2-approximate Nash equilibrium [12]; we

will discuss this algorithm shortly. Feder et al. then showed

a lower bound on the size of the supports that must be

considered to be guaranteed to find an approximate equi-

librium [16]; in particular, supports of constant sizes can

give at best a 1/2-approximate Nash equilibrium. Daskalakis

et al. then gave a polynomial-time algorithm for finding

a .38-approximate equilibrium [13] (which uses arbitrarily

large supports). Later results improved the approximation to

.36391 [3] and then further to .3393 [36]. An overview of

the work on computing approximate equilibria was recently

presented at the 2008 Symposium on Algorithmic Game

Theory [35].

While it is a desirable property for an algorithm to

produce an approximate equilibrium, if the algorithm is to

be used for determining how to play in an actual game,

the approximation guarantee by itself is not likely to satisfy

all of our demands. Rather, we would like the algorithm to

have some additional desirable properties. It is not the aim

of this paper to produce a list of exactly which properties

are needed; however, let us illustrate some of the issues

by looking at the following elegantly simple algorithm for

computing an approximate equilibrium of a two-player game,

due to Daskalakis et al. [12].1

• Label one of the players as player 1;

• Choose a pure strategy s for player 1;

• Find a best response t to s for player 2;

• Find a best response s′ to t for player 1;

• Output the strategy profile in which player 1 plays each

of s, s′ with probability 1/2, and player 2 plays t with
probability 1.

Surprisingly, this extremely simple algorithm produces a

1/2-approximate equilibrium! An additional nice property of

the algorithm is that it is easily applied to games whose

normal form has exponential size: all that is needed is the

ability to compute best responses. In spite of the algorithm’s

1Of course, we could have chosen one of the other recent algorithms
for computing an approximate Nash equilibrium to consider in more detail;
however, in this paper, we focus on the Daskalakis et al. algorithm because
(1) like fictitious play, it is a very simple algorithm; (2) like fictitious play,
it does not require the size of the supports to depend on the size of the
game; and (3) the approximation guarantee of the other algorithms is not
much better.

simplicity, however, it does not seem that it is likely to be

used in practice, for a number of reasons.2

1) When the two players independently use the algorithm

to find strategies for themselves, in general they need

to be very well-coordinated for the resulting profile

of strategies to constitute an approximate equilibrium.

Specifically, they need to agree on who is player 1,

which initial strategy s for player 1 is chosen, and

which best response t to s is chosen (if there are multi-

ple). If they fail to agree on one of these, then the result

is not necessarily an approximate equilibrium. To some

extent, this is a not a problem of the specific algorithm

or of approximation in general, but one inherent in the

definition of Nash equilibrium. In general, a game can

have multiple equilibria, and if one player chooses her

strategy from one equilibrium, and the other player

from another, the result is not necessarily a Nash

equilibrium.3 Hence, coordination is an issue even in

the presence of unlimited computation. Nevertheless,

the use of an approximation algorithm such as the

above greatly exacerbates the problem: it introduces

many ways in which the players can fail to coordinate

even if the game turns out to have only a single Nash

equilibrium.

2) When the players are completely coordinated in their

use of the algorithm, it is easy for a player to deviate

from the profile and get a somewhat better utility for

herself. Of course, to some extent, this is inherent

in the use of approximate equilibria. Nevertheless,

with an approximation algorithm such as the above,

it is extremely easy to find a beneficial deviation. For

example, for player 1, there seems to be no reason

whatsoever for placing probability 1/2 on s; she would
generally be better off placing all her probability on

s′.4

3) The algorithm is not guaranteed to produce an exact

equilibrium (or even a very good approximation) in

restricted settings where an exact equilibrium is easy

to find, for example, (two-player) zero-sum games.

Of course, it is trivial to extend the approximation

algorithm to obtain this property: first check whether

2This is not meant as a criticism of this work: on the contrary, it
establishes a key benchmark for an important criterion, and the simplicity
of the algorithm is what allows us to easily discuss what other criteria we
might need. It is also not meant to deny that studying the approximability
of Nash equilibrium is an interesting question in its own right.

3In some restricted classes of games, the result is still guaranteed to be
a Nash equilibrium: for example, in (two-player) zero-sum games.

4In fact, there is a more stringent definition of approximate Nash
equilibrium that requires that every pure strategy in a player’s support is
an approximate best response [11]. The above algorithm will, in general,
not produce such a well-supported approximate equilibrium. (For well-
supported approximate equilibrium, it is known that an approximation
of .658 can be obtained [20].) While this more demanding notion of
approximate equilibrium addresses the issue to some extent, the problem
runs deeper than that. For example, player 2’s choice of strategy t in the
above algorithm is certainly consistent with the notion of well-supported
approximate equilibrium—but is it really reasonable to believe that player
2 would not think one step further and best-respond to the mixture over s

and s′?

the game is (say) zero-sum; if it is, solve it exactly,

otherwise use the approximation algorithm. Neverthe-

less, an algorithm that splits into cases like this seems

less natural, and additionally it would not do well on

games that are very close to zero-sum.

4) The algorithm seems intuitively somewhat unnatural,

for example due to the asymmetry between the roles of

the two players in the algorithm. (On the other hand,

at least it is a simple algorithm; other algorithms pro-

posed for computing exact or approximate equilibria

are much more complicated. So, to the extent that we

care about whether the algorithm could be used by a

typical human being, perhaps a simple algorithm like

this is preferable.)

It is not my aim to completely resolve all of these issues

in this paper. Instead, we will study the approximation

properties of a very well-known algorithm for playing (and

learning to play) games, which arguably fares better on many

of the issues discussed above. We show that this algorithm

does obtain quite reasonable approximation guarantees.

B. Fictitious play

The algorithm we study is fictitious play [6]. Fictitious

play is (these days) usually regarded as an algorithm for

learning in games, that is, settings where a game is played

repeatedly and where the play improves over time. Under

this interpretation, fictitious play proceeds as follows: in

the ith round of play, consider the opponent’s historical

distribution of play (that is, the fraction of times that each

action was played in the first i − 1 rounds), and play a best

response to this distribution. This very simple algorithm has

some nice properties: most notably, the players’ historical

distributions of play are guaranteed to converge to a Nash

equilibrium under certain conditions—for example, when

the game is zero-sum [28], or has generic payoffs and is

2 × 2 [24], or is solvable by iterated strict dominance [26],

or is a weighted potential game [25]. (However, there are

also games in which the distributions do not converge under

fictitious play [32].) This algorithm can also be converted

into an algorithm for playing a game just once: simply

simulate what would happen in the repeated version of the

game if both players were to use fictitious play, up to some

predetermined round r; then output the historical distribution

of play in this simulation as the strategy. This interpretation

of fictitious play is not at all novel: in fact, when fictitious

play was originally proposed, this is the interpretation that

was given to it—hence the name fictitious play.

It is interesting to note that Daskalakis et al. [12] mention,

as a future research direction, the possibility of adding

additional iterations to their algorithm, that is, computing

another best/better response and including it in the support.

This is getting close to the idea of fictitious play.

There are many advantages to fictitious play, even when

used as an algorithm for one-time play. For large enough

r, it is guaranteed to get very close to exact equilibrium in

the classes of games discussed above; it treats the players

symmetrically; it is simple and natural; and it can be applied

to games whose normal form has exponential size, as long as

best responses can be computed. If the players use fictitious

play independently (that is, each of them does her own

simulation), there are still some coordination issues that we

need to worry about, namely whether they choose the same

action when fictitious play does not prescribe a single action.

In this paper, we assume away this difficulty, that is, we

assume that the players agree on which action to choose

in these situations. There is also the issue of what happens

when the players choose different final rounds r for their

simulations. We will investigate this in more detail later in

the paper.

Nevertheless, one of the most important uses of fictitious

play is as an algorithm for learning in games. Our results

are relevant in this case as well. For example, if we show

that randomizing uniformly over the actions in the first r
rounds of fictitious play results in an ǫr-equilibrium, and

limr→∞ ǫr = ǫ, then we know that the historical distributions

of play converge to the set of ǫ-equilibria of the game. In

this paper, we will show ǫr = (r +1)/(2r), so that ǫ = 1/2.
That is, the historical distributions of play converge to the

set of 1/2-equilibria of the game.

C. The importance of fictitious play

Fictitious play is an old and simple algorithm. Many

new, more complicated algorithms have been proposed since

then, both for solving (or approximately solving) games

(e.g., [21], [27], [30], and the approximation algorithms

discussed above), and for learning to play games (e.g., [2],

[5], [4], [9], [34], [29]). Thus, one may legitimately wonder

whether fictitious play is still worthy of further study. I

believe that it is, for at least the following reasons:

1) Fictitious play continues to be used in practice. For

example, one recent paper [17] describes the use of

fictitious play to solve a state-of-the-art poker game.

An earlier paper [23] shows that generating an approxi-

mate equilibrium of Rhode Island Hold’em poker [33]

can be done faster with fictitious play than with the

barrier method of CPLEX (as was done in [19]). (There

had been work on using fictitious play for poker even

before that [15].) So, fictitious play remains practically

relevant today, not just for learning but even as an

algorithm for solving a game.

2) As for the approximation results for fictitious play

that we derive in this paper, I am not aware of

similar results for competing algorithms. There are

numerous algorithms for computing an exact Nash

equilibrium (e.g., [21], [27], [30]), but these do not run

in polynomial time [31]. (Some of these algorithms can

also be used to find approximate Nash equilibria [30],

but again, there is no satisfactory runtime bound.)

There are algorithms whose main purpose is to find an

approximate Nash equilibrium, such as the Daskalakis

et al. algorithm mentioned earlier, but those algorithms

do not have as many other (known) desirable properties

as fictitious play. I am not aware of similar approxima-

tion results for other algorithms for learning in games.

It is conceivable that good approximation results can

be proven for some of the more modern algorithms

(or that other good properties can be shown for some

of the algorithms that were designed specifically for

computing an approximate equilibrium). These are, in

my opinion, worthwhile directions for future research,

and hopefully this paper provides a good starting point.

However, I believe that the results obtained in this pa-

per, in combination with existing results about fictitious

play, give fictitious play a rather unique portfolio of

known desirable properties—especially because all that

it requires is the ability to compute best responses.

3) Fictitious play is extremely simple. This makes it a

very flexible algorithm, and one that is often imple-

mented. It is also more believable as a model of

human behavior than the more complicated algorithms.

Finally, its simplicity makes it easy to analyze (which

may be related to the point that similar results are not

known for other algorithms).

4) Fictitious play is a natural approach for learning when

the opponent is not (or may not be) adapting, playing

a fixed strategy instead. This is especially useful in

domains where the agent is not sure if she is actually

facing an opponent, or rather just natural randomness.

5) There are multiple communities that are interested

in solving games and/or learning how to play them,

including the artificial intelligence/multiagent systems

community, the theoretical computer science commu-

nity, and the “traditional” game theory community. It

appears that these communities are largely heading in

different directions, and that they are not always aware

of the work going on in the other communities (of

course, there are exceptions). Hopefully, the work in

this paper appeals to all of these communities: to the

artificial intelligence/multiagent systems community

because of the practical properties of fictitious play, to

the theoretical computer science community because

of the formal approximation guarantees, and to the

traditional game theory community beause the algo-

rithm studied is a standard one that seems reasonable

for people to use. Ideally, this paper will help the

communities to stay connected to each other.

II. DEFINITIONS

We will consider two-player normal-form games, in which

player 1 (the row player) has pure strategy set S, and player

2 (the column player) has pure strategy set T . Each player

i ∈ {1, 2} has a utility function ui : S × T → R. None of

the results in this paper depend on the size of the game; in

fact, the game can have infinite size. All that is necessary is

that a player can compute a best response to a given mixed

strategy (with finite support) for the opponent.

Let si, ti be the strategies that the players play in the ith
round of fictitious play. We assume that when fictitious play

is underdetermined (that is, when there are multiple best

responses, or in the first round), it is common knowledge

which strategy each player will choose. Because we place no

restriction on the size of the game, we can assume without

loss of generality that all the si and ti are distinct: for if

(say) si = sj for i < j, we can create two copies of this

strategy and consider one of them si, and the other sj . Let

σi be the uniform distribution over strategies s1, . . . , si, and

let τi be the uniform distribution over strategies t1, . . . , ti.
Hence, for i ≥ 1, si+1 is a best response to τi, and ti+1 is

a best response to σi.

For our purposes, it will generally suffice just to draw the

payoff matrix for player 1, as follows:

u1(s1, t1) u1(s1, t2) u1(s1, t3) . . .
u1(s2, t1) u1(s2, t2) u1(s2, t3) . . .
u1(s3, t1) u1(s3, t2) u1(s3, t3) . . .

...
...

...
. . .

Since we assume (without loss of generality) that the rows

and columns are sorted by their order of play in fictitious

play (that is, si is the ith row and ti is the ith column), not

all matrices are valid: si+1 must be a best response to τi,

and ti+1 to σi.

When we consider fictitious play as an algorithm for one-

time play, it requires an input parameter r, and it returns σr

for the row player, and τr for the column player. We assume

that all utilities lie in [0, 1], which for finite games is without

loss of generality because positive affine transformations of

the utility functions do not affect the game strategically.

As is commonly done [22], [12], [13], we study additive

approximation. For a given mixed strategy τ , the mixed

strategy σ is an ǫ-best reponse if for any s ∈ S, u1(σ, τ) ≥
u1(s, τ)−ǫ (and similarly for player 2). (ui is extended to the

domain of mixed strategies simply by taking the expectation.)

A pair of strategies σ, τ is an ǫ-equilibrium if they are ǫ-best
responses to each other. It is known [16] that it is not possible

to get better than a 1/2-equilibrium unless mixed strategies

with supports of size at least log n are considered, where n
is the number of pure strategies per player. Because in this

paper, we aim to obtain results that are independent of the

size of the game, we effectively will only consider supports

of constant size, and hence we cannot hope to get anything

better than a 1/2-equilibrium.

III. COMPUTING APPROXIMATE EQUILIBRIA USING

FICTITIOUS PLAY

In this section, we show that the pair of strategies defined

by fictitious play (for a given r) is an ǫr-equilibrium, where

ǫr converges (downward) to 1/2 as r goes to infinity.

Theorem 1: The fictitious-play pair of strategies (σr, τr)
is an ǫr-equilibrium, where ǫr = (r + 1)/(2r).

Proof: By symmetry, it suffices to show that σr is

an ǫr-best response to τr. Let s∗ be a best response to

τr. The corresponding best-response utility for player 1 is

u1(s
∗, τr) =

∑r

i=1
(1/r)u1(s

∗, ti). For 2 ≤ j ≤ r + 1,
because sj is a best response to τj−1, and all utilities are

nonnegative, we have

u1(sj , τr) =

r∑

i=1

(1/r)u1(sj , ti) ≥

j−1∑

i=1

(1/r)u1(sj , ti) ≥

j−1∑

i=1

(1/r)u1(s
∗, ti)

So, for the case where player 1 plays σr, we have

u1(σr, τr) =

r∑

j=1

(1/r)u1(sj , τr) ≥

r∑

j=1

(1/r)

j−1∑

i=1

(1/r)u1(s
∗, ti) =

(1/r2)

r−1∑

i=1

r∑

j=i+1

u1(s
∗, ti) = (1/r2)

r∑

i=1

(r − i)u1(s
∗, ti)

On the other hand,

u1(s
∗, τr) =

r∑

i=1

(1/r)u1(s
∗, ti) = (1/r2)

r∑

i=1

ru1(s
∗, ti)

It follows that the suboptimality for player 1 of playing σr

is

u1(s
∗, τr) − u1(σr, τr) ≤ (1/r2)

r∑

i=1

iu1(s
∗, ti) ≤

(1/r2)
r∑

i=1

i = (1/r2)(r + 1)(r/2) = (r + 1)/(2r)

To see that this bound is tight, consider the following game

(only player 1’s payoff matrix is shown; player 2 could, for

example, have the transposed payoff matrix).

0 0 0 0 . . .

1 0 0 0 . . .

1 1 0 0 . . .

1 1 1 0 . . .
...

...
...

...
. . .

In this game, following the fictitious play strategy σr

against τr gives an expected utility of
∑r

i=1
(1/r2)(i− 1) =

(1/r2)r(r − 1)/2 = (r − 1)/(2r); on the other hand,

playing any strategy sj with j > r gives an expected

utility of 1. Hence, the suboptimality of the fictitious play

strategy is (r + 1)/(2r). We note that in this game, during

fictitious play, there are always multiple best responses, and

the player always makes, in some sense, the poorest choice

among them. However, it is easy to modify the payoffs ever

so slightly so that the best responses become unique (for

example, by adding a tiny δ > 0 to every u1(si+1, ti), and
then rescaling to [0, 1]).

IV. EXPERIMENT: FINDING APPROXIMATE EQUILIBRIA

IN RANDOM GAMES USING FICTITIOUS PLAY

The bound in Theorem 1 is a worst-case result; it seems

reasonable to believe that in practice, fictitious play will

perform much better. In fact, as we discussed previously,

we know that in certain classes of games, fictitious play

is guaranteed to converge to an exact equilibrium in the

limit [28], [24], [26], [25]. (Of course, we will not be able to

run fictitious play for an infinite number of rounds, so even

for these games we may not get an exact equilibrium.) Also,

experimentally, fictitious play often converges to an exact

equilibrium even if the game is not in one of those (known)

classes. On the other hand, there are games, such as a game

given by Shapley [32], on which fictitious play does not con-

verge. In this section, we study how good an approximation

fictitious play gives experimentally. We draw a random game

(specifically, each payoff in the game is drawn independently

and uniformly at random from the interval [0, 1]); then,

we run fictitious play on it for a predetermined number of

rounds; finally, we consider the resulting strategies of the

players (corresponding to the history of play in fictitious

play), and consider how close to equilibrium these strategies

are—that is, we find the smallest ǫ for which these strategies

are an ǫ-equilibrium. This ǫ is at most the approximation

guarantee from Theorem 1, but in general it will be less. We

repeat this over multiple games, and take the average. We

compare to the algorithm by Daskalakis et al., to support

the assertion that fictitious play performs better in practice

than that algorithm (which also sometimes outperforms its

worst-case guarantee of 1/2). (We compare to the Daskalakis

et al. algorithm because it also has the property that the sizes

of the mixed strategies’ supports do not depend on the size

of the game.) Figure 1 gives the results.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90 100

e
p
s
ilo

n

number of actions per player

Daskalakis et al.
FP, 10 rounds

FP, 100 rounds
FP, 1000 rounds

FP, 10000 rounds

Fig. 1. As a function of the number of actions per player in a random
two-player game, the average equilibrium approximation provided by the
Daskalakis et al. algorithm, as well as by fictitious play with varying
numbers of rounds. Each data point is averaged over 100 games.

Fictitious play significantly outperforms its worst-case

guarantee of (slightly more than) 1/2. The Daskalakis et

al. algorithm also outperforms its 1/2 bound, though not

by as much. Initially, adding more rounds to fictitious play

significantly improves the approximation, but eventually the

improvement declines sharply.

V. CHOOSING THE NUMBER OF ROUNDS WHEN THE

OPPONENT’S NUMBER OF ROUNDS AND THE GAME ARE

CHOSEN ADVERSARIALLY

In the above, we implicitly assumed that the two players

were coordinated in their choice of r—in a sense, they

were thinking equally deeply about the game. Of course,

there seems to be some incentive to try to out-think one’s

opponent. In this section, we consider what happens when

the choice of r is not coordinated, that is, the players choose

potentially different r1, r2. Specifically, we consider, from

the perspective of player 1, the worst-case choice of r2; and

in addition, we continue to consider the worst-case game.

To guard against the worst case, it makes sense for player 1
to randomize over her choice of r1 (in effect, her choice of

how deeply to think about the game). What is the optimal

randomization? In this section, we suppose that some upper

bound R on the opponent’s choice of r2 is known. (In the

below, r refers to r2.) The following four lemmas tell us how

well individual strategies sj do against a given r.
Lemma 1: Against τr, for 1 ≤ j ≤ r+1, sj is an ǫj,r-best

response, where ǫj,r = (r − j + 1)/r.
Proof: The claim is trivial for j = 1, so let us consider

the case where j ≥ 2. Let s∗ be a best response to τr.

Because sj is a best response to τj−1, and all utilities are

nonnegative, we have u1(sj , τr) =
∑r

i=1
(1/r)u1(sj , ti) ≥∑j−1

i=1
(1/r)u1(sj , ti) ≥

∑j−1

i=1
(1/r)u1(s

∗, ti). Because

u1(s
∗, τr) =

∑r

i=1
(1/r)u1(s

∗, ti), it follows that

u1(s
∗, τr) − u1(sj , τr) ≤

∑r

i=j(1/r)u1(s
∗, ti) ≤ (r − j +

1)/r.
Lemma 2: Against τr, for r + 2 ≤ j ≤ 2r + 1, sj is an

ǫj,r-best response, where ǫj,r = (j − r − 1)/r.
Proof: Let s∗ be a best response to τr. Because sj

is a best response to τj−1, we have that
∑j−1

i=1
(1/(j −

1))u1(sj , ti) ≥
∑j−1

i=1
(1/(j−1))u1(s

∗, ti). Because utilities

lie in [0, 1], we know that
∑j−1

i=r+1
(1/(j − 1))u1(sj , ti) −∑j−1

i=r+1
(1/(j − 1))u1(s

∗, ti) ≤ (j − r − 1)/(j − 1). Hence,∑r

i=1
(1/(j − 1))u1(s

∗, ti) −
∑r

i=1
(1/(j − 1))u1(sj , ti) ≤

(j − r − 1)/(j − 1), or equivalently,
∑r

i=1
(1/r)u1(s

∗, ti)−∑r

i=1
(1/r)u1(sj , ti) ≤ (j − r − 1)/r.

Lemma 3: Against τr, for j ≥ 2r + 2, sj is an ǫ-best
response, where ǫ = 1.

Proof: This follows immediately from the fact that

utilities lie in [0, 1].
Lemma 4: For any given r, there exists a single game

in which all of the bounds in Lemmas 1, 2, and 3 are

(simultaneously) tight.

Proof: Consider a game in which player 1’s utility

function is given as follows:

• For j ≤ r+1, u1(sj , ti) = 1 if j > i, and u1(sj , ti) = 0
otherwise.

• For j > r + 1, u1(sj , ti) = 1 if 1 ≤ j − i ≤ r, and
u1(sj , ti) = 0 otherwise.

Player 2’s utilities can be arbitrary (except they need to be

such that ti+1 is in fact a best response to σi). For example,

the following is the worst-case game for r = 3 (player 1’s
utilities only).

0 0 0 0 0 0 . . .

1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 1 1 0 0 0 . . .

0 1 1 1 0 0 . . .

0 0 1 1 1 0 . . .

0 0 0 1 1 1 . . .
...

...
...

...
...

...
. . .

(Again, there are multiple best responses in each case, but

again they can be made unique using very small perturbations

of the payoffs.)

Returning to the case of general r, in this game, we have:

• u1(sr+1, τr) = 1.
• For j ≤ r + 1, u1(sj , τr) = (j − 1)/r, hence the

suboptimality of sj is 1 − (j − 1)/r = (r − j + 1)/r.
• For r +2 ≤ j ≤ 2r +1, u1(sj , τr) = 1− (j − r− 1)/r,

hence the suboptimality of sj is (j − r − 1)/r.
• For j ≥ 2r+2, u1(sj , τr) = 0, hence the suboptimality

of sj is 1.

Hence, all of the bounds in Lemmas 1, 2, and 3 are

(simultaneously) tight.

Now, player 1 must choose a probability distribution over

her choice of r (let us again refer to player 1’s r as r1, and

player 2’s as r2). It will be more convenient to think about

the probability pi with which player 1 plays si. We have

pi =
∑∞

j=i P (r1 = j)(1/j). We note that any nonincreasing

sequence p1 ≥ p2 ≥ p3 ≥ . . . corresponds to a distribution

over r1. Hence, in the remainder, we will no longer refer to

r1, and we will simply refer to r2 as r.
Suppose that there are pi that guarantee player 1 a

suboptimality of at most ǫ (for any opponent choice of r
(1 ≤ r ≤ R) and any game). By Lemma 4, we must have,

for any 1 ≤ r ≤ R,
∑r+1

j=1
pj(r−j+1)/r+

∑2r+1

j=r+2
pj(j−r−

1)/r+
∑∞

j=2r+2
pj ≤ ǫ. Conversely, by Lemmas 1, 2, and 3,

we know that if we have, for any 1 ≤ r ≤ R,
∑r+1

j=1
pj(r −

j + 1)/r +
∑2r+1

j=r+2
pj(j − r − 1)/r +

∑∞

j=2r+2
pj ≤ ǫ,

then these pi guarantee player 1 a suboptimality of at most

ǫ. Thus, to find the worst-case optimal pi, we need to solve

the following linear program:

minimize ǫ
subject to

(∀1 ≤ r ≤ R)
∑r+1

j=1
pj(r− j + 1)/r +

∑2r+1

j=r+2
pj(j −

r − 1)/r +
∑∞

j=2r+2
pj − ǫ ≤ 0

(∀j ≥ 1) pj − pj+1 ≥ 0∑∞

j=1
pj ≥ 1

One feasible solution is to set p1 = cR, pi = cR/(i − 1)
for 2 ≤ i ≤ R + 1, and pi = 0 everywhere else, where

cR = 1/(1+
∑R+1

i=2
1/(i−1)) = 1/(1+

∑R

i=1
1/i) ≥ 1/(2+

lnR). In this case, for any r ≤ R we have
∑r+1

j=1
pj(r −

j + 1)/r +
∑2r+1

j=r+2
pj(j − r − 1)/r +

∑∞

j=2r+2
pj ≤∑r+1

j=1
pj(r−j+1)/r+

∑∞

j=r+2
pj = 1−

∑r+1

j=1
pj(j−1)/r =

1 −
∑r+1

j=2
cR/r = 1 − cR. So we obtain ǫ = 1 − cR ≤

1−1/(2+ln R). (The reader may be troubled by the fact that

this assumes that player 1 is able to put positive probability

on sR+1, whereas it is assumed that player 2 will not put

positive probability on tR+1. If we do not allow player

1 to put positive probability on sR+1, this makes only a

vanishing difference as R becomes large; notationally, it is

more convenient to allow for the probability on sR+1.)

To see how close to optimal this solution is, let us first

note that, because the pj must be nonincreasing, we have, for

r +2 ≤ j ≤ 2r +1, that pj(j − r− 1)/r = pj(1+ (j − 2r−
1)/r) ≥ pj +p2r−j+2(j−2r−1)/r = pj +p2r−j+2(−(2r−
j +2)+1)/r). Hence, we find that

∑r+1

j=1
pj(r− j +1)/r +∑2r+1

j=r+2
pj(j−r−1)/r+

∑∞

j=2r+2
pj ≥

∑r+1

j=1
pj(r−2j +

2)/r +
∑∞

j=r+2
pj . Thus, if we replace the main constraint

in the above linear program by
∑r+1

j=1
pj(r − 2j + 2)/r +∑∞

j=r+2
pj − ǫ ≤ 0, it can only make the space of feasible

solutions larger, and therefore the optimal solution can only

improve. Similarly, if we drop the constraint that the pj must

be nonincreasing, the optimal solution can only improve. We

thus obtain the linear program:

minimize ǫ
subject to

(∀1 ≤ r ≤ R)
∑r+1

j=1
pj(r−2j+2)/r+

∑∞

j=r+2
pj−ǫ ≤

0 ∑∞

j=1
pj ≥ 1

Now, if we take the dual of this linear program, we obtain:

maximize π
subject to

(∀1 ≤ j ≤ ∞) −π+
∑

1≤r≤j−2
qr +

∑
j−1≤r≤R qr(r−

2j + 2)/r ≥ 0∑R

r=1
qr ≤ 1

Note that in the shorthand j − 1 ≤ r ≤ R, r is not allowed

to take the value 0. qr can be interpreted as the weight that

the adversary places on the example corresponding to r from

Lemma 4.

One feasible solution to this dual linear program is

to set qr = kR/r for 1 ≤ r ≤ R, where kR =
1/(

∑R

r=1
1/r). We have

∑
1≤r≤j−2

qr +
∑

j−1≤r≤R qr(r−
2j + 2)/r =

∑
r≥1

qr +
∑

j−1≤r≤R qr(−2j + 2)/r =
1+

∑
j−1≤r≤R qr(−2j +2)/r = 1+

∑
j−1≤r≤R kR(−2j +

2)/r2. Now,
∑

j−1≤r≤R kR(−2j + 2)/r2 ≥ −2kR +∑
j≤r≤R kR(−2j + 2)/r2 ≥ −2kR +

∫ ∞

r=j−1
kR(−2(j −

1))/r2dr = −4kR. So, we can set π to 1−4kR ≥ 1−4/ ln R.

This gives us a lower bound on the worst-case suboptimality

of player 1 that nearly matches the upper bound given above.

The following theorem summarizes the above develop-

ment:

Theorem 2: The optimal approximation guarantee that can

be obtained using fictitious play against another player using

fictitious play, who uses a worst-case 1 ≤ r ≤ R (where

the first player only knows R), is 1 − (1/Θ(log R)). This
guarantee can be achieved by playing si with probability

proportional to:

• 1 for i = 1,

• 1/(i − 1) for 2 ≤ i ≤ R + 1.

VI. EXPERIMENT: COMPARING THE HEURISTIC TO THE

OPTIMAL LP SOLUTION

In the previous section, we advocated the heuristic of

setting p1 = cR, pi = cR/(i − 1) for 2 ≤ i ≤ R + 1, and
pi = 0 everywhere else (where cR = 1/(1 +

∑R

i=1
1/i)).

An alternative approach is to simply solve the original linear

program to optimality using a linear program solver, and use

those probabilities. In this section, we compare these two

approaches by solving the linear program for values of R up

to 1000.

In Figure 2, we compare, for different values of R, the

ǫ corresponding to the optimal LP solution, the function

1 − 1/(2 + lnR) which is an upper bound on the ǫ that

our heuristic obtains, and the lower bound 1 − 4/ ln R. As

can be seen from the figure, the optimal LP solution does

only slightly better than the heuristic, and the lower bound

is somewhat loose.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 200 300 400 500 600 700 800 900 1000

e
p
s
ilo

n

R

1-1/(2+ln R)
optimal LP solution

1-4/ln R

Fig. 2. As a function of R, the ǫ found by solving the original linear
program to optimality, compared to the ǫ for our heuristic and the lower
bound.

In Figure 3, we compare the probabilities placed on the

pure strategies in the optimal LP solution to the probabilities

in our heuristic. As can be seen, the probabilities are very

close; the only difference is that the LP probabilities have

more of a step-function nature.

Hence, there appears to be very little difference between

using the heuristic and solving the LP to optimality. Because

solving the LP becomes difficult for large R—using the GNU

Linear Programming Kit (version 4.9), R = 1000 already

takes 80 seconds to solve—it seems that using the heuristic

makes more sense.

VII. CONCLUSIONS

In this paper, we studied fictitious play as an algorithm for

generating approximately optimal strategies. We showed that

if both players use the same r (that is, they each randomize

uniformly over their actions in the first r rounds of fictitious

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100 120 140

p
_
i

i

c_R/(i-1)
optimal LP solution

Fig. 3. For R = 100, the optimal pi obtained by the linear program
compared to the pi from the heuristic.

play), then the result is an ǫ-equilibrium, where ǫ = (r +
1)/(2r). (Since we are examining only a constant number

of pure strategies, we know that ǫ < 1/2 is impossible,

due to a result of Feder et al. [16].) We showed that this

bound is tight in the worst case; however, with an experiment

on random games, we illustrated that fictitious play usually

obtains a much better approximation. We then considered the

possibility that the players choose different r. We showed

how to obtain the optimal approximation guarantee when

both the opponent’s r and the game are adversarially chosen

(but there is an upper bound R on the opponent’s r), using
a linear program formulation. Specifically, if the action

played in the ith round of fictitious play is chosen with

probability proportional to: 1 for i = 1 and 1/(i − 1) for

all 2 ≤ i ≤ R + 1, this gives an approximation guarantee of

1 − 1/(2 + lnR). This provides an actionable prescription

for how long to run fictitious play. We also obtained a lower

bound of 1 − 4/ ln R.

While algorithms for computing approximate Nash equi-

libria that obtain slightly better approximation guarantees

than fictitious play have already been found, it should be

noted that fictitious play has many other desirable properties,

and can also easily be used in games whose normal form has

exponential size (as long as best responses can be computed).

Moreover, fictitious play often performs well in practice, as

illustrated by our experiment as well as by other results in the

literature. Finally, unlike the other approximation algorithms,

fictitious play is a natural algorithm for learning in games.

It is encouraging that this often-used and relatively simple

algorithm has reasonably good approximation properties.

ACKNOWLEDGMENTS

This work is supported by NSF award number IIS-

0812113 and a Research Fellowship from the Alfred P. Sloan

Foundation.

REFERENCES

[1] I. Althöfer. On sparse approximations to randomized strategies
and convex combinations. Linear Algebra and its Applications,
199(1):339–355, 1994.

[2] B. Banerjee and J. Peng. Rvσ(t): A unifying approach to performance
and convergence in online multiagent learning. In Proceedings of the

Fifth International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS), pages 798–800, Hakodate, Japan, 2006.
[3] H. Bosse, J. Byrka, and E. Markakis. New algorithms for approximate

Nash equilibria in bimatrix games. In Workshop on Internet and

Network Economics (WINE), pages 17–29, San Diego, CA, USA,
2007.

[4] M. Bowling. Convergence and no-regret in multiagent learning.
In Proceedings of the Annual Conference on Neural Information

Processing Systems (NIPS), pages 209–216, Vancouver, Canada, 2005.
[5] M. Bowling and M. Veloso. Multiagent learning using a variable

learning rate. Artificial Intelligence, 136:215–250, 2002.
[6] G. W. Brown. Iterative solutions of games by fictitious play. In

T. Koopmans, editor, Activity Analysis of Production and Allocation.
New York: Wiley, 1951.

[7] X. Chen and X. Deng. 3-Nash is PPAD-complete. Electronic

Colloquium on Computational Complexity, Report No. 134, 2005.
[8] X. Chen and X. Deng. Settling the complexity of two-player Nash

equilibrium. In Proceedings of the Annual Symposium on Foundations

of Computer Science (FOCS), pages 261–272, 2006.
[9] V. Conitzer and T. Sandholm. AWESOME: A general multiagent

learning algorithm that converges in self-play and learns a best
response against stationary opponents. Machine Learning, 67(1-2):23–
43, May 2007.

[10] V. Conitzer and T. Sandholm. New complexity results about Nash
equilibria. Games and Economic Behavior, 63(2):621–641, 2008.

[11] C. Daskalakis, P. Goldberg, and C. H. Papadimitriou. The complexity
of computing a Nash equilibrium. In Proceedings of the Annual

Symposium on Theory of Computing (STOC), pages 71–78, 2006.
[12] C. Daskalakis, A. Mehta, and C. H. Papadimitriou. A note on

approximate Nash equilibria. In Workshop on Internet and Network

Economics (WINE), pages 297–306, Patras, Greece, 2006.
[13] C. Daskalakis, A. Mehta, and C. H. Papadimitriou. Progress in

approximate Nash equilibria. In Proceedings of the ACM Conference

on Electronic Commerce (EC), pages 355–358, San Diego, CA, USA,
2007.

[14] C. Daskalakis and C. H. Papadimitriou. Three-player games are hard.
Electronic Colloquium on Computational Complexity, Report No. 139,
2005.

[15] W. Dudziak. Using fictitious play to find pseudo-optimal solutions for
full-scale poker. In Proceedings of the 2006 International Conference

on Artificial Intelligence (ICAI06), pages 374–380, Las Vegas, Nevada,
USA, 2006.

[16] T. Feder, H. Nazerzadeh, and A. Saberi. Approximating Nash
equilibria using small-support strategies. In Proceedings of the ACM

Conference on Electronic Commerce (EC), pages 352–354, San Diego,
CA, USA, 2007.

[17] S. Ganzfried and T. Sandholm. Computing an approximate jam/fold
equilibrium for 3-player no-limit Texas Hold’em tournaments. In Pro-

ceedings of the Seventh International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), pages 919–925, Estoril,
Portugal, 2008.

[18] I. Gilboa and E. Zemel. Nash and correlated equilibria: Some
complexity considerations. Games and Economic Behavior, 1:80–93,
1989.

[19] A. Gilpin and T. Sandholm. Optimal Rhode Island Hold’em poker.
In Proceedings of the National Conference on Artificial Intelligence

(AAAI), pages 1684–1685, Pittsburgh, PA, USA, 2005. Intelligent
Systems Demonstration.

[20] S. C. Kontogiannis and P. G. Spirakis. Efficient algorithms for
constant well supported approximate equilibria in bimatrix games.
In Proceedings of the 34th International Colloquium on Automata,

Languages and Programming (ICALP-07), pages 595–606, Wroclaw,
Poland, 2007.

[21] C. Lemke and J. Howson. Equilibrium points of bimatrix games.
Journal of the Society of Industrial and Applied Mathematics, 12:413–
423, 1964.

[22] R. Lipton, E. Markakis, and A. Mehta. Playing large games using
simple strategies. In Proceedings of the ACM Conference on Electronic

Commerce (EC), pages 36–41, San Diego, CA, USA, 2003.
[23] H. B. McMahan and G. J. Gordon. A fast bundle-based anytime

algorithm for poker and other convex games. In Proceedings of

the Eleventh International Conference on Artificial Intelligence and

Statistics (AISTATS-07), San Juan, Puerto Rico, 2007.
[24] K. Miyasawa. On the convergence of the learning process in a 2 x 2

nonzero sum two-person game. Technical report, Research memo 33,
Princeton University, 1961.

[25] D. Monderer and L. S. Shapley. Fictitious play property for games
with identical interests. Journal of Economic Theory, 68:258–265,
1996.

[26] J. Nachbar. Evolutionary selection dynamics in games: Convergence
and limit properties. International Journal of Game Theory, 19:59–89,
1990.

[27] R. Porter, E. Nudelman, and Y. Shoham. Simple search methods
for finding a Nash equilibrium. Games and Economic Behavior,
63(2):642–662, 2008.

[28] J. Robinson. An iterative method of solving a game. Annals of

Mathematics, 54:296–301, 1951.
[29] T. Sandholm. Perspectives on multiagent learning. Artificial Intelli-

gence, 171(7):382–391, 2007.
[30] T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer programming

methods for finding Nash equilibria. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), pages 495–501, Pitts-
burgh, PA, USA, 2005.

[31] R. Savani and B. von Stengel. Hard-to-solve bimatrix games. Econo-
metrica, 74:397–429, 2006.

[32] L. S. Shapley. Some topics in two-person games. In M. Drescher,
L. S. Shapley, and A. W. Tucker, editors, Advances in Game Theory.
Princeton University Press, 1964.

[33] J. Shi and M. Littman. Abstraction methods for game theoretic poker.
In Computers and Games, pages 333–345. Springer-Verlag, 2001.

[34] Y. Shoham, R. Powers, and T. Grenager. If multi-agent learning is the
answer, what is the question? Artificial Intelligence, 171(7):365–377,
2007.

[35] P. G. Spirakis. Approximate equilibria for strategic two person games.
In Proceedings of the First Symposium on Algorithmic Game Theory

(SAGT-08), pages 5–21, Paderborn, Germany, 2008.
[36] H. Tsaknakis and P. G. Spirakis. An optimization approach for

approximate Nash equilibria. In Workshop on Internet and Network

Economics (WINE), pages 42–56, San Diego, CA, USA, 2007.

